
CS4102, Algorithms, Spring 2010

•  Properties of algorithms
•  Counting basic operations
•  Time and space complexity
•  Worst-case and average-case
•  Lower Bounds and Optimality
•  …and one slide of summations

First Principles

Analyzing Algorithms and Problems

•  We analyze algorithms with the intention of
improving them, if possible, and
for choosing among several available for a
problem.

•  Correctness
•  Simplicity
•  Amount of work done, and space used
•  Optimality

Correctness can be proved!

•  An algorithm consists of sequences of steps
(operations, instructions, statements) for
transforming
inputs (preconditions) to outputs
(postconditions)

•  Proving
•  if the preconditions are satisfied,
•  then the postconditions will be true,
•  when the algorithm terminates.

•  Good news for you!
•  This course does not emphasize proving correctness.

Simplicity

•  Simplicity in an algorithm is a virtue.

•  Understandability matters
•  Especially for long-lived software
•  Easier to understand, more difficult to break it when

making changes later

We said: Analyzing Algorithms and Problems

•  Some terms from page 51 in text about
problems:

•  Feasible, tractable problems
•  Intractable problems

•  The class of NP-complete problems

•  Unsolvable problems
•  The Halting Problem

•  Is a problem solvable? If so, is it possible to find
a reasonably efficient solution?

Levels for Talking about Problem Solving

•  Defining the problem
•  Describing an overall strategy
•  Describing an algorithm:

•  Inputs and outputs
•  Describing the processing steps to transform input to

output

•  Analysis
•  Correctness; Time & Space
•  Is it an optimal algorithm?

•  Implementation issues
•  Verification: Is it guaranteed correct?

Example: Search in an unordered array

•  Problem:
•  Let list be an array containing n entries, list[0], …,

list[n-1], in no particular order.
•  Find an index of a specified key target, if it’s in the

array;
•  return –1 as the answer if target is not in the array.

•  Strategy:
•  Compare target to each entry in turn until a match is

found or the array is exhausted.
•  If target is not in the array, the algorithm returns –1

as its answer.

Example: Defining the Algorithm (1)

•  Inputs and outputs
•  Input: list, n, target, where list is an array with n

entries (indexed 0, …, n-1), and target is the item
sought. For simplicity, we assume that target and the
entries of list are integers, as is n.

•  Output: Returns ans, the location of target in list
(-1 if target is not found.)

•  Note this description defines the data structure
used
•  Very common!

Example: Defining the Algorithm (2)

int	 seqSearch(int[]	 list,	 int	 n,	 int	
target)	

1.	 	 	 int	 ans,	 index;	
2.	 	 	 ans	 =	 -‐1;	 //	 Assume	 failure.	
3.	 	 	 for	 (index	 =	 0;	 index	 <	 n;	 index++)	
4.	 	 	 	 	 	 	 if	 (target	 ==	 list	 [index])	 {	
5.	 	 	 	 	 	 	 	 	 	 	 ans	 =	 index;	 //	 Success!	
6.	 	 	 	 	 	 	 	 	 	 	 break;	 //	 Done!	
	 	 	 	 	 	 	 }	

7.	 	 	 return	 ans;	

Example: Defining the Algorithm (2)

def	 seq_search(list,	 target):	
	 	 	 	 ans	 =	 -‐1	
	 	 	 	 i	 =	 0	
	 	 	 	 for	 cur	 in	 list:	
	 	 	 	 	 	 	 	 if	 cur	 ==	 target:	
	 	 	 	 	 	 	 	 	 	 	 	 ans	 =	 i	
	 	 	 	 	 	 	 	 	 	 	 	 break	
	 	 	 	 	 	 	 	 i	 =	 i	 +	 1	
	 	 	 	 return	 ans	

Algorithms: Amount of work done

•  We want a measure of work that tells us something about the
efficiency of the method used by the algorithm

•  independent of computer, programming language, programmer,
and other implementation details.

•  Usually depending on the size of the input

•  Counting passes through loops
•  Basic Operation

•  Identify a particular operation fundamental to the problem
•  the total number of operations performed is roughly proportional

to the number of basic operations

•  Identifying the properties of the inputs that affect the
behavior of the algorithm

Worst-case complexity

•  Let Dn be the set of inputs of size n for the problem
under consideration, and let I be an element of Dn.

•  Let t(I) be the number of basic operations performed
by the algorithm on input I.

•  We define the function W(n) by

•  W(n) = max{ t(I) | I ∈ Dn }
•  called the worst-case complexity of the algorithm.
•  W(n) is the maximum number of basic operations

performed by the algorithm on any input of size n.

•  The input, I, for which an algorithm behaves
worst depends on the particular algorithm.

Our example:

•  Basic Operation:
•  Comparison of target with an array entry

•  Worst-Case Analysis:
•  We just said that:

W(n) is the maximum number of basic operations
performed by the algorithm on any input size n.

•  For our example, clearly W(n) = n.
•  What is the worst-case input?

•  target is not in the array at all
•  target appears only in the last position in the array

Why Measure Worst-Case?

•  Are we just pessimists? Give some reasons:
•  (Your ideas here)

•  (Some answers)
•  We want a upper-bound on behavior

•  Guaranteed no worse than W(n)

•  Perhaps the worst-case happens often?
•  Average-case is harder to calculate

Average Complexity

•  Let P(I) be the probability that input I occurs.

•  Then the average behavior of the algorithm is
defined as:
A(n) = ΣI ∈ Dn P(I) t(I).
•  We determine t(I) by analyzing the algorithm,
•  but P(I) cannot be computed analytically.

Average Complexity (2)

•  Sometimes an algorithm succeeds with some
known probability:
 A(n) = P(succ) x Asucc(n) + P(fail) x Afail(n)

•  An element I in Dn may be thought as a set or
equivalence class that affect the behavior of the
algorithm. (see following e.g. n+1 cases)

Our example: Average-Behavior Analysis

•  A(n) = P(succ) x Asucc(n) + P(fail) x Afail(n)
•  There are total of n+1 cases of I in Dn

•  Let target is in the array be the “succ” cases. There are n cases.
•  Assuming target is equally likely found in any of the n location,

i.e. P(Ii | succ) = 1/n
•  for 0 <= i < n, t(Ii) = i + 1

•  Asucc(n) = Σi=0
n-1P(Ii | succ) t(Ii)

= Σi=0
n-1(1/n) (i+1) = (1/n)[n(n+1)/2] = (n+1)/2

•  Let target is not in the array be the “fail” case – just 1 cases,
P(I | fail) = 1

•  Then Afail(n) = P(I | fail) t(I) = 1 x n

•  Let q be the probability for the succ cases
•  q [(n+1)/2] + (1-q) n

Optimality “the best possible”

•  Each problem has inherent complexity
•  There is some minimum amount of work required to

solve it.

•  To analyze the complexity of a problem,
•  we choose a class of algorithms, based on which
•  prove theorems that establish a lower bound on the

number of operations needed to solve the problem.

•  Lower bound (for the worst case)

Show whether an algorithm is optimal?

•  Analyze the algorithm, call it A, and find the
worst-case complexity WA(n), for input of size n.

•  Prove a theorem starting that,
•  for any algorithm in the same class of A…
•  for any input of size n, there is some input for which

the algorithm must perform…
•  at least W[A](n)

(lower bound in the worst-case)

•  If WA(n) = W[A](n)
•  then the algorithm A is optimal

•  Otherwise, there may be a better algorithm
•  OR there may be a better lower bound.

FindMax example: Optimality

•  Problem
•  Finding the largest entry in an (unsorted) array of

n numbers

•  Algorithm A
def	 find_max(list):	
	 	 	 	 max	 =	 list[0]	 	 #	 first	 entry	
	 	 	 	 for	 cur	 in	 list[1:]:	 #	 from	 2nd	 entry	 on	
	 	 	 	 	 	 	 	 if	 max	 <	 cur:	
	 	 	 	 	 	 	 	 	 	 	 	 max	 =	 cur	
	 	 	 	 return	 max	

Analyze the algorithm, find WA(n)

•  Basic Operation
•  Comparison of an array entry with another array entry

or a stored variable.

•  Worst-Case Analysis
•  For any input of size n, there are exactly n-1 basic

operations
•  WA(n) = n-1

For the class of algorithm [A], find W[A](n)

•  Class of Algorithms
•  Algorithms that can compare and copy the numbers, but do no

other operations on them.

•  Finding (or proving) W[A](n)
•  Assuming the entries in the array are all distinct

•  (permissible for finding lower bound on the worst-case)

•  In an array with n distinct entries, n – 1 entries are not the
maximum.

•  To conclude that an entry is not the maximum, it must be
smaller than at least one other entry. And, one comparison
(basic operation) is needed for that.

•  So at least n-1 basic operations must be done.
•  W[A](n) = n – 1

•  Since WA(n) = W[A](n), algorithm A is optimal.

•  Is sequential search optimal? Yes.
•  Are there more efficient solutions? Yes.

•  Binary search
•  Hashing

•  Is this a contradiction?

Our Search Example: Optimality

•  Binary search is optimal
•  W(n) =

Space Usage

•  If memory cells used by the algorithms depends
on the particular input,
•  then worst-case and average-case analysis can be

done.

•  Time and Space Tradeoff.

Problems!

(To think about, maybe after studying sorting later)
1.  You have 1000’s of phone bills and 1000’s of checks.

Find who didn’t pay.

2.  You have a list of 30 publishers, and a list of books in
library that records publisher. Count how many books
published by each of the 30.

3.  You have book check-out records for all library users
who checked out books in the last year. Count how
many distinct users checked out at least one book.

Just one math slide (for now):

Series

•  A series is the sum of a sequence.
•  Arithmetic series

•  The sum of consecutive integers:

•  Polynomial Series
•  The sum of squares:

•  The general case is:

•  Powers of 2:

•  Arithmetic-
Geometric Series:

