
CS 4102, Algorithms: Recurrences, D & C 

•  First design strategy:  Divide and Conquer 
•  Examples… 

•  Recursive algorithms 
•  Counting basic operations in recursive algorithms: 

Solving recurrence relations 
•  By iteration method 
•  Recursion trees (quick view) 
•  The “Main” and “Master” Theorems 

•  Mergesort 
•  Trominos 



Recursion:  Basic Concepts and Review 

•  Recursive definitions in mathematics 
•  Factorial:   n! = n (n-1)!  and 0! = 1! = 1 
•  Fibonacci numbers: 

      F(0) = F(1) = 1 
     F(n) = F(n-1) + F(n-2) for n > 1 

•  Note base case 

•  In programming, recursive functions can be 
implemented 
•  First, check for simple solutions and solve directly 
•  Then, solve simpler subproblem(s) by calling same 

function  
•  Must make progress towards base cases 

•  Design strategy:  method99  “mental trick” 



Designing Recursive Procedures 

•  Think Inductively! 
•  converging to a base case (stopping the recursion) 

•  identify some unit of measure (running variable) 
•  identify base cases 

•  How to solve p for all inputs from size 0 through 100 
•  Assume method99 solves sub-problem all sizes 0 through 99 
•  if p detect a case that is not base case it calls method99  

•  method99 works and is called when: 
1. The sub-problem size is less than p’s problem size 
2. The sub-problem size is not below the base case 
3. The sub-problem satisfies all other preconditions of method99 

(which are the same as the preconditions of p) 



Recursion:  Good or Evil? 

•  It depends… 
•  Sometimes recursion is an efficient design 

strategy, sometimes not 
•  Important! we can define recursively and implement 

non-recursively 

•  Note that many recursive algorithms can be re-
written non-recursively 
•  Use an explicit stack 
•  Remove tail-recursion (compilers often do this for 

you) 

•  Consider: factorial, binary search, Fibonacci 
•  Let’s consider Fibonacci carefully… 



Implement Fibonacci numbers 

•  It’s beautiful code, no? 

long fib(int n) { 
    assert(n >= 0); 
    if ( n == 0 ) return 1; 
    if ( n == 1 ) return 1; 
    return fib(n-1) + fib(n-2); 
} 

•  Let’s run and time it. 
•  Let’s trace it. 





Towers of Hanoi 

•  Ah, the legend: 
•  64 golden disks 
•  Those diligent priests 
•  The world ends! 



Towers of Hanoi 

•  Back in the commercial 
Western world… 

•  Game invented by the 
French mathematician, 
Edouard Lucas, in 1883. 

•  Now, for only $19.95, call 
now! 



Wake Up and Design! 

•  Write a recursive function for the Towers of 
Hanoi. 
•  Number each peg: 1, 2, 3 
•  Function signature: 

     hanoi ( n, source, dest, aux) 
where: 
   n is number of disks (from the top), and 
   other parameters are peg values 
In function body print: 
       Move a disk from <peg> to <peg> 

•  Do this in pairs.  Then pairs group and compare.  
Find bugs, issues, etc.   Explain to each other. 
Turn in one sheet with all four names. 



Divide and Conquer: A Strategy 

•  Our first design strategy: Divide and Conquer 
•  Often recursive, at least in definition 
•  Strategy: 

•  Break a problem into 1 or more smaller subproblems 
that are identical in nature to the original problem 

•  Solve these subproblems (recursively) 
•  Combine the results for the subproblems (somehow) 

to produce a solution to original problem 

•  Note the assumption: 
•  We can solve original problem given subproblems’ 

solutions 



Design Strategy: Divide and Conquer 

•  It is often easier to solve several small instances of a 
problem than one large one. 
•  divide the problem into smaller instances of the same problem 
•  solve (conquer) the smaller instances recursively 
•  combine the solutions to obtain the solution for original input 
•  Must be able to solve one or more small inputs directly 

•  Solve(I) 
n = size(I) 
if (n <= smallsize) 

solution = directlySolve(I); 
else 

divide I into I1, …, Ik. 
for each i in {1, …, k} 

Si = solve(Ii); 
solution = combine(S1, …, Sk); 

return solution; 



Why Divide and Conquer? 

•  Sometimes it’s the simplest approach 
•  Divide and Conquer is often more efficient than 

“obvious” approaches 
•  E.g. Mergesort, Quicksort 

•  But, not necessarily efficient 
•  Might be the same or worse than another approach 

•  Must analyze cost 

•  Note: divide and conquer may or may not be 
implemented recursively 



Cost for a Divide and Conquer Algorithm  

•  Perhaps there is… 
•  A cost for dividing into sub problems 
•  A cost for solving each of several subproblems 
•  A cost to combine results 

•  So (for n > smallSize) 
    T(n) = D(n) + ΣT(size(Ii)  + C(n) 

•  often rewritten as 

   T(n) = a T(n/b) + f(n) 

•  These formulas are recurrence relations 



 Mergesort is Classic Divide & Conquer 

•  Mergesort Strategy 



Algorithm: Mergesort 

•  Specification: 
•  Input: Array E and indexes first, and Last, such that 

the elements E[i] are defined for first <= i <= last. 
•  Output: E[first], …, E[last] is sorted rearrangement of 

the same elements 
•  Algorithm: 

def mergesort(list, first, last): 
    if first < last: 
        mid = (first+last)/2 
        mergesort(list, first, mid) 
        mergesort(list, mid+1, last) 
        merge(list, first, mid, last) # merge 2 halves 
    return 





Exercise: Find Max and Min 

•  Given a list of elements, find both the maximum 
element and the minimum element 

•  Obvious solution: 
•  Consider first element to be max 
•  Consider first element to be min 
•  Scan linearly from 2nd to last, and update if 

something larger then max or if something smaller 
than min 

•  Class exercise: 
•  Write a recursive function that solves this using divide 

and conquer. 
•  Prototype:  void maxmin (list, first, last, max, min); 
•  Base case(s)?  Subproblems?  How to combine results? 



Solving Recurrence Relations 

•  Several methods: 
•  Substitution method, AKA iteration method, AKA 

method of backwards substitutions 
•  We’ll do this in class 

•  Recurrence trees 
•  Not in our text.  (In the Baase text from 2003.) 
•  Sometimes a picture is worth 210 words! 

•  “Main” Theorem and the “Master” theorem 
•  Easy to find Order-Class for a number of common cases 
•  Textbook: Main Theorem 
•  Other texts:  slightly different Master Theorem 



Iteration or Substitution Method 

•  Strategy 
•  Write out recurrence, e.g. W(n) = W(n/2) + 1 

•  BTW, this is a recurrence for binary search 

•  Substitute for the recursive definition on the right-
hand side by re-applying the general formula with the 
smaller value 

•  In other words, plug the smaller value back into the main 
recurrence 

•  So now:   W(n) = (  W(n/4) + 1 ) + 1 
•  Repeat this several times and write it in a general 

form (perhaps using some index i to show how often 
it’s repeated) 

•  So now:   W(n) = W(n/2i) + i 



Substitution Method (cont’d) 

•  So far we have:  W(n) = W(n/2i) + i 
•  This is the form after we repeat i times.  How 

many times can we repeat? 
•  Use base case to solve for i 
•  Here, W(1) = 1, so we reach this when n/2i is 1. 

•  Solve for i:  so i = lg n 

•  Plug this value of i back into the general recurrence: 
     W(n) = W(n/2i) + i = W(n/n) + lg n = lg n + 1 
•  Note: We assume n is some power of 2, right? 

•  That’s OK.  There is a theorem called the smoothness rule 
that states that we’ll have the correct order-class 

•  See Example 2.4.6, page 58 



Examples Using the Substitution Method 

Practice with the following: 
1.  Finding max and min 

   W(1) = 0,  W(n) = 2 W(n/2) + 2 
•  Is this better or worse than the “scanning” 

approach? 

2.  Mergesort 
   W(1) = 0, W(n) = 2 W(n/2) + n - 1 

3.  Towers of Hanoi 
•  Write the recurrence.  (Now, in class.) 
•  Solve it.  (At home!) 



Return to Fibonacci… 

•  Can we use the substitution method to find out 
the W(n) for our recursive implementation of fib
(n)? 
•  Nope. There’s another way to solve recurrence, which 

we won’t do in this class 
•  homogenous second-order linear recurrence with constant 

coefficients 

•  This method allows us to calculate F(n) “directly”: 
   F(n) = (1 / sqrt(5) ) Φn  rounded to nearest int, 
    where Φ is the Golden Ratio, about 1.618 

•  Isn’t this Θ(1) while a loop is Θ(n)?  (Just punch 
buttons on my calculator!) 

•  Without a table or a calculator, finding Φn is linear (just like 
finding F(n) with a loop) 



Evaluate recursive equation 
using Recursion Tree 

•  Evaluate:  T(n) = T(n/2) + T(n/2) + n 
•  Work copy: T(k) = T(k/2) + T(k/2) + k 
•  For k=n/2,  T(n/2) = T(n/4) + T(n/4) + (n/2) 

•  [size| non-recursive cost] 



Recursion Tree: Total Cost 

•  To evaluate the total cost of the recursion tree 
•  sum all the non-recursive costs of all nodes  
•  = Sum (rowSum(cost of all nodes at the same depth)) 

•  Determine the maximum depth of the recursion tree: 
•  For our example, at tree depth d 

the size parameter is n/(2d) 
•  the size parameter converging to base case, i.e. case 1 
•  such that, n/(2d) = 1,  
•  d = lg(n) 
•  The rowSum for each row is n 

•  Therefore, the total cost, T(n) = n lg(n) 



The Master Theorem 

•  Given: a divide and conquer algorithm 
•  An algorithm that divides the problem of size n into a 

subproblems, each of size n/b 
•  Let the cost of each stage (i.e., the work to divide the 

problem + combine solved subproblems) be described 
by the function f(n) 

•  Then, the Master Theorem gives us a cookbook 
for the algorithm’s running time 
•  Our textbook has a simpler version they call the “Main 

Recurrence Theorem” 



The Master Theorem (from Cormen’s) 

•  If  T(n) = aT(n/b) + f(n) then 
let k = lg a / lg b = logb a (critical exponent) 

•  Then three common cases based on how 
quickly f(n) grows 
1.  If f(n) ∈ O(nk-ε) for some positive ε, 

 then T(n) ∈ Θ(nk) 
2.  If f(n) ∈ Θ(nk) 

  then T(n) ∈ Θ( f(n) log(n) ) = Θ(nk log(n) )  
3.  If f(n) ∈ Ω(nk+ε) for some positive ε, and 

   f(n) ∈ O(nk+δ) for some positive δ >= ε, 
 then T(n) ∈ Θ(f(n)) 

•  Note: none of these cases may apply 



The Main Recurrence Theorem 
(from our text) 

•  If  T(n) = aT(n/b) + f(n) and 
  f(n) = Θ(nk) 

•  Cases for exact bound: 
1.  T(n) ∈ Θ(nk)    if a < bk 

2.  T(n) ∈ Θ( nk log(n) )   if a = bk 

3.  T(n) ∈ Θ(nE) where E=logb(a)  if a > bk 

•  Note book’s similar cases for upper and lower 
bound 

•  Note f(n) is polynomial 
•  This is less general than earlier Master Theorem 



Using The Master Method 

•  T(n) = 9T(n/3) + n 
•  a=9, b=3, f(n) = n 

•  Main Recurrence Theorem 
•  a ? bk  9 > 3, so Θ(nE) where E=log3(9) = 2, Θ(n2)  

•  Master Theorem 
•  k = lg 9 / lg 3 = log3 9 = 2 
•  Since f(n) = O(nlog3 9 - ε), where ε=1, case 1 applies: 

           T(n) ∈ Θ(nE) 
•  Thus the solution is T(n) = Θ(n2) since E=2 



Problems to Try 

•  Can you use a theorem on these? 
Can you successfully use the iteration method? 

•  T(n) = T(n/2) + lg n 
•  T(n) = T(n/2) + n 
•  T(n) = 2T(n/2) + n  (like Mergesort) 
•  T(n) = 2T(n/2) + n lg n 



Common Forms of Recurrence Equations 

•  Recognize these: 
•  Divide and conquer 

  T(n) = bT(n/c) + f(n)  
•  Solve directly or apply master theorem 

•  Chip and conquer: 
   T(n) = T(n-c) + f(n) 

•  Note: One subproblem of lesser cost! 

•  Chip and Be Conquered: 
   T(n) = b T(n-c) + f(n) where b > 1 

•  Like Towers of Hanoi 



Back to Towers of Hanoi 

•  Recurrence: 
    W(1) = 1;       W(n) = 2 W(n-1) +1 

•  Closed form solution: 
 W(n) = 2n – 1 

•  Original “legend” says the monks moves 64 
golden disks 
•  And then the world ends!  (Uh oh.) 
•  That’s 18,446,744,073,709,551,615 moves! 
•  If one move per second, day and night, then 

580 billion years 
•  Whew, that’s a relief! 


