CS 4102, Algorithms: Chapter 2

- Measuring time complexity
- Order classes: Big-Oh etc.
- Proving order-class membership
- Properties of order-classes
- More on optimality (not in text)
- Improving searching of lists
- Binary Search: W(n), A(n)
- Decision Trees for lower-bounds arguments

Classifying functions by their Asymptotic Growth Rates

- asymptotic growth rate, asymptotic order, or order of functions
- Comparing and classifying functions that ignores constant factors and small inputs.
- The Sets big oh $\mathrm{O}(\mathrm{g})$, big theta $\Theta(\mathrm{g})$, big omega $\Omega(\mathrm{g})$
$\Omega(\mathrm{g})$: functions that grow at least as fast as g
$\Theta(\mathrm{g})$: functions that grow at the same rate as g
$\mathrm{O}(\mathrm{g})$: functions that grow no faster than g

The Sets $\mathbf{O}(\mathbf{g}), \boldsymbol{\Theta}(\mathbf{g}), \boldsymbol{\Omega}(\mathbf{g})$

- Let g and f be a functions from the nonnegative integers into the positive real numbers
- For some real constant c > 0 and some nonnegative integer constant N_{0}
- $O(g)$ is the set of functions f, such that
- $\quad f(n) \leq C g(n)$ for all $n \geq N_{0}$
- $\Omega(g)$ is the set of functions f, such that
- $f(n) \geq c g(n)$ for all $n \geq N_{0}$
- $\Theta(\mathrm{g})=\mathrm{O}(\mathrm{g}) \cap \Omega(\mathrm{g})$
- asymptotic order of g
- $f \in \Theta$ (g) read as
"f is asymptotic order g " or " f is order g "

Asymptotic Bounds

- The Sets big oh $O(\mathrm{~g})$, big theta $\Theta(\mathrm{g})$, big omega $\Omega(\mathrm{g})$ - remember these meanings:
- $\mathrm{O}(\mathrm{g})$: functions that grow no faster than g , or asymptotic upper bound
- $\Omega(\mathrm{g})$: functions that grow at least as fast as g , or asymptotic lower bound
- $\Theta(\mathrm{g})$: functions that grow at the same rate as g , or asymptotic tight bound

Comparing asymptotic growth rates

- Comparing $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ as n approaches infinity,
- IF

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- $<\infty$, including the case in which the limit is 0 then $\mathrm{f} \in \mathrm{O}$ (g)
- >0, including the case in which the limit is ∞ then $\mathrm{f} \in \Omega(\mathrm{g})$
- = c and $0<\mathrm{c}<\infty$ then $\mathrm{f} \in \Theta(\mathrm{g})$
- = 0 then $f \in o(g)$ read as "little oh of $g "$
- $=\infty$ then $\mathrm{f} \in \omega(\mathrm{g})$ read as "little omega of g "

Properties of $\mathbf{O}(\mathbf{g}), \Theta(\mathbf{g}), \Omega(\mathbf{g})$

- Transitive: If $\mathrm{f} \in \mathrm{O}(\mathrm{g})$ and $\mathrm{g} \in \mathrm{O}(\mathrm{h})$, then $\mathrm{f} \in \mathrm{O}(\mathrm{h})$ O is transitive. Also $\Omega, \Theta, 0, \omega$ are transitive.
- Reflexive: $f \in \Theta(f)$
- Symmetric: If $f \in \Theta(g)$, then $g \in \Theta(f)$
- Θ defines an equivalence relation on the functions.
- Each set $\Theta(f)$ is an equivalence class (complexity class).
- $\mathrm{f} \in \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{g} \in \Omega(\mathrm{f})$
- $O(f+g)=O(\max (f, g))$
similar equations hold for Ω and Θ

Classification of functions (1)

- $\mathrm{O}(1)$ denotes the set of functions bounded by a constant (for large n)
- $f \in \Theta(n)$, f is linear
- $f \in \Theta\left(n^{2}\right)$, f is quadratic; $f \in \Theta\left(n^{3}\right)$, f is cubic
- $\lg n \in o\left(n^{\alpha}\right)$ for any $\alpha>0$, including fractional powers

$$
\sum_{i=1}^{n} i^{d} \in \Theta\left(n^{d+1}\right) \quad \sum_{i=1}^{n} \log (i) \in \Theta(n \log (n))
$$

$\sum_{i=a}^{b} r^{i} \in \Theta\left(r^{b}\right)$ for $\mathrm{r}>0, \mathrm{r} \neq 1, \mathrm{~b}$ may be some function of n

Classification of functions (2)

- $\mathrm{n}^{\mathrm{k}} \in \mathrm{o}\left(\mathrm{c}^{\mathrm{n}}\right)$ for any $\mathrm{k}>0$ and any $\mathrm{c}>1$
- powers of n grow more slowly than any exponential function c^{n}

Does Order Class Matter?

- No, not for small inputs
- Yes, for many real problems

Practical Complexity

More on Optimality

- Binary Search
- Decision tree arguments for Search Algorithms

Searching Revisited

- Notes about slides vs. code
- K is variable name in slides ("key")
- We use target in code
- E is variable name in slides ("elements"?)
- We use list in code

Searching Revisited

- Problem: array search
- Given an array E containing n and given a value K , find an index for which $K=E[$ index $]$ or, if K is not in the array, return -1 as the answer.
- Sometimes we know E is sorted, so we can use that
- Design Trade-off: a more organized data structure with more efficient operations vs. cost of keeping it organized
- If unsorted, standard sequential search (see earlier)
- If sorted, two strategies:
- Quit when we know we've passed where it should be
- Binary Search

Sequential Search, Optimality

- Reminder: time complexity for standard sequential search
- $W(n)=n$
- $A(n)=q[(n+1) / 2]+(1-q) n$
- where q is the probability it's in the list

Better Algorithm If "Better" Input

- Modify sequential search:

As soon as an entry larger than K is encountered, the algorithm can terminate with the answer -1 .

- Clearly better. Or is it?
- In what sense?
- Same order-class, same worst-case

Modified sequential search

```
def seq_search_mod(list, target):
    ans = -1
    i = 0
    for cur in list:
        if cur < target: # could be later
        i = i + 1
        elif cur > target: # not there
        break
        else:
        ans = i
        break
    return ans
```


Binary Search:

- Strategy
- compare K first to the entry in the middle of the array
- eliminates half of the entry with one comparison
- apply the same strategy recursively
- but note that this can be implemented using a loop
- Algorithm: Binary Search
- Input: E , first, last, and K, all integers, where E is an ordered array in the range first, ..., last, and K is the key sought.
- Output: index such that $E[$ index] $=K$ if K is in E within the range first, ..., last, and index $=-1$ if K is not in this range of E

Binary Search

def do_binsearch_rec(list, target, first, last):
if last < first:
ans $=-1$
else:
mid $=($ first + last)/2
if target $==$ list[mid]:
ans $=\mathbf{m i d}$
elif target < list[mid]:
ans = do_binsearch_rec(list, target, first, mid-1)
else:
ans = do_binsearch_rec(list, target, mid+1, last)
return ans

Recursive vs. non-recursive?

- Can you write this code as a non-recursive algorithm?

An Aside on Binary Trees....

- Review section 2.6, Trees
- Definition of level of a node in a tree
- Root: level 0
- Other nodes: one more than level of parent
- In other words, level is the number of "levels" above a given node, or length of path back to the root
- Definition of height
- Height of a tree: maximum level of a tree's leaves

Level and Height Illustrated

- Level applies to all nodes at that "level"
- Number of "levels" is one more than tree's level
- Height of tree is 3

Properties of Binary Trees

- Lemma 1

At level d in a binary tree, there are at most $2^{\text {d }}$ nodes

- Lemma 2

A binary tree with height h has at most $2^{h+1}-1$ nodes

- Examples: $h=0,1$ node. $h=1,3$ nodes. $h=2,7$ nodes.
- Lemma 3

A binary tree with n nodes has height at least: Ceiling $(\lg (\mathrm{n}+1))-1$

- Examples: 7 nodes? Shortest tree has h=2 (3 levels) 8 nodes? Shortest tree has h=3 (4 levels)

Worst-Case Analysis of Binary Search

- Assumptions:
- Let the problem size be $\mathrm{n}=$ last - first +1 ; $\mathrm{n}>0$
- Basic operation is a comparison of K to an array entry
- Assume one comparison is done with the three-way branch
- Analysis
- First comparison, assume K != E[mid], divides the array into two sections, each section has at most Floor[n/2] entries.
- Estimate that the size of the range is divided by 2 with each recursive call.
- How many times can we divide n by 2 without getting a result less than 1 (i.e. $\left.n /\left(2^{d}\right)>=1\right)$?
- $d<=\lg (n)$, therefore we do Floor[lg(n)] comparison following recursive calls, and one before that.
- $W(n)=\operatorname{Floor}[\lg (n)]+1=$ Ceiling $[\lg (n+1)] \in \Theta(\log n)$

Average Case Analysis of Binary Search

- Analysis is, well, ugly (can I say that?)
- But, consider the decision tree and note:
- For a complete binary tree, more than half the nodes are at the bottom level. The worst case!
- Also, if the key is not there, we don't know until we "reach" the bottom level of the tree.
- Therefore, you can imagine that the average case is very close to the worst-case.
- But, that's OK, cause $W(n)=\Theta(\lg n)$ is pretty darn good!
- $A(n) \approx \lg (n+1)-q$, where q is probability of successful search
- Recall $W(n)=$ Ceiling $[\lg (n+1)]$

Optimality of Binary Search

- So far we improve from $\theta(\mathrm{n})$ algorithm to $\theta(\log \mathrm{n})$
- Can more improvements be possible?
- For optimality and such questions, we must make a proof for a class of algorithm
- Here, the class is: the set of search algorithms for sequences where a comparison is the basic operation
- Such algorithms can be modeled with a decision tree:
- Root contains index of the first item compared to the target
- If equal, we'd stop
- If target less than that item, next comparison is the left-child
- If target greater than item, next comparison is the right-child
- Etc.

Example of Decision Tree

- Height of tree is 3 (max level of a leaf)
- Number of levels? height+1
- W(n) number of comparisons? number of nodes on path from root to leaf. I.e., num. levels or height+1

What Decision Trees Tell Us about Search

- Shows a trace of the order and number of comparisons made
- Path from root to "deepest" node is $\mathrm{W}(\mathrm{n})$
- Average path length is A(n)
- If we find properties for decisions trees in general, these are true of any algorithm in this class

Decision Trees, Search Algorithms

- How "short" can a decision tree be?
- Let N be the number of nodes in a decision tree
- Different than n (number of items in list)
- By Lemma 3:
- height >= Ceiling $(\lg (\mathrm{N}+1))-1$
- From previous slide, number of nodes on path is height+1
- So, max number of nodes >= Ceiling $(\lg (\mathrm{N}+1))$
- Max number of nodes is W(n)
- $\mathrm{W}(\mathrm{n})>=$ Ceiling $(\lg (\mathrm{N}+1))$
- But this is N not n

Decisions Trees, Search Algorithms (2)

- We claim $\mathrm{N}>=\mathrm{n}$ if an algorithm A works correctly in all cases
- For argument, see next slide
- If $\mathrm{N}>=\mathrm{n}$ then

Ceiling $(\lg (\mathrm{N}+1))>=$ Ceiling $(\lg (\mathrm{n}+1))$

- Therefore...
- Any search algorithm that uses comparisons can be represented by a decision tree
- $W(n)>=$ Ceiling $(\lg (N+1))>=$ Ceiling $(\lg (n+1))$

Prove by contradiction that $\mathbf{N}>=\mathbf{n}$

- Suppose there is no node labeled i for some i in the range from 0 through $\mathrm{n}-1$
- Make up two input arrays E1 and E2 such that
- $\mathrm{E} 1[\mathrm{i}]=\mathrm{K}$ but $\mathrm{E} 2[\mathrm{i}]=\mathrm{K}^{\prime}>\mathrm{K}$
- For j < i , make E1[j] = E2[j] using some key values less than K
- For $\mathrm{j}>\mathrm{i}$, make $\mathrm{E} 1[\mathrm{j}]=\mathrm{E} 2[\mathrm{j}]$ using some key values greater than K^{\prime} in sorted order
- Since no node in the decision tree is labeled i, the algorithm A never compares K to E1[i] or E2[i], but it gives same output for both
- Such algorithm A gives wrong output for at least one of the array and it is not a correct algorithm
- Conclude that the decision has at least n nodes

Binary Search is Optimal

- $W(n)>=$ Ceiling $(\lg (n+1))$ for any seach algorithm using key comparisons
- Binary search has this W(n)
- No algorithm can have a lower W(n)
- It's optimal

