
Balancing Soft Error Coverage with

Lifetime Reliability in Redundantly

Multithreaded Processors

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science

Computer Science

by

Taniya Siddiqua

September 2009

c© Copyright by Taniya Siddiqua, 2009.

All Rights Reserved

Approvals

This dissertation is submitted in partial fulfillment of the requirements for the

degree of

Master of Science

Computer Science

——————————————–

Taniya Siddiqua

Approved:

——————————————– ——————————————–

Sudhanva Gurumurthi (Advisor) Kevin Skadron (Chair)

——————————————–

Mircea R. Stan

Accepted by the School of Engineering and Applied Science:

——————————————–

James H. Aylor (Dean)

September 2009

Abstract

Silicon reliability is a key challenge facing the microprocessor industry. Processors

need to be designed such that they are resilient against both soft errors and lifetime

reliability phenomena. However, techniques developed to address one class of relia-

bility problems may impact other aspects of silicon reliability. In this thesis, we show

that Redundant Multi-Threading (RMT), which provides soft error protection, exac-

erbates lifetime reliability. We then explore two different architectural approaches to

tackle this problem, namely, Dynamic Voltage Scaling (DVS) and partial RMT. We

show that each approach has certain strengths and weaknesses with respect to per-

formance, soft error coverage, and lifetime reliability. We then propose and evaluate

a hybrid approach that combines DVS and partial RMT. We show that this approach

provides better improvement in lifetime reliability than DVS or partial RMT alone,

buys back a significant amount of performance that is lost due to DVS, and provides

nearly complete soft error coverage.

iv

Acknowledgements

I am extraordinarily fortunate to work with my advisor Professor Sudhanva Guru-

murthi for his sage guidance and I cannot thank him enough. He has always been a

continuous source of inspiration and encouragement. No matter what, he has always

been accessible and willing to help with research making it smooth and rewarding.

I have learnt a great deal from him and undoubtedly will continue to learn. Inspite

of my uncountable mistakes, he always encourages me to do the right thing with

patience. I cannot hope to enumerate all his support throughout these two years.

He has been a wonderful mentor. His intellect, patience and mentorship to both my

academic and personal growth makes him a pleasure to work with.

I would like to thank all my best friends who stand by me in my tough moments,

help me to recollect my enthusiasm about life and work. I would like to thank my

friends at University of Virginia without whom life could have been very difficult. All

of them have always been a source of support and fun.

Finally, my family without whom I cannot think of my existence. At times I

lose all my hopes but my parents never let me feel down. They make me realize

what is life about and I should always keep going. I am so much lucky to have all

my caring siblings and adorable nephews/nieces. Lastly, I have no words to express

gratitude and respect for my wonderful brother-in-law who is more than a brother to

me. Without his moral support I would not be here.

Last but not least, thanks to God for making my life bountiful and giving me the

strength to survive the tests.

v

Contents

Abstract . iv

Acknowledgements . v

List of Tables . vii

List of Figures . viii

1 Introduction 1

2 Background and Related Work 4

2.1 Soft Errors . 4

2.2 Lifetime Reliability . 5

3 Experimental Setup 8

4 Results 12

4.1 Impact of Redundant Multi-Threading on Processor Lifetime Reliability 13

4.2 Improving Lifetime Reliability through Dynamic Voltage Scaling . . . 16

4.3 Improving Lifetime Reliability through Partial Redundant Multi-Threading 21

4.4 Combining DVS with Partial RMT 27

5 Conclusions and Future Work 33

vi

List of Tables

3.1 Area of each structure as a percentage of the area of the structures

within the Sphere of Replication . 10

4.1 Baseline processor configuration . 13

4.2 Percentage of integer and floating-point instructions in the benchmarks. 17

4.3 Architectural Vulnerability Factors of key structures within the Sphere

of Replication in the single-threaded mode and for the PRMT83, PRMT85,

and PRMT87 partial RMT policies. 23

4.4 Architectural Vulnerability Factors of key structures within the Sphere

of Replication for the HY B85 policy. The single-threaded mode and

PRMT85 AVFs are shown to facilitate data comparison. 30

vii

List of Figures

3.1 SRT Processor Floorplan . 9

4.1 Degradation in processor lifetime reliability due to SRT. 14

4.2 Impact of Dynamic Voltage Scaling on lifetime reliability and perfor-

mance. 18

4.3 Impact of partial RMT on lifetime reliability and performance. . . . 25

4.4 Impact of the hybrid partial RMT scheme for the 85 C temperature

threshold. 29

viii

Chapter 1

Introduction

Silicon reliability is a key challenge facing the microprocessor industry today. Lower

supply voltages and increased transistor integration densities are making processors

increasingly vulnerable to soft errors due to external high-energy particles such as

neutrons. Particle-induced soft errors are a problem for both memory arrays as well

as the latches and logic within the processor core [24]. In addition, continued scal-

ing has also increased the susceptibility of processors to several lifetime reliability

phenomena, such as Electromigration, Time-Dependent Dielectric Breakdown, and

Thermal Cycling [29, 30]. Therefore, processors have to be designed to provide ade-

quate protection against both soft errors and lifetime reliability.

A number of architecture-level solutions have been proposed to tackle silicon reli-

ability problems. Soft error mitigation techniques include Redundant Multithreading

(RMT) [19, 13, 27] and Architecture Vulnerability Factor (AVF) reduction techniques

[34]. There have also been a number of “partial” RMT techniques proposed in recent

years, wherein the some amount of soft error coverage is sacrificed to improve perfor-

mance or reduce power consumption [15, 11, 16, 17]. In the area of lifetime reliability,

the proposed protection techniques include Dynamic Reliability Management [29],

spatial redundancy [31], and dynamic verification [5, 7]. Previous works have focused

1

on addressing soft errors or lifetime reliability individually and have not considered

how techniques that are developed for one class of reliability problems may impact

other aspects of silicon reliability. However, in order to design reliable processors,

it is important to consider these interactions. For example, the redundant threads

of a single program in RMT could lead to increased activity within the chip, which

could in turn accelerate the wear out of certain on-chip structures. Although there

have been studies into reducing the performance overheads of RMT [15, 11, 16, 17],

to the best of our knowledge there has been no prior work that has explored how

soft error protection mechanisms impact lifetime reliability. Since soft errors and

lifetime reliability are both important problems, techniques that protect the proces-

sor against these phenomena would have to co-exist on the same chip. Therefore,

it is important to understand how silicon reliability is affected by these interactions

and develop practical solutions to effectively balance between performance, soft error

coverage, and lifetime reliability. Towards this end, this thesis makes the following

contributions:

• We analyze the impact of a widely studied RMT design, namely, Simultaneous

and Redundantly Threaded (SRT) [19] processors, on lifetime reliability. We

find that RMT can cause 3%-17% reduction in the lifetime reliability across the

26 SPEC CPU2000 benchmarks. We find that thermal cycling in the package

to be the main reason for this degradation in lifetime reliability.

• We first analyze whether we can leverage Dynamic Voltage Scaling (DVS) that

is already available in most processors today to alleviate the lifetime reliability

impact. We find that DVS can improve the lifetime reliability of an RMT-based

processor by 10%-28% but leads to a severe degradation in performance.

• We then explore the use of a temperature-tracking “partial” RMT [12] scheme

where the redundant thread is disabled in response to elevated operating tem-

2

peratures. Our partial RMT scheme improves performance of redundant exe-

cution by 13%-29% but only slightly improves the lifetime reliability of RMT

and significantly reduces the soft error coverage.

• Finally we present a hybrid scheme that combines DVS with partial RMT. We

show that this hybrid approach provides improvements in the lifetime reliability

of RMT comparable to DVS, delivers performance comparable to partial RMT

and also provides soft error coverage comparable to fully redundant execution.

The organization of the rest of the thesis is as follows. The next chapter discusses

the related work and the experimental methodology is described in Chapter 3. The

experimental results are presented in Chapter 4 and Chapter 5 concludes this thesis.

3

Chapter 2

Background and Related Work

In this Chapter, we review key related work on soft errors and lifetime reliability.

2.1 Soft Errors

Particle-induced soft errors occur due to the interaction of external particles, typically

high-energy neutrons, with silicon. Although considered a problem for only large

memory arrays (e.g., caches) in the past, soft errors now pose a challenge for even

the latches and logic within the processor core [24]. At the architecture level, the soft

error vulnerability of the various structures within a processor can be analyzed using

the Architecture Vulnerability Factor (AVF) methodology [14, 6]. The AVF quantifies

the probability that a fault in a structure within the processor will manifest itself as

an error in the externally visible state and takes into account the fact that not all bits

that flow through the processor would necessarily affect the Architecturally Correct

Execution (ACE).

Protection against soft errors at the architecture level can be provided using cod-

ing techniques, and also through spatial and temporal redundancy. A widely studied

form of temporal redundancy is Redundant Multi-Threading (RMT) [19], wherein

a single program is replicated into two or more redundant threads that execute in-

4

dependently, for example on the multiple thread-contexts of an SMT processor or

on the cores of a multicore processor. The outputs of these redundant threads are

compared and any mismatch in their values is used to flag an error. All the hardware

structures that lie between the input-replication and output-comparison points, which

constitute what is called the “Sphere of Replication” (SoR), are protected through

redundant execution whereas those structures that lie outside the SoR are protected

through other means, such as ECC or spatial redundancy. Although RMT is an ef-

fective technique to detect soft errors, it imposes significant performance overheads.

Addressing the performance overheads of RMT has been an active area of research in

recent years. The basic optimization approach has been to use some form of “partial

RMT” [20, 12], where the redundant thread is sometimes disabled, thereby trading

off soft error coverage for improved performance. The proposed partial RMT mecha-

nisms include exploiting dynamic instruction reuse [15, 11] and using high-confidence

speculation as a substitute for redundant execution [16, 17]. There has also been

prior work on reducing the bandwidth overheads of RMT [27]. None of these prior

works have considered the impact of RMT on the lifetime reliability of the processor.

2.2 Lifetime Reliability

Unlike soft errors, lifetime reliability phenomena (which are also referred to as “hard

errors”) lead to permanent damage. Hard errors can appear during fabrication in the

form of defects or later in the field due to wearout and aging, which can be exacer-

bated by extreme environmental conditions, such as high temperatures, high voltages,

electrostatic discharge, etc. Examples of lifetime reliability phenomena include Elec-

tromigration (EM), Stress Migration (SM), Thermal Cycling (TC), Time-Dependent

Dielectric Breakdown (TDDB), and Negative Bias Temperature Instability (NBTI).

Analytical models for these lifetime reliability phenomena and a methodology for

5

their use in architecture simulations are discussed in [29] and [31]. In their Reliability-

Aware Micro-Processor (RAMP) framework, the authors present models that express

the reliability in terms of the Mean-Time To Failure (MTTF) of a microarchitectural

structure for a particular lifetime reliability phenomenon, such as EM or TC. These

models calculate the MTTF at any given point of time based on static parameters,

such as material-dependent constants, and dynamically varying parameters, such as

activity factor and temperature. We now present a brief overview of the RAMP

methodology. We use RAMP to evaluate lifetime reliability in our experiments. The

interested reader is referred to [29] and [31] for more details about the reliability

models and the MTTF calculation methodology.

In RAMP, every microarchitectural structure whose reliability is to be calcu-

lated (e.g., ALUs, register-files), is assigned an initial reliability budget (expressed

in Failures-in-Time or FIT) for each of the five lifetime reliability phenomena (EM,

SM, TC, TDDB, and NBTI). RAMP models only low-frequency thermal cycling ef-

fects on the package. The initial FIT-value of each structure is calculated based

on the total lifetime reliability budget of the processor: FITtarget. RAMP assumes

that FITtarget is evenly distributed across the five reliability phenomena and that the

failure rate due to a particular phenomenon for a given structure is proportional to

its area. In order to model age-related wearout more accurately, where lower failure

rates are seen earlier in the lifecycle of a structure, lognormal distributions are used

for the different failure mechanisms. After the initial assignment of the FIT budgets,

the reductions in the lifetimes of the different structures at runtime are calculated

based on dynamically varying parameters, such as temperature, which can be ob-

tained from an architecture simulator that is augmented with power and thermal

models. Finally, RAMP uses Monte Carlo simulation to calculate the MTTF of the

entire processor from the lognormal lifetime distributions of the various structures

and failure mechanisms.

6

A variety of architecture level techniques have been proposed for addressing life-

time reliability problems. Srinivasan et al. [29] propose the use of Dynamic Reliability

Management to meet lifetime reliability targets. In [31], the authors propose the use

of spares for key microarchitectural structures to use in the event of an error and

also to exploit the spatial redundancy that is inherent in high-performance micro-

processors (e.g., multiple functional units) to provide graceful degradation. In [21],

the authors propose to leverage the scan-chain logic within superscalar processors to

isolate hard faults. The use of dynamic verification techniques to detect hard errors

within the processor core are proposed in [5] and [7]. Recent work has proposed

architecture-level solutions to mitigate NBTI problems [32].

7

Chapter 3

Experimental Setup

Our experiments were carried out via execution-driven simulation using the Sim-

pleScalar 3.0 simulator [9], which we modified to simulate RMT. The design space

for RMT is large, depending on which structures are chosen to be included within

the SoR. Moreover, RMT could be implemented as multiple threads running within

a single core, or as redundant threads running on multiple cores of a multicore pro-

cessor [13]. In this thesis, we study the Simultaneous and Redundantly Threaded

(SRT) [19] RMT scheme, which has been proposed to provide soft error detection by

extending the microarchitecture of SMT processor cores. Although multicore proces-

sors are gaining popularity in the microprocessor market, several commercially avail-

able multicore processors still use hardware multi-threading within each core (e.g.,

IBM POWER6, Intel Nehalem, SUN Niagara), which can be leveraged to implement

SRT-based soft error protection.

In SRT, the L1 cache interfaces serve as the input-replication and output-comparison

points. One of the redundant threads in the thread-pair runs ahead of the other and

hence these threads are referred to as the “leading” and “trailing” threads respec-

tively. In order to improve performance, SRT uses three additional microarchitectural

structures: (i) a Branch Outcome Queue (BOQ), (ii) a Load Value Queue (LVQ), and

8

(iii) a Store Checking Buffer (SCB). More details about the design of these three struc-

tures are given in [19] and [13]. In this thesis, we use the term “RMT” to refer to

the overall redundancy approach and the term “SRT” to refer to the specific mecha-

nism that we evaluate. Our SRT processor floorplan is an extension of Alpha 21264

floorplan [25] and includes the LVQ, BOQ, and SCB. The floorplan of the SRT-based

processor core that we simulate is shown in Figure 3.1. We place these additional

structures in the floorplan so that they are co-located with the other microarchitec-

tural blocks that are accessed in the same pipeline stage or in adjacent stages in order

to minimize delay. For example, the BOQ is placed adjacent to the branch predictor

since the trailing thread accesses the BOQ in the same pipeline stage that the leading

thread accesses the branch predictor.

������� �������
�	
�� ���
	���
	�

������ ������� ����������������
	���
	���
	���
��� ��� ���

Figure 3.1: SRT Processor Floorplan

We use Wattch [8] for modeling power, HotSpot [25] for simulating the tempera-

ture behavior, and the HotSpot leakage power model [26] to calculate leakage power.

We sample the temperature of all the structures every 10K cycles during the simula-

tion. We modify SimpleScalar to include the RAMP reliability models [29, 31]. As

in prior work [29, 31], we use a FITtarget value of 4000, which we distribute across

9

the various failure modes and we calculate the initial FIT rate due to a particular

failure mode for a structure based on its area, as described in Chapter 2.2. The area

of various structures within the SoR (which is the region of the chip whose lifetime

reliability is most affected by RMT) is given in Table 3.1. We use all 26 benchmarks

from the SPEC CPU2000 benchmark suite in our evaluations [28]. The benchmarks

were compiled for the Alpha ISA and use the reference input set. We perform detailed

simulation of the first 100-million instruction SimPoint for each benchmark [23]. The

parameters of our baseline SRT processor model are given in Table 4.1. Our technol-

ogy parameters are based on the 65 nm process for which industry data is available.

Structure Area (%)
IntMap 5.79
IntQ 10.73

IntReg 5.75
IntExec 19.13 (2.39 for all ALUs/Multipliers/Dividers)
FPMap 7.03
FPQ 10.53

FPReg 3.99
FPAdd 9.44 (2.36 for all ALUs)
FPMul 4.98 (2.49 for all Multipliers/Dividers)
LVQ 5.88
BOQ 5.88
SCB 5.88

Table 3.1: Area of each structure as a percentage of the area of the structures within
the Sphere of Replication

Why Would the Lifetime Reliability of SRT Processors Be Different from

SMT Processors? Although both SRT and SMT provide multiple hardware thread

contexts, SRT extends the SMT microarchitecture to efficiently support redundant

multi-threading by exploiting certain unique properties of redundant execution. For

example, using an LVQ allows the trailing thread to obtain the value of a load without

having to access the cache, whereas it is not generally possible to avoid a cache access

on a load for a thread running on an SMT processor. Similarly, the BOQ provides per-

fect branch-prediction for the trailing thread whereas it is very challenging to provide

10

perfect branch-prediction in the general case. As [19] quantitatively demonstrates,

using these additional structures to build an SRT processor significantly boosts the

performance of RMT compared to running redundant threads on an SMT core. This

significant boost in performance is the result of a correspondingly higher utilization of

the microarchitectural resources within the core [15, 11, 16, 17]. The prior works have

looked at the performance impact. In this thesis we examine the lifetime reliability

impact.

11

Chapter 4

Results

Given the rising soft error rates for the logic and latches within the processor core,

processors will have to implement mechanisms such as RMT to meet the soft error

budgets. In addition to providing adequate soft error coverage it is desirable that

RMT-based processors do not degrade single-thread performance (i.e., the perfor-

mance should be as if there was no redundant thread competing for the hardware

resources). It is also desirable that the lifetime reliability of an RMT-based processor

not exceed the budget set for earlier (non-redundant) generations of the same proces-

sor family. In this thesis, we look at the lifetime reliability issue and use the lifetime

reliability of the single-threaded execution mode as a proxy for the desired lifetime

reliability. In the first set of results, we quantify this reduction in lifetime reliability

due to RMT. We then evaluate two different approaches to buy back this lifetime

reliability loss: (i) DVS (Chapter 4.2) and (2) partial RMT (Chapter 4.3). We finally

present the results for a hybrid scheme that combines DVS and partial RMT.

We assume a series failure-model for lifetime reliability. This model captures

the scenario where the first structure to fail will lead to a complete failure of the

processor [31]. We believe that the series failure-model is a reasonable assumption for

two reasons. First, one of the primary motivations for RMT is to provide soft error

12

Technology Parameters
Process Technology 65 nm

Supply Voltage 1.3 V
Clock Frequency 3 GHz

Ambient Temperature 45 C
Processor Parameters

Pipeline Width 8
Fetch-Queue Size 16

Branch-Predictor Type Bimodal, with 2K-entry table
RAS Size 64
BTB Size 2K-entry 4-way

Branch-Misprediction Latency 7
ROB Size 128
LSQ Size 64

Integer ALUs 6
Integer Multipliers/Dividers 2

FP ALUs 4
FP Mult./Div./Sqrt. 2

L1 Cache Ports 4
L1 D-Cache 32 KB 4-way with 32B line-size
L1 I-Cache 32 KB 2-way with 32B line-size

L2 Unified Cache 256 KB 4-way with 64B line-size
I-TLB 128 entries 4-way
D-TLB 256 entries 4-way

TLB Miss-Latency 30 cycles
Main Memory Latency 200 cycles

Table 4.1: Baseline processor configuration

protection for commodity microprocessors where structural duplication techniques,

such as the use of spares, may be prohibitive to incorporate due to cost. Second, even

in high-end processors, structural duplication is used only to protect components that

lie outside the processor core, such as the caches and I/O controllers [18]. Since the

SoR of SRT is completely internal to the core, the failure of any structure within the

SoR will lead to a failure of the processor as a whole.

4.1 Impact of Redundant Multi-Threading on Pro-

cessor Lifetime Reliability

We first test the hypothesis that the increased level of activity within the processor

due to redundant execution could accelerate the wearout of the structures that they

stress. We conduct an experiment where we analyze the reduction in the processor

lifetime reliability due to redundant execution for the SPEC CPU2000 benchmarks.

13

The results from this experiment are given in Figure 4.1. Each bar in Figure 4.1

corresponds to a particular benchmark and shows the reduction in lifetime reliability

due to SRT with respect to the single-threaded execution mode. We can see that

SRT can reduce the lifetime reliability by 3%-17%, with an average lifetime reduction

of 7% across all 26 benchmarks. The impact on reliability is especially strong for the

integer benchmarks, whose average lifetime reduction is 11%, whereas the degradation

for floating-point workloads is 4%. In general, across all the benchmarks, we find that

the main cause for lifetime reliability is thermal cycling in the package due to high

operating temperatures in the integer register-file. We now explain the reasons for

these trends.

17

15 15

13

10
9 9 9 9

7
6

4

7 7

5 5
4 4

3 3 3 3 3 3 3 3

7

0

2

4

6

8

10

12

14

16

18

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

L
if

et
im

e
R

ed
u

ct
io

n
 (

%
)

Figure 4.1: Degradation in processor lifetime reliability due to SRT.

The MTTF due to thermal cycling, MTTFTC , is given by the equation:

MTTFTC ∝ (
1

T − Tambient

)q

14

where, T and Tambient are the average temperature of the structure and the ambient

temperature respectively, and q is the Coffin-Manson exponent [29]. As in the prior

work on RAMP [29], we use a q value of 2.35 for the package. As the equation

indicates, high operating temperatures have a significant impact on TC due to the

exponential relationship between temperature and MTTFTC . In our experiments we

find the integer register-file to be the hottest structure for most of the benchmarks,

a result that concurs with previous studies on the thermal behavior of processors

[25] and leads to a significant amount of thermal cycling. Interestingly, we find

that thermal cycling due to hotspots in the integer register-file to be the primary

cause for processor lifetime degradation even for the floating-point benchmarks. In

order to determine why this happens, we profiled the benchmarks to determine their

instruction mix. The breakdown of the instruction mix for the benchmarks, classified

into integer and floating-point instructions, are given in Table 4.2. The classification

of load and store instructions into the two categories are based on whether they

operate on integer or floating-point registers. As we expect, a large fraction (82.4% on

average) of the instructions in the integer benchmarks are indeed integer instructions.

As a result, there are a large number of accesses to the integer register-file, which

increases the temperature of this structure. The eon benchmark experiences the least

degradation in lifetime reliability. This is due to the presence of a significant number

of floating-point instructions, as shown in Table 4.2(a), which reduces the number of

physical accesses to the integer register-file.

As we can see in Table 4.2(b), several floating-point benchmarks also have a con-

siderable number of integer instructions and therefore these benchmarks also exercise

the integer register-file. In fact, mesa, art, and apsi have a significantly higher num-

ber of integer instructions than floating-point instructions. We find some interesting

behaviors for few floating-point benchmarks like mgrid, lucas and sixtrack. We find

that some structures for these benchmarks experience the highest temperature. The

15

hottest units for these benchmarks are floating-point structures (floating-point adder

or register-file) while the second hottest unit is the integer register-file. From Table

4.2 we see that these benchmarks have significantly higher number of floating-point

instructions. But the main cause of lifetime degradation for these benchmarks is ther-

mal cycling due to the integer register-file. Recall from Chapter 2.2, the MTTF of the

processor depends on both area and dynamically varying parameters like the temper-

ature of the structures. Therefore, since the area of the floating-point units are much

smaller than the integer register-file, the integer register-file has more impact on the

lifetime degradation. However, since the overall percentage of integer instructions in

the integer benchmarks is significantly higher than in the floating-point benchmarks,

the integer benchmarks impact lifetime reliability to a greater extent, as shown in

Figure 4.1.

To summarize, thermal cycling due to high operating temperatures in the integer

register-file is the primary reason for degradation in the lifetime reliability due to

SRT. Although SRT is effective in providing protection against soft errors, it has a

detrimental effect on lifetime reliability. We now explore two different approaches to

mitigate this problem.

4.2 Improving Lifetime Reliability through Dynamic

Voltage Scaling

Dynamic Voltage Scaling (DVS) is a standard power/temperature management fea-

ture found in processors today. DVS can provide a cubic reduction in the power

density, which can help reduce the temperature of the chip. However, since DVS

scales both the voltage and the clock frequency, this reduction in power comes at

the expense of performance. We now study whether we can simply leverage DVS to

reduce thermal cycling in SRT-based processors.

16

Benchmark Instruction Mix (%)
Integer Floating-Point

Instructions Instructions
gzip 88.27 0.0
bzip2 85.74 0.09
gap 87.67 0.0

parser 83.96 0.0
perlbmk 86.25 0.1

mcf 79.0 1.06
twolf 82.98 4.81
vortex 82.3 0.1

gcc 86.65 0.0
crafty 88.5 0.1
vpr 72.98 16.57
eon 64.3 24.01

Average 82.4 3.9
(a) Integer Benchmarks

Benchmark Instruction Mix (%)
Integer Floating-Point

Instructions Instructions
galgel 48.51 46.18
ammp 44.44 47.59
mesa 72.29 18.95
swim 34.86 64.66

sixtrack 18.26 79.85
equake 36.54 59.48
lucas 26.5 72.92

facerec 48.64 45.92
apsi 50.24 46.71
art 52.32 33.94

applu 17.1 82.22
fma3d 45.08 50.85

wupwise 49.06 40.98
mgrid 12.71 87.0

Average 39.8 55.5
(b) Floating-Point Benchmarks

Table 4.2: Percentage of integer and floating-point instructions in the benchmarks.

Our DVS scheme is based on the feedback-based approach proposed by Skadron

et al. [25], which uses a Proportional-Integral (PI) controller to manage temperature.

This scheme works as follows. Given a temperature threshold, which is the maximum

temperature within which we would like to operate all the on-chip structures, and a

gain value, the difference between the current temperature and the threshold value

is used to set the scaling factor. As in [25], we use a gain value of 10, allow the DVS

settings to vary in steps from 50% to 100% of the nominal voltage, and use a low-pass

filter to the controller output to prevent frequent DVS actions due to temperature

fluctuations. Note that although reducing the voltage could increase the soft error

rate (SER) per bit, the range of voltages used by our DVS scheme has negligible

impact on the SER for the 65nm process technology [22].

17

0

10

20

30

40

50

60

70

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

L
if

et
im

e
Im

p
ro

ve
m

en
t

w
rt

. S
R

T
 (

%
)

DVS_83 DVS_85 DVS_87

(a) Impact on lifetime reliability

0

5

10

15

20

25

30

35

40

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

S
lo

w
d

o
w

n
 w

rt
. S

R
T

 (
%

)

DVS_83 DVS_85 DVS_87

(b) Impact on performance

Figure 4.2: Impact of Dynamic Voltage Scaling on lifetime reliability and perfor-
mance.

18

A key parameter that determines the temperature at which an unit operates is the

temperature threshold at which DVS is triggered. Higher the threshold value, lower

is the likelihood of triggering DVS, which can in turn provide higher performance.

However, this higher performance comes at the cost of decreased lifetime reliability.

On the other hand, lowering the threshold value to improve lifetime reliability could

lead to significant performance loss. In order to analyze these tradeoffs, we evaluate

DVS with three threshold values: 83 C, 85 C, and 87 C respectively. The results from

these experiments are given in Figure 4.2. Figure 4.2(a) quantifies the improvement in

lifetime reliability with DVS and Figure 4.2(b) gives the corresponding performance

impact. The bars for DV S83, DV S85, and DV S87 correspond to the three temper-

ature thresholds. As Figure 4.2(a) indicates, the use of DVS provides significant

improvements in lifetime reliability for the integer benchmarks. The DV S83, DV S85,

and DV S87 schemes provide 42.3%, 30.1%, and 18.8% improvements in lifetime re-

liability respectively. However, these improvements come at the cost of a significant

slowdown in performance as shown in Figure 4.2(b). The mcf benchmark shows an

interesting behavior. mcf gains large improvements in lifetime reliability but suffers

very little performance degradation over the non-DVS based SRT system. We find

that mcf has the lowest IPC (0.397) among all the benchmarks. This is due to the

fact that mcf experiences a significantly higher miss-rate in the L1 data cache than

the other benchmarks. The L1 D-cache miss-rate for mcf is 41.2%, which is signifi-

cantly higher than that for the benchmark with the second highest miss-rate - gzip

- whose L1 D-cache miss-rate is 12%. As a result, mcf experiences a larger number

of stalls and therefore grossly underutilizes the processor resources, thereby resulting

in a cooler temperature profile. This, in turn, causes DVS to be triggered less often.

However, during those occasional short-duration periods when the mcf workload does

elevate the operating temperature, we find that the temperatures can be high enough

to impact the lifetime reliability. Engaging DVS during these short intervals reduces

19

the operating temperature thereby improving lifetime reliability. Although gap shows

a lifetime improvement trend similar to mcf, the IPC of the former is much higher

(1.66) and therefore incurs a higher performance penalty than mcf due to DVS as

shown in Figure 4.2(b).

As we expect from the results in Chapter 4.1, the lifetime improvements and the

corresponding performance losses for the floating-point benchmarks are lower than

those for the integer benchmarks. The three highest lifetime improvements as well

as the greatest performance losses are observed for mgrid, lucas and sixtrack.

These are the floating-point benchmarks with the hottest structures as mentioned in

Chapter 4.1. As DVS directly controls the temperature, these benchmarks experience

the highest lifetime improvement. However, since DVS gets trigerred more often for

these benchmarks, they experience a much higher performance loss.

Between the three DVS schemes, we can observe that the use of progressively

higher temperature thresholds results in larger drops in lifetime reliability whereas

the performance trends scale more or less linearly with the thresholds. The reason

for this is as follows. For all three DVS schemes, we find that TC is still the pri-

mary reason for degradation in lifetime reliability. Since MTTFTC is proportional

to (1
T−Tambient

)2.35, a linear change in temperature has an exponential impact on TC.

On the other hand, temperature and frequency are related linearly [10]. Since per-

formance depends on the frequency, the performance curves show a linear variation

with temperature for the DVS schemes. With the use of higher temperature thresh-

olds, the effectiveness of DVS starts diminishing. Although the integer benchmarks

still benefit from the DV S87 scheme, most floating-point benchmarks get negligible

improvements in lifetime reliability (since their operating temperatures remain below

the trigger threshold temperature) and consequently experience little slowdown in

performance.

Summary: There are merits and demerits to using DVS. On the positive side, on av-

20

erage, it improves lifetime reliability to a larger extent than it degrades performance,

although the gap between the two narrows at higher temperatures. The average life-

time improvements across the entire benchmark suite for the DV S83, DV S85, and

DV S87 schemes are 28%, 18%, and 10% respectively, whereas the corresponding per-

formance degradations are 16%, 10%, and 5% respectively. On the other hand, since

SRT itself imposes significant performance penalties, the additional slowdown due

to DVS could lead to unacceptably low single-thread performance. Choosing higher

temperature thresholds to offset these performance losses can diminish the effective-

ness of DVS in improving lifetime reliability. Therefore, although DVS is a candidate

solution to tackle lifetime reliability in SRT processors and is a standard feature in

most processors today, we cannot directly use it due to its negative performance

impact.

4.3 Improving Lifetime Reliability through Partial

Redundant Multi-Threading

Partial RMT is a technique to address the performance impact of redundant execu-

tion. In partial RMT, parts of the redundant thread are not executed to trade off soft

error coverage for improved performance [15, 11, 16, 17, 33]. From the lifetime relia-

bility perspective, the removal of instructions from the SoR can reduce the contention

for structures such as the integer register-file, which could in turn lower temperatures

and hence reduce TC. Therefore, it is interesting to explore whether partial RMT

could be a viable approach to balance soft error coverage with lifetime reliability.

We evaluate the performance, soft error coverage, and the lifetime reliability im-

pact of a temperature-tracking partial RMT scheme. This scheme works as follows.

Similar to DVS, our partial RMT scheme also uses a temperature threshold. At the

start of the execution, we run the processor in SRT mode through the thermal and

21

performance warmup phases (as described in Chapter 3), then continue redundant

execution for another 10K cycles, and finally measure the temperatures of all the

structures. (Recall that 10K cycles is our temperature sampling interval). If the

maximum temperature of all the components is below the threshold value, we con-

tinue the fully redundant execution and therefore get complete soft error coverage.

However, when the maximum temperature exceeds the threshold, we disable SRT

and switch to the single-threaded execution mode until the temperature falls below

the threshold. Once the temperature goes below the threshold, we re-enable SRT.

Therefore, during periods when SRT is disabled, soft error coverage is compromised.

As with DVS, we use a low-pass filter to avoid frequent switches between the SRT

and single-threaded mode due to temperature fluctuations. In the case of DVS, the

selection of a particular temperature threshold affects only lifetime reliability and

performance. In partial RMT, the threshold value also affects soft error coverage, in

particular the Architectural Vulnerability Factor (AVF) of the structures within the

SoR [14, 6]. In our experiments, we use the same three temperature thresholds as

before: 83 C, 85 C, and 87 C, and we refer to the corresponding partial RMT policies

as PRMT83, PRMT85, and PRMT87 respectively. The improvement in lifetime reli-

ability with respect to SRT for these partial RMT policies is given in Figure 4.3(a).

Unlike DVS, turning off redundant execution always provides a performance benefit

and therefore we plot the performance improvement, rather than the slowdown, of

partial RMT with respect to SRT in Figure 4.3(b). In Table 4.3, we present the

average AVFs of the Reorder Buffer (ROB), Load/Store Queue (LSQ), Issue Queue

(ISQ), which includes both the integer and floating-point queues, and the register

files (Regs). We present the AVFs of these structures when the processor runs in the

single-threaded mode, as well as those of the three partial RMT policies. A higher

AVF value indicates that the given structure is more vulnerable to soft errors and

the goal of SRT is to reduce the AVFs to zero via redundant execution. From Figure

22

4.3, we can see that the use of partial RMT results in significant performance gains

(28.6%, 23.4%, and 13% for PRMT83, PRMT85, and PRMT87 respectively). How-

ever, partial RMT provides only a small benefit in terms of lifetime reliability. The

three policies provide an average lifetime reliability improvement of only 7.3%, 6.7%,

and 5.5% with respect to SRT, which is significantly less than the benefits provided

by DVS for the same temperature threshold values. For the integer workloads, the

lifetime reliability and performance trends remain invariant across all three policies,

except for eon.

Benchmark Single− Threaded PRMT83 PRMT85 PRMT87

ROB LSQ ISQ Regs ROB LSQ ISQ Regs ROB LSQ ISQ Regs ROB LSQ ISQ Regs

gzip 48 25 19 32 46 25 17 29 46 25 17 29 46 25 17 29

bzip2 34 24 17 21 34 25 16 20 34 25 16 20 34 25 16 20

gap 27 21 14 17 26 21 13 15 26 21 13 15 26 21 13 15

parser 42 23 15 29 42 24 14 27 42 24 14 27 42 24 14 27

perlbmk 18 17 11 11 17 16 10 10 17 16 10 10 17 16 10 10

mcf 51 44 15 25 51 36 14 28 51 36 14 28 51 36 14 28

twolf 51 34 23 33 50 34 22 32 50 34 22 32 50 34 22 32

vortex 67 56 46 42 68 55 46 42 68 55 46 42 68 55 46 42

gcc 17 24 7 8 19 18 10 10 19 18 10 10 19 18 10 10

crafty 25 19 14 15 25 19 14 14 25 19 14 14 25 19 14 14

vpr 56 49 17 38 56 49 17 37 56 49 17 37 56 49 17 37

eon 23 22 17 17 23 22 16 16 23 22 16 16 0 0 0 0

galgel 72 48 62 60 27 23 20 19 0 0 0 0 0 0 0 0

ammp 83 60 54 63 83 66 51 59 83 66 51 59 0 0 0 0

mesa 68 49 50 47 69 53 48 45 69 53 48 45 0 0 0 0

swim 88 50 84 74 88 49 81 71 64 36 59 52 30 15 27 24

sixtrack 87 43 64 71 87 43 62 70 87 43 62 70 29 14 22 24

equake 93 87 52 69 93 86 52 68 5 5 3 4 0 0 0 0

lucas 100 41 48 83 100 41 48 73 100 41 48 73 79 35 40 65

facerec 84 58 74 70 84 58 73 68 78 55 63 63 24 17 20 19

apsi 56 43 41 46 56 43 40 45 56 43 40 45 0 0 0 0

art 67 40 53 53 67 48 49 49 67 48 49 49 67 48 49 49

applu 86 66 67 70 84 66 66 70 27 23 21 23 6 5 5 5

fma3d 60 56 49 47 61 57 48 46 29 26 23 22 5 4 4 4

wupwise 56 31 49 46 56 34 46 43 26 16 22 20 0 0 0 0

mgrid 98 72 91 82 98 72 90 80 98 72 90 80 98 72 90 80

Table 4.3: Architectural Vulnerability Factors of key structures within the Sphere
of Replication in the single-threaded mode and for the PRMT83, PRMT85, and
PRMT87 partial RMT policies.

For all three temperature thresholds, we find that redundant execution is disabled

most of the time for the integer benchmarks in response to their high operating

temperatures. Therefore, the use of partial RMT significantly compromises the soft

error coverage for these workloads and the AVFs do not decrease with the use of higher

threshold values, as shown in Table 4.3. However, since the processor is protected via

SRT for the first 10K cycles, the AVFs for the partial RMT policies are slightly lower

than those for the single-threaded mode. A few of the workloads (e.g., the AVF of the

LSQ for bzip2) in Table 4.3 show a small increase in the AVF of certain structures

23

for the partial RMT modes. This counter-intuitive result is an artifact of how we

compute the average AVF. In reality, at the end of a SimPoint, there are typically a

few instructions whose ACE-ness is unknown because the benchmark is not allowed

to run to completion and therefore we cannot determine what impact, if any, those

instructions would have on the architected state of the machine [6]. Therefore, based

on whether we assume these instructions to be ACE or un-ACE, the AVF would vary

over a range. Since we found these AVF ranges to be small, we merely present the

average over each such range. The small difference in the AVF values between the

single-threaded and partial-RMT modes in Table 4.3 is within these small ranges and

therefore correspond to roughly equivalent AVF values.

Several floating-point benchmarks switch back and forth between the redundant

and single-threaded execution modes and show prominent reductions in their AVF

values as we go in for higher temperature thresholds. In fact, the AVFs of several

floating-point benchmarks drop to zero for PRMT87 as a result of their operating

temperature being below the threshold value most of the time and therefore not

requiring SRT to be disabled. However, the AVFs of the integer benchmark eon also

show sensitivity to partial RMT. We now provide a more detailed explanation for

these results. We can observe that the lifetime reliability benefits of using partial

RMT (Figure 4.3(a)) are comparable to the degradation in lifetime reliability of the

processor due to SRT (Figure 4.1) for several integer benchmarks. As mentioned

previously, the integer benchmarks operate in single-threaded mode most of the time

due to their high operating temperatures. However, we can see that the bars in Figure

4.3(a) are consistently lower than those in Figure 4.1, except for eon. This is because

we run the processor in SRT mode through the thermal and performance warmup

phases and for the first 10K cycles of execution, during which time the temperature

rises. The temperature rise is especially sharp for benchmarks such as gzip, bzip2,

vortex, and mcf, which we find undergo a higher amount of thermal cycling during

24

0

2

4

6

8

10

12

14

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

L
if

et
im

e
Im

p
ro

ve
m

en
t

w
rt

. S
R

T
 (

%
)

PRMT_83 PRMT_85 PRMT_87

(a) Impact on lifetime reliability

0

10

20

30

40

50

60

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
w

rt
. S

R
T

 (
%

)

PRMT_83 PRMT_85 PRMT_87

(b) Impact on performance

Figure 4.3: Impact of partial RMT on lifetime reliability and performance.

25

those first 10K cycles of redundant execution. Although SRT is subsequently disabled

for these benchmarks, the overall lifetime reliability of the processor is impacted

during this initial part of the execution.

The eon benchmark and the floating-point workloads show a different trend. We

find that these workloads show improvements in their lifetime reliability to a greater

extent than they show reductions in their lifetime reliability due to SRT. As we can

see in Figure 4.3(a), the bars for these workloads are higher than the correspond-

ing bars in Figure 4.1. In order to understand why this happens, we analyzed the

pattern of accesses to the integer register-file for all the workloads. As Table 4.2

shows, the floating-point benchmarks have varying degrees of instructions in their

instruction mix and eon has a sizable number of floating-point instructions as well.

At runtime, we find that the accesses to the integer register-file tend to occur in clus-

ters of consecutive integer instructions in the single-threaded mode. In SRT mode,

these clusters are larger due to integer instructions from both the leading and trailing

threads accessing the integer register-file, thereby affecting its temperature. In the

case of partial RMT, where the processor moves back and forth between the single-

threaded and SRT modes, we find that the integer instructions get interspersed with

floating-point instructions. As a result of this, the number of consecutive accesses

to the integer register-file are lower in partial RMT mode than in both the single-

threaded and SRT modes. This pattern of accesses has a “cooling” effect on the

integer register-file and hence these benchmarks show a greater improvement in their

lifetime reliability. In general for partial RMT, we find that the performance im-

provements for the floating-point benchmarks are higher than those for the integer

benchmarks. The reason behind this is that, during the SRT mode, the floating-point

benchmarks experience higher performance loss. In the SRT mode, both the leading

and trailing threads have to be completed in order to commit the instructions. The

floating-point benchmarks have a significant number of high-latency floating-point

26

instructions, and therefore the instructions those are data-dependent on those high-

latency instructions will wait for a longer time in the issue queue. As a result, in

the SRT mode both the leading and trailing threads have to wait for a longer time,

leading to performance loss. Consequently, the floating-point benchmarks enjoy more

performance improvements as a result of single-threaded execution in partial RMT.

One exception among the floating-point benchmarks is lucas which experiences the

least performance improvement. We find that this benchmark has comparable IPC

in both the single-threaded and SRT modes due to the the effective interleaving of

the instructions from the leading and trailing thread.

Summary: Between DVS and partial RMT, we find that the lifetime reliability

benefits obtained by modulating voltage and frequency trumps toggling of the re-

dundant execution. This trend is especially pronounced for the integer benchmarks,

where the operating temperature in even the single-threaded mode is quite high.

Although disabling SRT lowers temperatures by a small amount, DVS is a much

more effective knob to manage temperature and lifetime reliability. Moreover DVS

can improve lifetime reliability without compromising soft error coverage, whereas

partial RMT reduces soft error coverage. However, DVS degrades single-thread per-

formance whereas partial RMT can boost single-thread performance. Given these

relative strengths and weaknesses of DVS and partial RMT, it would be interesting

to combine both techniques such that we can better balance lifetime reliability with

soft error protection and also get good single-thread performance. We now explore

one such hybrid technique.

4.4 Combining DVS with Partial RMT

The goal of our hybrid scheme is to effectively respond to temperature violations

while attempting to maximize performance. In order to accomplish this, we leverage

27

the unique benefits that DVS and partial RMT each provide. That is, we use DVS

as the primary knob for controlling temperature and use partial RMT to boost per-

formance. We implement this hybrid technique as follows. As with the two previous

approaches, a control action is initiated in response to the operating temperature

crossing a given temperature threshold value. When a temperature violation is de-

tected, we first disable SRT. We then allow the processor to run in the single-threaded

mode and measure the temperature every 10K cycles. If the operating temperature

drops below the threshold, we re-enable SRT without having to invoke DVS. However

if the operating temperature does not drop below the threshold for three successive

measurement intervals (i.e., 30K cycles), we invoke the DVS controller and select the

appropriate scaling factor based on the most recent temperature measurement. Once

voltage and frequency have been scaled, we allow the processor to run with SRT

disabled. Therefore, during the interval between when the response is initiated and

when the next temperature measurement indicates that the temperature has dropped

below the threshold, the DVS mechanism stays engaged. The performance loss due to

operating the processor at the lower frequency is offset to some degree by running in

the single-threaded mode, but at the expense of reduced soft error coverage. Once we

detect that the temperature has fallen below the threshold, we scale up the voltage

and frequency appropriately and re-enable SRT.

We have evaluated our hybrid scheme for all three temperature thresholds, but

present the graphs only the 85 C threshold due to space reasons. To summarize the

results across the three thresholds, we find that the hybrid scheme provides 12.6%-

29.3% improvement in lifetime reliability over SRT while slowing down performance

by 3.3%-12.8% compared to SRT. The lifetime improvement and performance impact

of the hybrid scheme, which we refer to as HY B85, are given in Figures 4.4(a) and

4.4(b). Each set of bars in the graphs presents the results for HY B85 alongside

those of DV S85 and PRMT85 to show the comparative trends. The AVFs of the

28

0

10

20

30

40

50

60

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

L
if

et
im

e
Im

p
ro

ve
m

en
t

w
rt

. S
R

T
 (

%
)

DVS_85 PRMT_85 HYB_85

(a) Impact on lifetime reliability

-30

-20

-10

0

10

20

30

40

50

60

gzip
bzip

2
gap

par
se

r

per
lb

m
k

m
cf

tw
olf

vo
rte

x
gcc

cr
af

ty vp
r

eo
n

galg
el

am
m

p
m

es
a
sw

im

si
xt

ra
ck

eq
uak

e
lu

ca
s

fa
ce

re
c

ap
si ar

t

ap
plu

fm
a3

d

wupwis
e

m
grid

av
er

ag
e

Benchmarks

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
w

rt
. S

R
T

 (
%

)

DVS_85 PRMT_85 HYB_85

(b) Impact on performance

Figure 4.4: Impact of the hybrid partial RMT scheme for the 85 C temperature
threshold.

29

structures within the SoR for all three schemes along with those of the single-threaded

execution are given in Table 4.4. From Figure 4.4(a), we can see that HY B85 provides

good improvement in lifetime reliability across the entire benchmark suite (19.8% on

average). This improvement is better than that provided by DVS or by partial RMT

individually. Although this lifetime improvement comes with a performance penalty

(5.9% on average), this penalty is less severe than DVS, as shown in Figure 4.4(b).

We can see in Table 4.4 that the HY B85 scheme significantly reduces the AVFs of

all the structures, providing either complete, or nearly complete, coverage against

soft errors for almost all the benchmarks. In the case of the other two temperature

thresholds, we found that the AVFs of all the structures show a similar trend and the

hybrid approach provides good coverage against soft errors.

Benchmark Single− Threaded PRMT85 HY B85

ROB LSQ ISQ Regs ROB LSQ ISQ Regs ROB LSQ ISQ Regs
gzip 48 25 19 29 46 25 17 29 10 6 5 6
bzip2 34 24 17 21 34 25 16 20 7 5 4 4
gap 27 21 14 17 26 21 13 15 7 5 3 4

parser 42 23 15 29 42 24 14 27 8 4 3 5
perlbmk 18 17 11 11 17 16 10 10 7 7 4 4

mcf 51 44 15 25 51 36 14 28 6 5 3 2
twolf 51 34 23 33 50 34 22 32 7 6 3 2
vortex 67 56 46 42 68 55 46 42 15 12 11 9

gcc 17 24 7 8 19 18 10 10 2 2 1 1
crafty 25 19 14 15 25 19 14 14 5 4 3 3
vpr 56 49 17 38 56 49 17 37 7 6 2 4
eon 23 22 17 17 23 22 16 16 1 1 1 1

galgel 72 48 62 60 0 0 0 0 0 0 0 0
ammp 83 60 54 63 83 66 51 59 3 2 2 2
mesa 68 49 50 47 69 53 48 45 4 3 3 3
swim 88 50 84 74 64 36 59 52 12 6 11 10

sixtrack 87 43 64 71 87 43 62 70 11 5 10 10
equake 93 87 52 69 5 5 3 4 0.08 0.06 0.06 0.06
lucas 100 41 48 83 100 41 48 73 14 9 9 11

facerec 84 58 74 70 78 55 63 63 4 3 3 3
apsi 56 43 41 46 56 43 40 45 4 3 2 3
art 67 40 53 53 67 48 49 49 7 5 5 5

applu 86 66 67 70 27 23 21 23 10 8 8 8
fma3d 60 56 49 47 29 26 23 22 2 2 1 1

wupwise 56 31 49 46 26 16 22 20 1 1 1 1
mgrid 98 72 91 82 98 72 90 80 17 13 16 14

Table 4.4: Architectural Vulnerability Factors of key structures within the Sphere of
Replication for the HY B85 policy. The single-threaded mode and PRMT85 AVFs are
shown to facilitate data comparison.

In terms of lifetime reliability, the integer benchmarks derive the most benefit from

the hybrid scheme. This is due to the fact that these benchmarks trigger both partial

30

RMT and DVS to reduce temperature and the combination of these two techniques

yields the best improvements in lifetime reliability. Although engaging DVS results

in a significant slowdown, some of this performance loss is offset by the fact that

SRT is disabled and the processor runs in the single-threaded mode. Moreover, since

both partial RMT and DVS are engaged in response to a temperature emergency for

these benchmarks, the window of time for which the processor runs in single-threaded

mode is much shorter than in the PRMT85 approach. As a result the AVFs of the

integer benchmarks are significantly lower with HY B85 than with PRMT85, as shown

in Table 4.4. The performance slowdown for mcf is much lower than those for the

other integer benchmarks for the same reasons as discussed in Chapter 4.2.

In general, most floating-point benchmarks break even (or nearly break even) with

the performance of SRT since they operate at a lower temperature than the integer

benchmarks and trigger the thermal management mechanism less often. However,

there are variations in the lifetime improvement characteristics as well as the perfor-

mance behavior across the floating-point benchmarks. In case of ammp, mesa, apsi,

and art, HY B85 provides the best improvement in lifetime reliability. The operating

temperatures for this workload run below the threshold value of 85 C most of time.

However, when a temperature emergency does occur, we find that both the partial

RMT and the DVS mechanisms are engaged, thereby providing good improvements

in lifetime reliability. For swim, sixtrack, lucas, and mgrid, HY B85 provides less

improvement than DV S85 and incurs a significant performance slowdown. These

benchmarks cause the processor to operate at a higher temperature, as a result of

which DVS remains engaged for a longer duration of time and disabling SRT does

not adequately offset the slowdown in performance over this long period. Moreover,

since the processor operates in the single-threaded mode during this long time inter-

val, these workloads also get less soft error coverage, as indicated by the higher AVF

values for these benchmarks in Table 4.4. The lifetime reliability improvement for

31

equake, applu, fma3d, and wupwise with HY B85 are comparable to PRMT85. For

these benchmarks, we find that disabling SRT by itself provides most of the required

reduction in temperature and DVS is engaged only briefly to bring the temperature

below the threshold value.

32

Chapter 5

Conclusions and Future Work

Silicon reliability is one the key challenges facing the microprocessor industry. Ar-

chitects have to design processors that are resilient against soft errors and lifetime

reliability, while still delivering high performance to applications and users. Although

a large body of research exists on tackling soft errors and lifetime reliability individu-

ally, there has been little work on how reliability mechanisms developed to address one

type of reliability problem might impact other aspects of silicon reliability. In this the-

sis, we explore how Redundant Multi-Threading (RMT), a mechanism for protecting

processors against soft errors, affects lifetime reliability. We evaluate three different

approaches to mitigate this problem, namely, Dynamic Voltage Scaling (DVS) that is

available in processors today, partial RMT, and a hybrid scheme which utilizes both

DVS and partial RMT. Each approach has certain strengths and weaknesses with

respect to performance, soft error coverage, and lifetime reliability. In future work,

we plan to explore how one could use information about the actual wearout of various

microarchitectural structures using hard error sensors [3, 4] and AVF predictors [33, 1]

to be used to balance between these different figures of merit. We also plan to study

how other tunable partial redundancy techniques [16, 2] can be used in conjunction

with these sensors to craft reliability management policies.

33

Bibliography

[1] A. Biswas,N. Soundararajan,S.S. Mukherjee and S. Gurumurthi. Quantized AVF: A

Means of Capturing Vulnerability Variations over Small Windows of Time. In IEEE

Workshop on Silicon Errors in Logic - System Effects, March 2009.

[2] B.C. Sutton and S. Gurumurthi. Single-Threaded Mode AVF Prediction During Re-

dundant Execution. In IEEE Workshop on Silicon Errors in Logic - System Effects,

March 2009.

[3] A.C. Cabe, Z. Qi, S.N. Wooters, T.N. Blalock and M.R. Stan. Small embeddable NBTI

sensors (SENS) for tracking on-chip performance decay. In International Symposium

on Quality Electronic Design, page 1–6, 2009.

[4] E. Karl, P. Singh, D. Blaauw and D. Sylvester. Compact in situ sensors for monitoring

nbti and oxide degradation. In IEEE International Solid-State Circuits Conference,

pages 410–623, February 2008.

[5] T. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design.

In Proceedings of the International Symposium on Microarchitecture (MICRO), pages

196–207, November 1999.

[6] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and R. Rangan. Com-

puting architectural vulnerability factors for address-based structures. In Proceedings of

the International Symposium on Computer Architecture (ISCA), pages 532–543, 2005.

34

[7] F. Bower, D. Sorin, and D. Ozev. A Mechanism for Online Diagnosis of Hard Faults in

Microprocessors. In Proceedings of the International Symposium on Microarchitecture

(MICRO), November 2005.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level

Power Analysis and Optimizations. In Proceedings of the International Symposium on

Computer Architecture (ISCA), pages 83–94, June 2000.

[9] D. Burger and T. Austin. The SimpleScalar Toolset, Version 3.0.

http://www.simplescalar.com.

[10] J. Garrett and M. Stan. Active Threshold Compensation Circuit for Improved Perfor-

mance in Cooled CMOS Systems. In Proceedings of the International Symposium on

Circuits and Systems (ISCAS), pages 410–413, May 2001.

[11] M. A. Gomaa and T. N. Vijaykumar. Opportunistic transient-fault detection. In

Proceedings of the International Symposium on Computer Architecture (ISCA), pages

172–183, 2005.

[12] S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann/Elsevier, 2008.

[13] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed Design and Evaluation of Redun-

dant Multithreading Alternatives. In International Symposium on Computer Architec-

ture (ISCA), pages 99–110, May 2002.

[14] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. A Systematic Method-

ology to Compute the Architectural Vulnerability Factors for a High-Performance Mi-

croprocessor. In Proceedings of the International Symposium on Microarchitecture (MI-

CRO), pages 29–40, December 2003.

[15] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam. A Complexity-Effective Ap-

proach to ALU Bandwidth Enhancement for Instruction-Level Temporal Redundancy.

In Proceedings of the International Symposium on Computer Architecture (ISCA), pages

376–386, June 2004.

35

[16] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam. SlicK: Slice-based Locality

Exploitation for Efficient Redundant Multithreading. In Proceedings of the International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 95–105, October 2006.

[17] V. Reddy, S. Parthasarathy, and E. Rotenberg. Understanding Prediction-Based Par-

tial Redundant Threading for Low-Overhead, High-Coverage Fault Tolerance. In Pro-

ceedings of the International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 83–94, October 2006.

[18] K. Reick, P. Sanda, S. Swaney, J. Kellington, M. Mack, M. Floyd, and D. Henderson.

Fault-Tolerant Design of the IBM Power6 Microprocessor. IEEE Micro, 28(2):30–38,

March 2008.

[19] S. Reinhardt and S. Mukherjee. Transient Fault Detection via Simultaneous Multi-

threading. In Proceedings of the International Symposium on Computer Architecture

(ISCA), pages 25–36, June 2000.

[20] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Micro-

processors. In Proceedings of the International Symposium on Fault-Tolerant Computing

(FTCS), pages 84–91, June 1999.

[21] E. Schuchman and T. Vijaykumar. Rescue: A Microarchitecture for Testability and

Defect Tolerance. In Proceedings of the International Symposium on Computer Archi-

tecture (ISCA), pages 160–171, June 2005.

[22] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson, A. Vo,

S. Mitra, B. Gill, and J. Maiz. Radiation-Induced Soft Error Rates of Advanced CMOS

Bulk Devices. In Reliability Physics Symposium Proceedings, March 2006.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characteriz-

ing Large Scale Program Behavior. In Proceedings of the International Conference on

36

Architectural Support for Programming Languages and Operating Systems (ASPLOS),

October 2002.

[24] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the Effect

of Technology Trends on Soft Error Rate of Combinational Logic. In Proceedings of the

International Conference on Dependable Systems and Networks (DSN), June 2002.

[25] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.

Temperature-Aware Microarchitecture. In Proceedings of the International Symposium

on Computer Architecture (ISCA), pages 1–13, June 2003.

[26] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.

Temperature-Aware Microarchitecture: Extended Discussion and Results. Technical

Report CS-2003-08, CS Department, University of Virginia, April 2003.

[27] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and A. Nowatzyk. Fingerprinting:

Bounding Soft-Error Detection Latency and Bandwidth. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 224–234, October 2004.

[28] SPEC CPU2000. http://www.spec.org/cpu2000/.

[29] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The Case for Lifetime Reliability-

Aware Microprocessors. In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 276–287, June 2004.

[30] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The Impact of Technology Scaling

on Lifetime Reliability. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN), pages 177–186, June 2004.

[31] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. Exploiting Structural Duplication for

Lifetime Reliability Enhancement. In Proceedings of the International Symposium on

Computer Architecture (ISCA), pages 520–531, June 2005.

37

[32] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging in Multicores. In

Proceedings of the International Symposium on Microarchitecture (MICRO), November

2008.

[33] K. Walcott, G. Humphreys, and S. Gurumurthi. Dynamic Prediction of Architec-

tural Vulnerability from Microarchitectural State. In Proceedings of the International

Symposium on Computer Architecture (ISCA), pages 516–527, June 2008.

[34] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt. Techniques to Reduce the Soft

Error Rate of High-Performance Microprocessor. In Proceedings of the International

Symposium on Computer Architecture (ISCA), June 2004.

38

