
CS 4102, Algorithms: Chapter 2 

•  Measuring time complexity 
•  Order classes: Big-Oh etc. 
•  Proving order-class membership 
•  Properties of order-classes 

•  More on optimality (not in text) 
•  Improving searching of lists 
•  Binary Search: W(n), A(n) 
•  Decision Trees for lower-bounds arguments 



Classifying functions by their 
Asymptotic Growth Rates 

•  asymptotic growth rate, asymptotic order, or  
order of functions  
•  Comparing and classifying functions that ignores 

constant factors and small inputs.  

•  The Sets big oh O(g), big theta Θ(g), big omega 
Ω(g) 

g 

Ω(g): functions that grow at least as fast as g 

Θ(g): functions that grow at the same rate as g 

O(g): functions that grow no faster than g 



The Sets  O(g), Θ(g), Ω(g) 

•  Let g and f be a functions from  
the nonnegative integers into the positive real numbers 

•  For some real constant c > 0 and  
some nonnegative integer constant N0 

•  O(g) is the set of functions f, such that  
•    f(n) ≤ c g(n)  for all n ≥ N0 

•  Ω(g) is the set of functions f, such that  
•    f(n) ≥ c g(n)  for all n ≥ N0 

•  Θ(g) = O(g) ∩ Ω(g) 
•  asymptotic order of g 
•  f ∈Θ(g) read as  

“f is asymptotic order g” or “f is order g” 



Asymptotic Bounds 

•  The Sets big oh O(g), big theta Θ(g), big omega 
Ω(g) – remember these meanings: 

•  O(g): functions that grow no faster than g, 
or asymptotic upper bound 

•  Ω(g): functions that grow at least as fast as g, 
or asymptotic lower bound 

•  Θ(g): functions that grow at the same rate as g, 
or asymptotic tight bound 



Comparing asymptotic growth rates  

•  Comparing f(n) and g(n) as n approaches infinity,  
•  IF 

•  < ∞, including the case in which the limit is 0 then  
f ∈ O(g) 

•  > 0, including the case in which the limit is ∞ then  
f ∈ Ω(g) 

•  = c and 0 < c < ∞ then  
f ∈ Θ(g) 

•  = 0  then f ∈ o(g)   read as “little oh of g” 
•  = ∞  then f ∈ ω(g)  read as “little omega of g” 



Properties of O(g), Θ(g), Ω(g) 

•  Transitive: If f ∈O(g) and g ∈O(h), then f ∈O(h) 
O is transitive. Also Ω, Θ, o, ω are transitive. 

•  Reflexive: f ∈ Θ(f) 
•  Symmetric: If f ∈ Θ(g), then g ∈ Θ(f) 
•  Θ defines an equivalence relation on the 

functions. 
•  Each set Θ(f) is an equivalence class (complexity 

class). 

•  f ∈O(g) ⇔ g ∈ Ω(f) 
•  O(f + g) = O(max(f, g))  

similar equations hold for Ω and Θ 



Classification of functions (1) 

•  O(1) denotes the set of functions bounded by a 
constant (for large n) 

•  f ∈ Θ(n), f is linear 
•  f ∈ Θ(n2), f is quadratic; f ∈ Θ(n3), f is cubic 
•  lg n ∈ o(nα) for any α > 0, including fractional 

powers 



Classification of functions (2) 

•  nk ∈ o(cn) for any k > 0 and any c > 1 
•  powers of n grow more slowly than  

any exponential function cn 



Does Order Class Matter? 

•  No, not for small inputs 
•  Yes, for many real problems 



Practical Complexity 



Practical Complexity 



Practical Complexity 



Practical Complexity 



Practical Complexity 



More on Optimality 

•  Binary Search 
•  Decision tree arguments for Search Algorithms 



Searching Revisited 

•  Notes about slides vs. code 
•  K is variable name in slides (“key”) 

•  We use target in code 

•  E is variable name in slides (“elements”?) 
•  We use list in code 



Searching Revisited 

•  Problem: array search 
•  Given an array E containing n and given a value K, find an index 

for which K = E[index] or, if K is not in the array, return –1 as 
the answer. 

•  Sometimes we know E is sorted, so we can use that 

•  Design Trade-off: a more organized data structure with 
more efficient operations vs. cost of keeping it organized 

•  If unsorted, standard sequential search (see earlier) 
•  If sorted, two strategies: 

•  Quit when we know we’ve passed where it should be 
•  Binary Search 



Sequential Search, Optimality 

•  Reminder: time complexity for standard 
sequential search 
•  W(n) = n  
•  A(n) = q [(n+1)/2] + (1-q) n 

•  where q is the probability it’s in the list 



Better Algorithm If “Better” Input 

•  Modify sequential search:  
As soon as an entry larger than K is encountered, the 
algorithm can terminate with the answer –1. 

•  Clearly better.  Or is it? 
•  In what sense? 
•  Same order-class, same worst-case 



Modified sequential search 

def	  seq_search_mod(list,	  target):	  
	  	  	  	  ans	  =	  -‐1	  
	  	  	  	  i	  =	  0	  
	  	  	  	  for	  cur	  in	  list:	  
	  	  	  	  	  	  	  	  if	  cur	  <	  target:	  	  	  	  #	  could	  be	  later	  
	  	  	  	  	  	  	  	  	  	  	  	  i	  =	  i	  +	  1	  
	  	  	  	  	  	  	  	  elif	  cur	  >	  target:	  	  #	  not	  there	  
	  	  	  	  	  	  	  	  	  	  	  	  break	  
	  	  	  	  	  	  	  	  else:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  #	  found	  it	  
	  	  	  	  	  	  	  	  	  	  	  	  ans	  =	  i	  
	  	  	  	  	  	  	  	  	  	  	  	  break	  
	  	  	  	  return	  ans	  



Binary Search:  

•  Strategy 
•  compare K first to the entry in the middle of the array 

•  eliminates half of the entry with one comparison 

•  apply the same strategy recursively 
•  but note that this can be implemented using a loop 

•  Algorithm: Binary Search 
•  Input: E, first, last, and K, all integers, where E is an 

ordered array in the range first, …, last, and K is the 
key sought. 

•  Output: index such that E[index] = K if K is in E 
within the range first, …, last, and index = -1 if K is 
not in this range of E 



Binary Search 

def do_binsearch_rec(list, target, first, last): 
    if last < first: 
        ans = -1 
    else: 
        mid = (first + last)/2 
        if target == list[mid]: 
            ans = mid 
        elif target < list[mid]: 
            ans = do_binsearch_rec(list, target, first, mid-1) 
        else: 
            ans = do_binsearch_rec(list, target, mid+1, last) 
    return ans 



Recursive vs. non-recursive? 

•  Can you write this code as a non-recursive 
algorithm? 



An Aside on Binary Trees…. 

•  Review section 2.6, Trees 
•  Definition of level of a node in a tree 

•  Root: level 0 
•  Other nodes: one more than level of parent 
•  In other words, level is the number of “levels” above 

a given node, or length of path back to the root 

•  Definition of height 
•  Height of a tree: maximum level of a tree’s leaves 



Level and Height Illustrated 

•  Level applies to all nodes at that “level” 
•  Number of “levels” is one more than tree’s level 
•  Height of tree is 3 
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Properties of Binary Trees 

•  Lemma 1 
At level d in a binary tree, there are at most 2d 
nodes 

•  Lemma 2 
A binary tree with height h has at most 2h+1-1 
nodes 
•  Examples:  h=0, 1 node.  h=1, 3 nodes. h=2, 7 

nodes. 

•  Lemma 3 
A binary tree with n nodes has height 
at least:  Ceiling(lg(n+1)) - 1 
•  Examples:  7 nodes?  Shortest tree has h=2 (3 levels) 

    8 nodes? Shortest tree has h=3 (4 levels) 



Worst-Case Analysis of Binary Search 

•  Assumptions: 
•  Let the problem size be n = last – first + 1;  n>0 
•  Basic operation is a comparison of K to an array entry 
•  Assume one comparison is done with the three-way branch 

•  Analysis 
•  First comparison, assume K != E[mid], divides the array into two 

sections, each section has at most Floor[n/2] entries.  
•  Estimate that the size of the range is divided by 2 with each 

recursive call. 
•  How many times can we divide n by 2 without getting a result 

less than 1 (i.e. n/(2d) >= 1) ? 
•  d <= lg(n), therefore we do Floor[lg(n)] comparison following 

recursive calls, and one before that. 

•  W(n) = Floor[lg(n)] + 1 = Ceiling[lg(n + 1)] ∈ Θ(log n) 



Average Case Analysis of Binary Search 

•  Analysis is, well, ugly (can I say that?) 
•  But, consider the decision tree and note: 

•  For a complete binary tree, more than half the nodes 
are at the bottom level.  The worst case! 

•  Also, if the key is not there, we don’t know until we 
“reach” the bottom level of the tree. 

•  Therefore, you can imagine that the average case is 
very close to the worst-case. 

•  But, that’s OK, cause W(n) = Θ(lg n) is pretty darn 
good! 

•  A(n) ≈ lg(n+1) – q, where q is probability of 
successful search 

•  Recall W(n) = Ceiling[lg(n + 1)]  



Optimality of Binary Search 

•  So far we improve from θ(n) algorithm to θ(log n) 
•  Can more improvements be possible? 

•  For optimality and such questions, we must make a 
proof for a class of algorithm 
•  Here, the class is:  the set of search algorithms for sequences 

where a comparison is the basic operation 

•  Such algorithms can be modeled with a decision tree: 
•  Root contains index of the first item compared to the target 
•  If equal, we’d stop 
•  If target less than that item, next comparison is the left-child 
•  If target greater than item, next comparison is the right-child 
•  Etc. 



Example of Decision Tree 

•  Height of tree is 3 (max level of a leaf) 
•  Number of levels?  height+1 
•  W(n) number of comparisons?  number of nodes on 

path from root to leaf.  I.e., num. levels or height+1 

level 0 

level 1 

level 2 

level 3 



What Decision Trees Tell Us about Search 

•  Shows a trace of the order and number of 
comparisons made 
•  Path from root to “deepest” node is W(n) 
•  Average path length is A(n) 

•  If we find properties for decisions trees in 
general, these are true of any algorithm in this 
class 



Decision Trees, Search Algorithms 

•  How “short” can a decision tree be? 
•  Let N be the number of nodes in a decision tree 

•  Different than n (number of items in list) 

•  By Lemma 3: 
•  height >= Ceiling(lg(N+1)) - 1 

•  From previous slide, number of nodes on path is 
height+1 

•  So, max number of nodes >= Ceiling(lg(N+1)) 
•  Max number of nodes is W(n) 

•  W(n) >= Ceiling(lg(N+1)) 
•  But this is N not n 



Decisions Trees, Search Algorithms (2) 

•  We claim N >= n  if an algorithm A works 
correctly in all cases 
•  For argument, see next slide 

•  If N >= n then 
    Ceiling(lg(N+1)) >= Ceiling(lg(n+1)) 

•  Therefore… 
•  Any search algorithm that uses comparisons can be 

represented by a decision tree 
•  W(n) >= Ceiling(lg(N+1)) >= Ceiling(lg(n+1)) 



Prove by contradiction that N >= n 

•  Suppose there is no node labeled i for some i in the 
range from 0 through n-1 
•  Make up two input arrays E1 and E2 such that 
•  E1[i] = K but E2[i] = K’ > K 
•  For j < i, make E1[j] = E2[j] using some key values less than K 
•  For j > i, make E1[j] = E2[j] using some key values greater than 

K’ in sorted order 
•  Since no node in the decision tree is labeled i, the algorithm A 

never compares K to E1[i] or E2[i],  
but it gives same output for both 

•  Such algorithm A gives wrong output for at least one of the array 
and it is not a correct algorithm 

•  Conclude that the decision has at least n nodes 



Binary Search is Optimal 

•  W(n) >= Ceiling(lg(n+1)) for any seach 
algorithm using key comparisons 

•  Binary search has this W(n) 
•  No algorithm can have a lower W(n) 
•  It’s optimal 


