
CS 4102, Algorithms: Chapter 2

•  Measuring time complexity
•  Order classes: Big-Oh etc.
•  Proving order-class membership
•  Properties of order-classes

•  More on optimality (not in text)
•  Improving searching of lists
•  Binary Search: W(n), A(n)
•  Decision Trees for lower-bounds arguments

Classifying functions by their
Asymptotic Growth Rates

•  asymptotic growth rate, asymptotic order, or
order of functions
•  Comparing and classifying functions that ignores

constant factors and small inputs.

•  The Sets big oh O(g), big theta Θ(g), big omega
Ω(g)

g

Ω(g): functions that grow at least as fast as g

Θ(g): functions that grow at the same rate as g

O(g): functions that grow no faster than g

The Sets O(g), Θ(g), Ω(g)

•  Let g and f be a functions from
the nonnegative integers into the positive real numbers

•  For some real constant c > 0 and
some nonnegative integer constant N0

•  O(g) is the set of functions f, such that
•  f(n) ≤ c g(n) for all n ≥ N0

•  Ω(g) is the set of functions f, such that
•  f(n) ≥ c g(n) for all n ≥ N0

•  Θ(g) = O(g) ∩ Ω(g)
•  asymptotic order of g
•  f ∈Θ(g) read as

“f is asymptotic order g” or “f is order g”

Asymptotic Bounds

•  The Sets big oh O(g), big theta Θ(g), big omega
Ω(g) – remember these meanings:

•  O(g): functions that grow no faster than g,
or asymptotic upper bound

•  Ω(g): functions that grow at least as fast as g,
or asymptotic lower bound

•  Θ(g): functions that grow at the same rate as g,
or asymptotic tight bound

Comparing asymptotic growth rates

•  Comparing f(n) and g(n) as n approaches infinity,
•  IF

•  < ∞, including the case in which the limit is 0 then
f ∈ O(g)

•  > 0, including the case in which the limit is ∞ then
f ∈ Ω(g)

•  = c and 0 < c < ∞ then
f ∈ Θ(g)

•  = 0 then f ∈ o(g) read as “little oh of g”
•  = ∞ then f ∈ ω(g) read as “little omega of g”

Properties of O(g), Θ(g), Ω(g)

•  Transitive: If f ∈O(g) and g ∈O(h), then f ∈O(h)
O is transitive. Also Ω, Θ, o, ω are transitive.

•  Reflexive: f ∈ Θ(f)
•  Symmetric: If f ∈ Θ(g), then g ∈ Θ(f)
•  Θ defines an equivalence relation on the

functions.
•  Each set Θ(f) is an equivalence class (complexity

class).

•  f ∈O(g) ⇔ g ∈ Ω(f)
•  O(f + g) = O(max(f, g))

similar equations hold for Ω and Θ

Classification of functions (1)

•  O(1) denotes the set of functions bounded by a
constant (for large n)

•  f ∈ Θ(n), f is linear
•  f ∈ Θ(n2), f is quadratic; f ∈ Θ(n3), f is cubic
•  lg n ∈ o(nα) for any α > 0, including fractional

powers

Classification of functions (2)

•  nk ∈ o(cn) for any k > 0 and any c > 1
•  powers of n grow more slowly than

any exponential function cn

Does Order Class Matter?

•  No, not for small inputs
•  Yes, for many real problems

Practical Complexity

Practical Complexity

Practical Complexity

Practical Complexity

Practical Complexity

More on Optimality

•  Binary Search
•  Decision tree arguments for Search Algorithms

Searching Revisited

•  Notes about slides vs. code
•  K is variable name in slides (“key”)

•  We use target in code

•  E is variable name in slides (“elements”?)
•  We use list in code

Searching Revisited

•  Problem: array search
•  Given an array E containing n and given a value K, find an index

for which K = E[index] or, if K is not in the array, return –1 as
the answer.

•  Sometimes we know E is sorted, so we can use that

•  Design Trade-off: a more organized data structure with
more efficient operations vs. cost of keeping it organized

•  If unsorted, standard sequential search (see earlier)
•  If sorted, two strategies:

•  Quit when we know we’ve passed where it should be
•  Binary Search

Sequential Search, Optimality

•  Reminder: time complexity for standard
sequential search
•  W(n) = n
•  A(n) = q [(n+1)/2] + (1-q) n

•  where q is the probability it’s in the list

Better Algorithm If “Better” Input

•  Modify sequential search:
As soon as an entry larger than K is encountered, the
algorithm can terminate with the answer –1.

•  Clearly better. Or is it?
•  In what sense?
•  Same order-class, same worst-case

Modified sequential search

def	 seq_search_mod(list,	 target):	
	 	 	 	 ans	 =	 -‐1	
	 	 	 	 i	 =	 0	
	 	 	 	 for	 cur	 in	 list:	
	 	 	 	 	 	 	 	 if	 cur	 <	 target:	 	 	 	 #	 could	 be	 later	
	 	 	 	 	 	 	 	 	 	 	 	 i	 =	 i	 +	 1	
	 	 	 	 	 	 	 	 elif	 cur	 >	 target:	 	 #	 not	 there	
	 	 	 	 	 	 	 	 	 	 	 	 break	
	 	 	 	 	 	 	 	 else:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 #	 found	 it	
	 	 	 	 	 	 	 	 	 	 	 	 ans	 =	 i	
	 	 	 	 	 	 	 	 	 	 	 	 break	
	 	 	 	 return	 ans	

Binary Search:

•  Strategy
•  compare K first to the entry in the middle of the array

•  eliminates half of the entry with one comparison

•  apply the same strategy recursively
•  but note that this can be implemented using a loop

•  Algorithm: Binary Search
•  Input: E, first, last, and K, all integers, where E is an

ordered array in the range first, …, last, and K is the
key sought.

•  Output: index such that E[index] = K if K is in E
within the range first, …, last, and index = -1 if K is
not in this range of E

Binary Search

def do_binsearch_rec(list, target, first, last):
 if last < first:
 ans = -1
 else:
 mid = (first + last)/2
 if target == list[mid]:
 ans = mid
 elif target < list[mid]:
 ans = do_binsearch_rec(list, target, first, mid-1)
 else:
 ans = do_binsearch_rec(list, target, mid+1, last)
 return ans

Recursive vs. non-recursive?

•  Can you write this code as a non-recursive
algorithm?

An Aside on Binary Trees….

•  Review section 2.6, Trees
•  Definition of level of a node in a tree

•  Root: level 0
•  Other nodes: one more than level of parent
•  In other words, level is the number of “levels” above

a given node, or length of path back to the root

•  Definition of height
•  Height of a tree: maximum level of a tree’s leaves

Level and Height Illustrated

•  Level applies to all nodes at that “level”
•  Number of “levels” is one more than tree’s level
•  Height of tree is 3

A

D

B C

F

E

l = 0

l = 1

l= 2

l = 3

h = 3

h = 2

h = 1

h = 0

Properties of Binary Trees

•  Lemma 1
At level d in a binary tree, there are at most 2d
nodes

•  Lemma 2
A binary tree with height h has at most 2h+1-1
nodes
•  Examples: h=0, 1 node. h=1, 3 nodes. h=2, 7

nodes.

•  Lemma 3
A binary tree with n nodes has height
at least: Ceiling(lg(n+1)) - 1
•  Examples: 7 nodes? Shortest tree has h=2 (3 levels)

 8 nodes? Shortest tree has h=3 (4 levels)

Worst-Case Analysis of Binary Search

•  Assumptions:
•  Let the problem size be n = last – first + 1; n>0
•  Basic operation is a comparison of K to an array entry
•  Assume one comparison is done with the three-way branch

•  Analysis
•  First comparison, assume K != E[mid], divides the array into two

sections, each section has at most Floor[n/2] entries.
•  Estimate that the size of the range is divided by 2 with each

recursive call.
•  How many times can we divide n by 2 without getting a result

less than 1 (i.e. n/(2d) >= 1) ?
•  d <= lg(n), therefore we do Floor[lg(n)] comparison following

recursive calls, and one before that.

•  W(n) = Floor[lg(n)] + 1 = Ceiling[lg(n + 1)] ∈ Θ(log n)

Average Case Analysis of Binary Search

•  Analysis is, well, ugly (can I say that?)
•  But, consider the decision tree and note:

•  For a complete binary tree, more than half the nodes
are at the bottom level. The worst case!

•  Also, if the key is not there, we don’t know until we
“reach” the bottom level of the tree.

•  Therefore, you can imagine that the average case is
very close to the worst-case.

•  But, that’s OK, cause W(n) = Θ(lg n) is pretty darn
good!

•  A(n) ≈ lg(n+1) – q, where q is probability of
successful search

•  Recall W(n) = Ceiling[lg(n + 1)]

Optimality of Binary Search

•  So far we improve from θ(n) algorithm to θ(log n)
•  Can more improvements be possible?

•  For optimality and such questions, we must make a
proof for a class of algorithm
•  Here, the class is: the set of search algorithms for sequences

where a comparison is the basic operation

•  Such algorithms can be modeled with a decision tree:
•  Root contains index of the first item compared to the target
•  If equal, we’d stop
•  If target less than that item, next comparison is the left-child
•  If target greater than item, next comparison is the right-child
•  Etc.

Example of Decision Tree

•  Height of tree is 3 (max level of a leaf)
•  Number of levels? height+1
•  W(n) number of comparisons? number of nodes on

path from root to leaf. I.e., num. levels or height+1

level 0

level 1

level 2

level 3

What Decision Trees Tell Us about Search

•  Shows a trace of the order and number of
comparisons made
•  Path from root to “deepest” node is W(n)
•  Average path length is A(n)

•  If we find properties for decisions trees in
general, these are true of any algorithm in this
class

Decision Trees, Search Algorithms

•  How “short” can a decision tree be?
•  Let N be the number of nodes in a decision tree

•  Different than n (number of items in list)

•  By Lemma 3:
•  height >= Ceiling(lg(N+1)) - 1

•  From previous slide, number of nodes on path is
height+1

•  So, max number of nodes >= Ceiling(lg(N+1))
•  Max number of nodes is W(n)

•  W(n) >= Ceiling(lg(N+1))
•  But this is N not n

Decisions Trees, Search Algorithms (2)

•  We claim N >= n if an algorithm A works
correctly in all cases
•  For argument, see next slide

•  If N >= n then
 Ceiling(lg(N+1)) >= Ceiling(lg(n+1))

•  Therefore…
•  Any search algorithm that uses comparisons can be

represented by a decision tree
•  W(n) >= Ceiling(lg(N+1)) >= Ceiling(lg(n+1))

Prove by contradiction that N >= n

•  Suppose there is no node labeled i for some i in the
range from 0 through n-1
•  Make up two input arrays E1 and E2 such that
•  E1[i] = K but E2[i] = K’ > K
•  For j < i, make E1[j] = E2[j] using some key values less than K
•  For j > i, make E1[j] = E2[j] using some key values greater than

K’ in sorted order
•  Since no node in the decision tree is labeled i, the algorithm A

never compares K to E1[i] or E2[i],
but it gives same output for both

•  Such algorithm A gives wrong output for at least one of the array
and it is not a correct algorithm

•  Conclude that the decision has at least n nodes

Binary Search is Optimal

•  W(n) >= Ceiling(lg(n+1)) for any seach
algorithm using key comparisons

•  Binary search has this W(n)
•  No algorithm can have a lower W(n)
•  It’s optimal

