
CS 4102, Algorithms: Recurrences, D & C

•  First design strategy: Divide and Conquer
•  Examples…

•  Recursive algorithms
•  Counting basic operations in recursive algorithms:

Solving recurrence relations
•  By iteration method
•  Recursion trees (quick view)
•  The “Main” and “Master” Theorems

•  Mergesort
•  Trominos

Recursion: Basic Concepts and Review

•  Recursive definitions in mathematics
•  Factorial: n! = n (n-1)! and 0! = 1! = 1
•  Fibonacci numbers:

 F(0) = F(1) = 1
 F(n) = F(n-1) + F(n-2) for n > 1

•  Note base case

•  In programming, recursive functions can be
implemented
•  First, check for simple solutions and solve directly
•  Then, solve simpler subproblem(s) by calling same

function
•  Must make progress towards base cases

•  Design strategy: method99 “mental trick”

Designing Recursive Procedures

•  Think Inductively!
•  converging to a base case (stopping the recursion)

•  identify some unit of measure (running variable)
•  identify base cases

•  How to solve p for all inputs from size 0 through 100
•  Assume method99 solves sub-problem all sizes 0 through 99
•  if p detect a case that is not base case it calls method99

•  method99 works and is called when:
1. The sub-problem size is less than p’s problem size
2. The sub-problem size is not below the base case
3. The sub-problem satisfies all other preconditions of method99

(which are the same as the preconditions of p)

Recursion: Good or Evil?

•  It depends…
•  Sometimes recursion is an efficient design

strategy, sometimes not
•  Important! we can define recursively and implement

non-recursively

•  Note that many recursive algorithms can be re-
written non-recursively
•  Use an explicit stack
•  Remove tail-recursion (compilers often do this for

you)

•  Consider: factorial, binary search, Fibonacci
•  Let’s consider Fibonacci carefully…

Implement Fibonacci numbers

•  It’s beautiful code, no?

long fib(int n) {
 assert(n >= 0);
 if (n == 0) return 1;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
}

•  Let’s run and time it.
•  Let’s trace it.

Towers of Hanoi

•  Ah, the legend:
•  64 golden disks
•  Those diligent priests
•  The world ends!

Towers of Hanoi

•  Back in the commercial
Western world…

•  Game invented by the
French mathematician,
Edouard Lucas, in 1883.

•  Now, for only $19.95, call
now!

Wake Up and Design!

•  Write a recursive function for the Towers of
Hanoi.
•  Number each peg: 1, 2, 3
•  Function signature:

 hanoi (n, source, dest, aux)
where:
 n is number of disks (from the top), and
 other parameters are peg values
In function body print:
 Move a disk from <peg> to <peg>

•  Do this in pairs. Then pairs group and compare.
Find bugs, issues, etc. Explain to each other.
Turn in one sheet with all four names.

Divide and Conquer: A Strategy

•  Our first design strategy: Divide and Conquer
•  Often recursive, at least in definition
•  Strategy:

•  Break a problem into 1 or more smaller subproblems
that are identical in nature to the original problem

•  Solve these subproblems (recursively)
•  Combine the results for the subproblems (somehow)

to produce a solution to original problem

•  Note the assumption:
•  We can solve original problem given subproblems’

solutions

Design Strategy: Divide and Conquer

•  It is often easier to solve several small instances of a
problem than one large one.
•  divide the problem into smaller instances of the same problem
•  solve (conquer) the smaller instances recursively
•  combine the solutions to obtain the solution for original input
•  Must be able to solve one or more small inputs directly

•  Solve(I)
n = size(I)
if (n <= smallsize)

solution = directlySolve(I);
else

divide I into I1, …, Ik.
for each i in {1, …, k}

Si = solve(Ii);
solution = combine(S1, …, Sk);

return solution;

Why Divide and Conquer?

•  Sometimes it’s the simplest approach
•  Divide and Conquer is often more efficient than

“obvious” approaches
•  E.g. Mergesort, Quicksort

•  But, not necessarily efficient
•  Might be the same or worse than another approach

•  Must analyze cost

•  Note: divide and conquer may or may not be
implemented recursively

Cost for a Divide and Conquer Algorithm

•  Perhaps there is…
•  A cost for dividing into sub problems
•  A cost for solving each of several subproblems
•  A cost to combine results

•  So (for n > smallSize)
 T(n) = D(n) + ΣT(size(Ii) + C(n)

•  often rewritten as

 T(n) = a T(n/b) + f(n)

•  These formulas are recurrence relations

 Mergesort is Classic Divide & Conquer

•  Mergesort Strategy

Algorithm: Mergesort

•  Specification:
•  Input: Array E and indexes first, and Last, such that

the elements E[i] are defined for first <= i <= last.
•  Output: E[first], …, E[last] is sorted rearrangement of

the same elements
•  Algorithm:

def mergesort(list, first, last):
 if first < last:
 mid = (first+last)/2
 mergesort(list, first, mid)
 mergesort(list, mid+1, last)
 merge(list, first, mid, last) # merge 2 halves
 return

Exercise: Find Max and Min

•  Given a list of elements, find both the maximum
element and the minimum element

•  Obvious solution:
•  Consider first element to be max
•  Consider first element to be min
•  Scan linearly from 2nd to last, and update if

something larger then max or if something smaller
than min

•  Class exercise:
•  Write a recursive function that solves this using divide

and conquer.
•  Prototype: void maxmin (list, first, last, max, min);
•  Base case(s)? Subproblems? How to combine results?

Solving Recurrence Relations

•  Several methods:
•  Substitution method, AKA iteration method, AKA

method of backwards substitutions
•  We’ll do this in class

•  Recurrence trees
•  Not in our text. (In the Baase text from 2003.)
•  Sometimes a picture is worth 210 words!

•  “Main” Theorem and the “Master” theorem
•  Easy to find Order-Class for a number of common cases
•  Textbook: Main Theorem
•  Other texts: slightly different Master Theorem

Iteration or Substitution Method

•  Strategy
•  Write out recurrence, e.g. W(n) = W(n/2) + 1

•  BTW, this is a recurrence for binary search

•  Substitute for the recursive definition on the right-
hand side by re-applying the general formula with the
smaller value

•  In other words, plug the smaller value back into the main
recurrence

•  So now: W(n) = (W(n/4) + 1) + 1
•  Repeat this several times and write it in a general

form (perhaps using some index i to show how often
it’s repeated)

•  So now: W(n) = W(n/2i) + i

Substitution Method (cont’d)

•  So far we have: W(n) = W(n/2i) + i
•  This is the form after we repeat i times. How

many times can we repeat?
•  Use base case to solve for i
•  Here, W(1) = 1, so we reach this when n/2i is 1.

•  Solve for i: so i = lg n

•  Plug this value of i back into the general recurrence:
 W(n) = W(n/2i) + i = W(n/n) + lg n = lg n + 1
•  Note: We assume n is some power of 2, right?

•  That’s OK. There is a theorem called the smoothness rule
that states that we’ll have the correct order-class

•  See Example 2.4.6, page 58

Examples Using the Substitution Method

Practice with the following:
1.  Finding max and min

 W(1) = 0, W(n) = 2 W(n/2) + 2
•  Is this better or worse than the “scanning”

approach?

2.  Mergesort
 W(1) = 0, W(n) = 2 W(n/2) + n - 1

3.  Towers of Hanoi
•  Write the recurrence. (Now, in class.)
•  Solve it. (At home!)

Return to Fibonacci…

•  Can we use the substitution method to find out
the W(n) for our recursive implementation of fib
(n)?
•  Nope. There’s another way to solve recurrence, which

we won’t do in this class
•  homogenous second-order linear recurrence with constant

coefficients

•  This method allows us to calculate F(n) “directly”:
 F(n) = (1 / sqrt(5)) Φn rounded to nearest int,
 where Φ is the Golden Ratio, about 1.618

•  Isn’t this Θ(1) while a loop is Θ(n)? (Just punch
buttons on my calculator!)

•  Without a table or a calculator, finding Φn is linear (just like
finding F(n) with a loop)

Evaluate recursive equation
using Recursion Tree

•  Evaluate: T(n) = T(n/2) + T(n/2) + n
•  Work copy: T(k) = T(k/2) + T(k/2) + k
•  For k=n/2, T(n/2) = T(n/4) + T(n/4) + (n/2)

•  [size| non-recursive cost]

Recursion Tree: Total Cost

•  To evaluate the total cost of the recursion tree
•  sum all the non-recursive costs of all nodes
•  = Sum (rowSum(cost of all nodes at the same depth))

•  Determine the maximum depth of the recursion tree:
•  For our example, at tree depth d

the size parameter is n/(2d)
•  the size parameter converging to base case, i.e. case 1
•  such that, n/(2d) = 1,
•  d = lg(n)
•  The rowSum for each row is n

•  Therefore, the total cost, T(n) = n lg(n)

The Master Theorem

•  Given: a divide and conquer algorithm
•  An algorithm that divides the problem of size n into a

subproblems, each of size n/b
•  Let the cost of each stage (i.e., the work to divide the

problem + combine solved subproblems) be described
by the function f(n)

•  Then, the Master Theorem gives us a cookbook
for the algorithm’s running time
•  Our textbook has a simpler version they call the “Main

Recurrence Theorem”

The Master Theorem (from Cormen’s)

•  If T(n) = aT(n/b) + f(n) then
let k = lg a / lg b = logb a (critical exponent)

•  Then three common cases based on how
quickly f(n) grows
1.  If f(n) ∈ O(nk-ε) for some positive ε,

 then T(n) ∈ Θ(nk)
2.  If f(n) ∈ Θ(nk)

 then T(n) ∈ Θ(f(n) log(n)) = Θ(nk log(n))
3.  If f(n) ∈ Ω(nk+ε) for some positive ε, and

 f(n) ∈ O(nk+δ) for some positive δ >= ε,
 then T(n) ∈ Θ(f(n))

•  Note: none of these cases may apply

The Main Recurrence Theorem
(from our text)

•  If T(n) = aT(n/b) + f(n) and
 f(n) = Θ(nk)

•  Cases for exact bound:
1.  T(n) ∈ Θ(nk) if a < bk

2.  T(n) ∈ Θ(nk log(n)) if a = bk

3.  T(n) ∈ Θ(nE) where E=logb(a) if a > bk

•  Note book’s similar cases for upper and lower
bound

•  Note f(n) is polynomial
•  This is less general than earlier Master Theorem

Using The Master Method

•  T(n) = 9T(n/3) + n
•  a=9, b=3, f(n) = n

•  Main Recurrence Theorem
•  a ? bk 9 > 3, so Θ(nE) where E=log3(9) = 2, Θ(n2)

•  Master Theorem
•  k = lg 9 / lg 3 = log3 9 = 2
•  Since f(n) = O(nlog3 9 - ε), where ε=1, case 1 applies:

 T(n) ∈ Θ(nE)
•  Thus the solution is T(n) = Θ(n2) since E=2

Problems to Try

•  Can you use a theorem on these?
Can you successfully use the iteration method?

•  T(n) = T(n/2) + lg n
•  T(n) = T(n/2) + n
•  T(n) = 2T(n/2) + n (like Mergesort)
•  T(n) = 2T(n/2) + n lg n

Common Forms of Recurrence Equations

•  Recognize these:
•  Divide and conquer

 T(n) = bT(n/c) + f(n)
•  Solve directly or apply master theorem

•  Chip and conquer:
 T(n) = T(n-c) + f(n)

•  Note: One subproblem of lesser cost!

•  Chip and Be Conquered:
 T(n) = b T(n-c) + f(n) where b > 1

•  Like Towers of Hanoi

Back to Towers of Hanoi

•  Recurrence:
 W(1) = 1; W(n) = 2 W(n-1) +1

•  Closed form solution:
 W(n) = 2n – 1

•  Original “legend” says the monks moves 64
golden disks
•  And then the world ends! (Uh oh.)
•  That’s 18,446,744,073,709,551,615 moves!
•  If one move per second, day and night, then

580 billion years
•  Whew, that’s a relief!

