
CS 4102, Algorithms: More Divide and 
Conquer 

•  Read: Algorithms text, Chapter 5 
•  Examples: 

•  Mergesort 
•  Trominos 
•  Closest Pair of Points 
•  Strassen’s Matrix Multiplication Algorithm 



New Problem: Sorting a Sequence 

•  The problem: 

•  Given a sequence a0 … an  

reorder them into a permutation a’0 … a’n  
such that a’i <= a’i+1 for all pairs 

•  Specifically, this is sorting in non-descending order… 

•  Basic operation 
•  Comparison of keys.  Why? 

•  Controls execution, so total operations often proportional 
•  Important for definition of a solution 
•  Often an expensive operation (say, large strings are keys) 

•  However, swapping items is often expensive 
•  We can apply same techniques to count swapping in a separate 

analysis 



Why Do We Study Sorting? 

•  An important problem, often needed 
•  Often users want items in some order 
•  Required to make many other algorithms work well.  

Example: For searching on sorted data by comparing 
keys, optimal solutions require θ(log n) comparisons 
using binary search 

•  And, for the study of algorithms… 
•  A history of solutions 
•  Illustrates various design strategies and data 

structures 
•  Illustrates analysis methods 
•  Can prove something about optimality 



 Mergesort is Classic Divide & Conquer 

•  Mergesort Strategy 



Algorithm: Mergesort 

•  Specification: 
•  Input: Array list and indexes first, and Last, such that 

the elements list[i] are defined for first <= i <= last. 
•  Output: list[first], …, list[last] is sorted rearrangement 

of the same elements 
•  Algorithm: 

def mergesort(list, first, last):    
    if first < last: 
        mid = (first+last)/2 
        mergesort(list, first, mid) 
        mergesort(list, mid+1, last) 
        merge(list, first, mid, last) 
    return 



Exercise:  Trace Mergesort Execution 

•  Can you trace MergeSort() on this list? 
       A = {8, 3, 2, 9, 7, 1, 5, 4}; 



Efficiency of Mergesort 

•  Cost to divide in half?  No comparisons 
•  Two subproblems:  each size n/2 
•  Combining results? What is the cost of merging 

two lists of size n/2 
•  Soon we’ll see it’s n-1 in the worst-case 

•  Recurrence relation: 
     W(1) = 0 
     W(n) = 2 W(n/2)+ Wmerge(n) 

  = 2 W(n/2) + n-1 
You can now show that this W(n) ∈ θ(n log n) 



Merging Sorted Sequences 

•  Problem:  
•  Given two sequences A and B sorted in non-

decreasing order, merge them to create one sorted 
sequence C 

•  Input size:  C has n items, and A and B each have n/2 

•  Strategy:  
•  determine the first item in C: It is the minimum 

between the first items of A and B. Suppose it is the 
first items of A. Then, rest of C consisting of merging 
rest of A with B. 



Algorithm: Merge 

Merge(A, B, C)  // where A, B, and C are sequences 
if (A is empty) 

rest of C = rest of B 

else if (B is empty) 
rest of C = rest of A 

else if (first of A <= first of B) 
first of C = first of A 
merge (rest of A, B, rest of C) 

else 
first of C = first of B 
merge (A, rest of B, rest of C) 

return 
•  W(n) = n – 1 



More on Merge, Sorting,… 

•  See Algorithms text, pp. 220-1, for more detailed code 
for merge 
•  See Python example on course-website 

•  In-place merge is possible (see text) 
•  What’s “in-place” mean? 
•  Space usage is constant, or Θ(1) 

•  When is a sort stable? 
•  If duplicate keys, their relative order is the same after sorting as 

it was before 
•  Sometimes this is important for an application 
•  Why is mergesort stable? 



•  Tiling problems 
•  For us, a game:  Trominos 
•  In “real” life: serious tiling problems regarding 

component layout on VLSI chips 

•  Definitions 
•  Tromino 
•  A deficient board 

•  n x n where n = 2k 

•  exactly one square missing 

•  Problem statement: 
•  Given a deficient board, tile it with trominos 

•  Exact covering, no overlap 

Next Example: Trominos 



Trominos: Playing the Game, Strategy 

•  Java app for Trominos: 
http://www3.amherst.edu/~nstarr/puzzle.html 

•  How can we approach this problem using Divide and 
Conquer? 

•  Small solutions: Can we solve them directly? 
•  Yes:  2 x 2 board 

•  Next larger problem:  4 x 4 board 
•  Hmm, need to divide it 
•  Four 2 x 2 boards 
•  Only one of these four has the missing square 

•  Solve it directly! 

•  What about the other three? 



Trominos: Key to the Solution 

•  Place one tromino where three 2 x 2 boards 
connect 
•  You now have three 2 x 2 deficient boards 
•  Solve directly! 

•  General solution for deficient board of size n 
•  Divide into four boards 
•  Identify the smaller board that has the removed tile 
•  Place one tromino that covers the corner of the other 

three 
•  Now recursively process all four deficient boards 
•  Don’t forget! First, check for n==2 



Input Parameters: n, a power of 2 (the board size); 
                  the location L of the missing square 
Output Parameters: None 
tile(n,L) { 
   if (n == 2) { 
    // the board is a right tromino T 
      tile with T 
      return 
   } 
   divide the board into four n/2 × n/2 subboards 
   place one tromino as in Figure 5.1.4(b) 
   // each of the 1 × 1 squares in this tromino  

 // is considered as missing 
  let m1,m2,m3,m4 be the locations of the missing squares   

 tile(n/2,m1) 
 tile(n/2,m2) 
 tile(n/2,m3) 
 tile(n/2,m4) 

}   



Trominos: Analysis 

•  What do we count?  What’s the basic operation? 
•  Note we place a tromino and it stays put 
•  No loops or conditionals other than placing a tile 
•  Assume placing or drawing a tromino is constant 
•  Assume that finding which subproblem has the 

missing tile is constant 

•  Conclusion: we can just count how many 
trominos are placed 

•  How many fit on a n x n board? 
•  (n2 – 1) / 3  

•  Do you think this optimal? 





Problem: Find Closest Pair of Points 

•  Given a set of points in 2-space, find a pair that 
has the minimum distance between them 
•  Distance is Euclidean distance 

•  A computational geometry problem… 
•  And other applications where distance is some 

similarity measure 
•  Pattern recognition problems 

•  Items identified by a vector of scores 

•  Graphics 
•  VLSI 
•  Etc. 



Obvious Solution: Closest Pair of Points 

•  For the complete set of n(n-1)/2 pairings, 
calculate the distances and keep the smallest 
•  Θ(n2) 



An aside: k Nearest Neighbors problem 

•  How to find the “k nearest neighbors” of a given 
point X? 
•  Pattern recognition problem 
•  All points belong to a category, say “cancer risk” and 

“not at risk”. 
•  Each point has a vector of size n containing values for 

some set of features 
•  Given an new unclassified point, find out which 

category it is most like 
•  Find its k nearest neighbors and use their 

classifications to decide (i.e. they “vote”) 
•  If k=1 then this is the closest point problem for n=2 



Solving k-NN problem 

•  Obvious solution: 
•  Calculate distance from X to all other points 
•  Store in a list, sort the list, choose the k smallest 

•  Better solution, better data structure? 
(Think back to CS2150) 
•  Keep a max-heap with the k smallest values seen so 

far 
•  Calculate distance from X to the next point 
•  If smaller than the heap’s root, remove the root and 

insert that point into the heap 
•  Why a max-heap? 



Back to Closest Pairs 

•  How’s it work? 
•  See class notes (done on board), or the textbook 



Summary of the Algorithm 

•  Strategy: 
•  Sort points by x-coordinate 
•  Divide into two halves along x-coordinate. 
•  Get closest pair in first-half, closest-pair in second-

half.   Let d be value of the closest of these two. 
•  In recursion, if 3 points or fewer, solve directly to find closest 

pair. 

•  Gather points in strip of width 2d into an array v 
•  For each point in v  

•  Look at the next 7 points in v to see if they closer than d 



Analysis: Closest Pairs 

•  What are we counting exactly? 
•  Several parts of this algorithm.  No single basic-

operation for the whole thing 

•  (1) Sort all points by x-coordinate:  Θ(n lgn) 
•  (2) Recurrence:  T(3) = k 

    T(n) = 2T(n/2) + cn 
•  Checking the strip is clearly O(n) 

•  This is Case 2 of the Main Theorem, so the 
recursive part is also Θ(n lgn) 



Matrix Multiplication 

•  We known how to multiply matrices for a long 
time! 
•  If we count how many arithmetic operations, then it 

takes n3 multiplications and n3 additions 
•  So Θ(n3) is “normal”, but could we do better. 
•  Hard to see how…. 

•  But matrices and can be broken up into sub-
matrices and operated on 
•  See pages 233-234 in text book 
•  Leads to recursive way to multiply matrices 

•  One approach:  T(n) = 8T(n/2) + n2 



Strassen’s Matrix Multiplication 

•  In 1969, Strassen found a different approach 
•  Mathematicians were surprised 

•  Look at what his approach calculates on p 233. 
•  Important fact (for us) 

•  Just needs 7 multiplications of n/2 size matrices, not 8 
•  Also requires Θ(n2) arithmetical operations 
•  T(n) = 7T(n/2) + n2 = nlg7 = n2.807  
•  Why?  Go back and look at our theorems! 

•  Not just a theoretical result: useful for n>50 
•  Better result later: Θ(n2.375) 



Divide and  Conquer: Bottom-line 

•  Powerful technique for a wide array of problems 
•  Don’t let a lot of “extra” work fool you: 

•  Sometimes recursive pays off 
•  But you need to know when 
•  Algorithm analysis! 


