CS 4102, Algorithms: Recurrences, D \& C

- First design strategy: Divide and Conquer
- Examples...
- Recursive algorithms
- Counting basic operations in recursive algorithms: Solving recurrence relations
- By iteration method
- Recursion trees (quick view)
- The "Main" and "Master" Theorems
- Mergesort
- Trominos

Recursion: Basic Concepts and Review

- Recursive definitions in mathematics
- Factorial: $n!=n(n-1)!$ and $0!=1!=1$
- Fibonacci numbers:

$$
\begin{aligned}
& F(0)=F(1)=1 \\
& F(n)=F(n-1)+F(n-2) \text { for } n>1
\end{aligned}
$$

- Note base case
- In programming, recursive functions can be implemented
- First, check for simple solutions and solve directly
- Then, solve simpler subproblem(s) by calling same function
- Must make progress towards base cases
- Design strategy: method99 "mental trick"

Designing Recursive Procedures

- Think Inductively!
- converging to a base case (stopping the recursion)
- identify some unit of measure (running variable)
- identify base cases
- How to solve p for all inputs from size 0 through 100
- Assume method99 solves sub-problem all sizes 0 through 99
- if p detect a case that is not base case it calls method99
- method99 works and is called when:

1. The sub-problem size is less than p's problem size
2. The sub-problem size is not below the base case
3. The sub-problem satisfies all other preconditions of method99 (which are the same as the preconditions of p)

Recursion: Good or Evil?

- It depends...
- Sometimes recursion is an efficient design strategy, sometimes not
- Important! we can define recursively and implement non-recursively
- Note that many recursive algorithms can be rewritten non-recursively
- Use an explicit stack
- Remove tail-recursion (compilers often do this for you)
- Consider: factorial, binary search, Fibonacci
- Let's consider Fibonacci carefully...

Implement Fibonacci numbers

- It's beautiful code, no?
long fib(int n) \{
assert($n>=0$);
if $(\mathrm{n}==0)$ return 1;
if $(\mathrm{n}==1)$ return 1; return fib(n-1) + fib(n-2);
\}
- Let's run and time it.
- Let's trace it.

Time for Recursive Fibonacci

Towers of Hanoi

- Ah, the legend:
- 64 golden disks
- Those diligent priests
- The world ends!

Towers of Hanoi

- Back in the commercial Western world...
- Game invented by the French mathematician, Edouard Lucas, in 1883.
- Now, for only $\$ 19.95$, call now!

Wake Up and Design!

- Write a recursive function for the Towers of Hanoi.
- Number each peg: 1, 2, 3
- Function signature: hanoi (n, source, dest, aux) where:
n is number of disks (from the top), and
other parameters are peg values
In function body print:
Move a disk from <peg> to <peg>
- Do this in pairs. Then pairs group and compare. Find bugs, issues, etc. Explain to each other. Turn in one sheet with all four names.

Divide and Conquer: A Strategy

- Our first design strategy: Divide and Conquer
- Often recursive, at least in definition
- Strategy:
- Break a problem into 1 or more smaller subproblems that are identical in nature to the original problem
- Solve these subproblems (recursively)
- Combine the results for the subproblems (somehow) to produce a solution to original problem
- Note the assumption:
- We can solve original problem given subproblems' solutions

Design Strategy: Divide and Conquer

- It is often easier to solve several small instances of a problem than one large one.
- divide the problem into smaller instances of the same problem
- solve (conquer) the smaller instances recursively
- combine the solutions to obtain the solution for original input
- Must be able to solve one or more small inputs directly
- Solve(I)
$\mathrm{n}=\operatorname{size}(\mathrm{I})$
if ($\mathrm{n}<=$ smallsize)
solution = directlySolve(I);
else
divide I into I1, ..., Ik.
for each i in $\{1, \ldots, k\}$
$\mathrm{Si}=$ solve(Ii);
solution = combine(S1, ..., Sk);
return solution;

Why Divide and Conquer?

- Sometimes it's the simplest approach
- Divide and Conquer is often more efficient than "obvious" approaches
- E.g. Mergesort, Quicksort
- But, not necessarily efficient
- Might be the same or worse than another approach
- Must analyze cost
- Note: divide and conquer may or may not be implemented recursively

Cost for a Divide and Conquer Algorithm

- Perhaps there is...
- A cost for dividing into sub problems
- A cost for solving each of several subproblems
- A cost to combine results
- So (for $n>$ smallSize)

$$
T(n)=D(n)+\sum T\left(\operatorname{size}\left(I_{i}\right)+C(n)\right.
$$

- often rewritten as

$$
T(n)=a T(n / b)+f(n)
$$

- These formulas are recurrence relations

Mergesort is Classic Divide \& Conquer

- Mergesort Strategy L(first + last)/2」

Algorithm: Mergesort

- Specification:
- Input: Array E and indexes first, and Last, such that the elements $\mathrm{E}[\mathrm{i}]$ are defined for first $<=\mathrm{i}<=$ last.
- Output: $\mathrm{E}[\mathrm{first}], \ldots, \mathrm{E}[$ last $]$ is sorted rearrangement of the same elements
- Algorithm:
def mergesort(list, first, last):
if first < last:
mid $=$ (first+last)/2
mergesort(list, first, mid) mergesort(list, mid+1, last)
merge(list, first, mid, last) \# merge 2 halves return

Exercise: Find Max and Min

- Given a list of elements, find both the maximum element and the minimum element
- Obvious solution:
- Consider first element to be max
- Consider first element to be min
- Scan linearly from 2nd to last, and update if something larger then max or if something smaller than min
- Class exercise:
- Write a recursive function that solves this using divide and conquer.
- Prototype: void maxmin (list, first, last, max, min);
- Base case(s)? Subproblems? How to combine results?

Solving Recurrence Relations

- Several methods:
- Substitution method, AKA iteration method, AKA method of backwards substitutions
- We'll do this in class
- Recurrence trees
- Not in our text. (In the Baase text from 2003.)
- Sometimes a picture is worth 2^{10} words!
- "Main" Theorem and the "Master" theorem
- Easy to find Order-Class for a number of common cases
- Textbook: Main Theorem
- Other texts: slightly different Master Theorem

Iteration or Substitution Method

- Strategy
- Write out recurrence, e.g. $W(n)=W(n / 2)+1$
- BTW, this is a recurrence for binary search
- Substitute for the recursive definition on the righthand side by re-applying the general formula with the smaller value
- In other words, plug the smaller value back into the main recurrence
- So now: $W(n)=(W(n / 4)+1)+1$
- Repeat this several times and write it in a general form (perhaps using some index i to show how often it's repeated)
- So now: $W(n)=W\left(n / 2^{i}\right)+i$

Substitution Method (cont'd)

- So far we have: $W(n)=W\left(n / 2^{i}\right)+i$
- This is the form after we repeat i times. How many times can we repeat?
- Use base case to solve for i
- Here, $W(1)=1$, so we reach this when $n / 2^{i}$ is 1 .
- Solve for i : so $\mathrm{i}=\lg \mathrm{n}$
- Plug this value of i back into the general recurrence:
$W(n)=W\left(n / 2^{i}\right)+i=W(n / n)+\lg n=\lg n+1$
- Note: We assume n is some power of 2 , right?
- That's OK. There is a theorem called the smoothness rule that states that we'll have the correct order-class
- See Example 2.4.6, page 58

Examples Using the Substitution Method

Practice with the following:

1. Finding max and min

$$
W(1)=0, W(n)=2 W(n / 2)+2
$$

- Is this better or worse than the "scanning" approach?

2. Mergesort

$$
W(1)=0, W(n)=2 W(n / 2)+n-1
$$

3. Towers of Hanoi

- Write the recurrence. (Now, in class.)
- Solve it. (At home!)

Return to Fibonacci...

- Can we use the substitution method to find out the W(n) for our recursive implementation of fib (n)?
- Nope. There's another way to solve recurrence, which we won't do in this class
- homogenous second-order linear recurrence with constant coefficients
- This method allows us to calculate $F(n)$ "directly": $\mathrm{F}(\mathrm{n})=(1 / \operatorname{sqrt}(5)) \Phi^{\mathrm{n}}$ rounded to nearest int, where Φ is the Golden Ratio, about 1.618
- Isn't this $\Theta(1)$ while a loop is $\Theta(n)$? (Just punch buttons on my calculator!)
- Without a table or a calculator, finding Φ^{n} is linear (just like finding $\mathrm{F}(\mathrm{n})$ with a loop)

Evaluate recursive equation using Recursion Tree

- Evaluate: $T(n)=T(n / 2)+T(n / 2)+n$
- Work copy: $T(k)=T(k / 2)+T(k / 2)+k$
- For $k=n / 2, T(n / 2)=T(n / 4)+T(n / 4)+(n / 2)$
- [size| non-recursive cost]

Recursion Tree: Total Cost

- To evaluate the total cost of the recursion tree
- sum all the non-recursive costs of all nodes
- = Sum (rowSum(cost of all nodes at the same depth))
- Determine the maximum depth of the recursion tree:
- For our example, at tree depth d the size parameter is $\mathrm{n} /\left(2^{\mathrm{d}}\right)$
- the size parameter converging to base case, i.e. case 1
- such that, $\mathrm{n} /\left(2^{\mathrm{d}}\right)=1$,
- $d=\lg (n)$
- The rowSum for each row is n
- Therefore, the total cost, $\mathrm{T}(\mathrm{n})=\mathrm{n} \lg (\mathrm{n})$

The Master Theorem

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(n)$
- Then, the Master Theorem gives us a cookbook for the algorithm's running time
- Our textbook has a simpler version they call the "Main Recurrence Theorem"

The Master Theorem (from Cormen's)

- If $T(n)=a T(n / b)+f(n)$ then let $k=\lg a / \lg b=\log _{b}$ a (critical exponent)
- Then three common cases based on how quickly $f(n)$ grows

1. If $f(n) \in O\left(n^{k-\varepsilon}\right)$ for some positive ε, then $T(n) \in \Theta\left(n^{k}\right)$
2. If $f(n) \in \Theta\left(n^{k}\right)$
then $T(n) \in \Theta(f(n) \log (n))=\Theta\left(n^{k} \log (n)\right)$
3. If $f(n) \in \Omega\left(n^{k+\varepsilon}\right)$ for some positive ε, and
$f(n) \in O\left(n^{k+\delta}\right)$ for some positive $\delta>=\varepsilon$, then $T(n) \in \Theta(f(n))$

- Note: none of these cases may apply

The Main Recurrence Theorem (from our text)

- If $T(n)=a T(n / b)+f(n)$ and

$$
f(n)=\Theta\left(n^{k}\right)
$$

- Cases for exact bound:

$$
\begin{array}{ll}
\text { 1. } T(n) \in \Theta\left(n^{k}\right) & \text { if } a<b^{k} \\
\text { 2. } T(n) \in \Theta\left(n^{k} \log (n)\right) & \text { if } a=b^{k} \\
\text { 3. } T(n) \in \Theta\left(n^{E}\right) \text { where } E=\log _{b}(a) & \text { if } a>b^{k}
\end{array}
$$

- Note book's similar cases for upper and lower bound
- Note $f(n)$ is polynomial
- This is less general than earlier Master Theorem

Using The Master Method

- $T(n)=9 T(n / 3)+n$
- $a=9, b=3, f(n)=n$
- Main Recurrence Theorem
- a ? $b^{k} \quad 9>3$, so $\Theta\left(n^{E}\right)$ where $E=\log _{3}(9)=2, \Theta\left(n^{2}\right)$
- Master Theorem
- $k=\lg 9 / \lg 3=\log _{3} 9=2$
- Since $f(n)=O\left(n^{\log _{3} 9-\varepsilon}\right)$, where $\varepsilon=1$, case 1 applies:

$$
T(n) \in \Theta\left(n^{E}\right)
$$

- Thus the solution is $T(n)=\Theta\left(n^{2}\right)$ since $E=2$

Problems to Try

- Can you use a theorem on these?

Can you successfully use the iteration method?

- $T(n)=T(n / 2)+\lg n$
- $T(n)=T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$ (like Mergesort)
- $T(n)=2 T(n / 2)+n \lg n$

Common Forms of Recurrence Equations

- Recognize these:
- Divide and conquer

$$
T(n)=b T(n / c)+f(n)
$$

- Solve directly or apply master theorem
- Chip and conquer:

$$
T(n)=T(n-c)+f(n)
$$

- Note: One subproblem of lesser cost!
- Chip and Be Conquered:
$T(n)=b T(n-c)+f(n)$ where $b>1$
- Like Towers of Hanoi

Back to Towers of Hanoi

- Recurrence:

$$
W(1)=1 ; \quad W(n)=2 W(n-1)+1
$$

- Closed form solution:

$$
W(n)=2^{n}-1
$$

- Original "legend" says the monks moves 64 golden disks
- And then the world ends! (Uh oh.)
- That's $18,446,744,073,709,551,615$ moves!
- If one move per second, day and night, then 580 billion years
- Whew, that's a relief!

