Computer Architecture in an Era of Multi-Core Chips

Kevin Skadron

Univ. of Virginia
Dept. of Computer Science
LAVA Lab

A New Era of Multi-Core Architectures

Cores may also be heterogeneous, with a few powerful cores and very many small cores

Source: Christopher Reeve Homepage, http://www.chrisreevehomepage.com/
A New Era of Physical Constraints

Will limit integration, system architecture

Impact of Physical Constraints

- Thermal constraints shift optimum toward fewer and simpler cores (“Clark Kents”)
 - Actually CPU-bound programs still want aggressive superscalar cores, minimal L2, despite throttling
 - Mem-bound programs want simpler cores, lots of L2
- Thermal constraints subsume power-delivery, maybe even pin-bandwidth constraints
- You can still have lots of cores
 - But they will be simpler
 - And they will be severely throttled (e.g., at 50-75% of max frequency)
How many cores?

- Depends heavily on workload. Today it would be hard to fill up more than a few cores on a desktop except with games.
- Servers: easy – one thread per request, highly parallel
- *It is a big open question*
 - Maybe rich multimedia tasks, e.g. videoconferencing
 - Computational photography?
 - Biomedical and other appliances?

What kind of cores?

- A few beefy cores? (Pentiums)
- Lots of simple cores? (Maybe good for parallel tasks)
- Special-purpose cores (graphics, multimedia encode/decode, encryption/decryption, signal processing, etc.)
- A mix?
- What about single-thread latency vs. aggregate throughput?
Putting it all together

• # cores
• Type of cores
• How much cache
• How to interconnect them
• How to meet power-delivery, pin-B/W, and thermal constraints
• How to deal with workloads that have different needs

Questions?
CPU-bound, 400mm2

- Aggressive, expensive thermal solution
- Thermal limits still cost you 50% performance due to throttling

Memory-bound, 400mm2

- Aggressive, expensive thermal solution
- Thermal limits still costs you 25% performance due to throttling
Memory-bound, 400mm²

- Cheap, low-end thermal solution
- Drop from 16 to 8 cores, 8MB

- We are now at 30% of peak possible performance

Need for Physically-Aware Design

- Can’t optimize absent thermal constraints and then scale

Optimizing for Pipeline Depth

© 2006, Kevin Skadron