CS 4102, Algorithms: More Divide and Conquer

- Read: Algorithms text, Chapter 5
- Examples:
- Mergesort
- Trominos
- Closest Pair of Points
- Strassen's Matrix Multiplication Algorithm

New Problem: Sorting a Sequence

- The problem:
- Given a sequence $\mathbf{a}_{\mathbf{0}} \ldots \mathbf{a}_{\mathbf{n}}$ reorder them into a permutation $\mathbf{a}_{\mathbf{0}}^{\prime} \ldots \mathbf{a}_{\mathbf{n}}^{\prime}$ such that $\mathbf{a}_{\mathbf{i}}^{\prime}<=\mathbf{a}_{\mathbf{i}+\mathbf{1}}^{\prime}$ for all pairs
- Specifically, this is sorting in non-descending order...
- Basic operation
- Comparison of keys. Why?
- Controls execution, so total operations often proportional
- Important for definition of a solution
- Often an expensive operation (say, large strings are keys)
- However, swapping items is often expensive
- We can apply same techniques to count swapping in a separate analysis

Why Do We Study Sorting?

- An important problem, often needed
- Often users want items in some order
- Required to make many other algorithms work well. Example: For searching on sorted data by comparing keys, optimal solutions require $\theta(\log n)$ comparisons using binary search
- And, for the study of algorithms...
- A history of solutions
- Illustrates various design strategies and data structures
- Illustrates analysis methods
- Can prove something about optimality

Mergesort is Classic Divide \& Conquer

- Mergesort Strategy L(first + last)/2」

Algorithm: Mergesort

- Specification:
- Input: Array list and indexes first, and Last, such that the elements list[i] are defined for first <= i <= last.
- Output: list[first], ..., list[last] is sorted rearrangement of the same elements
- Algorithm:
def mergesort(list, first, last):
if first < last:
mid $=$ (first+last)/2
mergesort(list, first, mid) mergesort(list, mid+1, last) merge(list, first, mid, last) return

Exercise: Trace Mergesort Execution

- Can you trace MergeSort() on this list?

$$
A=\{8,3,2,9,7,1,5,4\} ;
$$

Efficiency of Mergesort

- Cost to divide in half? No comparisons
- Two subproblems: each size n/2
- Combining results? What is the cost of merging two lists of size $\mathrm{n} / 2$
- Soon we'll see it's n-1 in the worst-case
- Recurrence relation:

$$
\begin{aligned}
W(1) & =0 \\
W(n) & =2 W(n / 2)+W \text { merge }(n) \\
& =2 W(n / 2)+n-1
\end{aligned}
$$

You can now show that this $W(n) \in \theta(n \log n)$

Merging Sorted Sequences

- Problem:
- Given two sequences A and B sorted in nondecreasing order, merge them to create one sorted sequence C
- Input size: C has n items, and A and B each have $n / 2$
- Strategy:
- determine the first item in C : It is the minimum between the first items of A and B. Suppose it is the first items of A. Then, rest of C consisting of merging rest of A with B.

Algorithm: Merge

Merge(A, B, C) // where A, B, and C are sequences
if (A is empty)
rest of $C=$ rest of B
else if (B is empty)
rest of $C=$ rest of A
else if (first of $A<=$ first of B)
first of $C=$ first of A
merge (rest of A, B, rest of C)
else
first of $C=$ first of B
merge (A, rest of B, rest of C)
return

- $W(n)=n-1$

More on Merge, Sorting,...

- See Algorithms text, pp. 220-1, for more detailed code for merge
- See Python example on course-website
- In-place merge is possible (see text)
- What's "in-place" mean?
- Space usage is constant, or $\Theta(1)$
- When is a sort stable?
- If duplicate keys, their relative order is the same after sorting as it was before
- Sometimes this is important for an application
- Why is mergesort stable?

Next Example: Trominos

- Tiling problems
- For us, a game: Trominos
- In "real" life: serious tiling problems regarding component layout on VLSI chips
- Definitions
- Tromino
- A deficient board
- $\mathrm{n} \times \mathrm{n}$ where $\mathrm{n}=2^{\mathrm{k}}$
- exactly one square missing
- Problem statement:

- Given a deficient board, tile it with trominos
- Exact covering, no overlap

Trominos: Playing the Game, Strategy

- Java app for Trominos: http://www3.amherst.edu/~nstarr/puzzle.html
- How can we approach this problem using Divide and Conquer?
- Small solutions: Can we solve them directly?
- Yes: 2×2 board
- Next larger problem: 4×4 board
- Hmm, need to divide it
- Four 2×2 boards
- Only one of these four has the missing square
- Solve it directly!
- What about the other three?

Trominos: Key to the Solution

- Place one tromino where three 2×2 boards connect
- You now have three 2×2 deficient boards
- Solve directly!
- General solution for deficient board of size n
- Divide into four boards
- Identify the smaller board that has the removed tile
- Place one tromino that covers the corner of the other three
- Now recursively process all four deficient boards
- Don't forget! First, check for n==2

```
Input Parameters: n, a power of 2 (the board size);
                the location L of the missing square
Output Parameters: None
tile(n,L) {
    if (n == 2) {
        // the board is a right tromino T
        tile with T
        return
    }
        divide the board into four n/2 }\timesn/2 subboard
        place one tromino as in Figure 5.1.4(b)
        // each of the 1 x 1 squares in this tromino
        // is considered as missing
        let m}\mp@subsup{m}{1}{},\mp@subsup{m}{2}{},\mp@subsup{m}{3}{},\mp@subsup{m}{4}{}\mathrm{ be the locations of the missing squares
        tile(n/2,m
        tile(n/2,m
        tile(n/2,m
        tile(n/2,m4)
}
```


Trominos: Analysis

- What do we count? What's the basic operation?
- Note we place a tromino and it stays put
- No loops or conditionals other than placing a tile
- Assume placing or drawing a tromino is constant
- Assume that finding which subproblem has the missing tile is constant
- Conclusion: we can just count how many trominos are placed
- How many fit on a $\mathrm{n} \times \mathrm{n}$ board?
- $\left(n^{2}-1\right) / 3$
- Do you think this optimal?

Problem: Find Closest Pair of Points

- Given a set of points in 2-space, find a pair that has the minimum distance between them
- Distance is Euclidean distance
- A computational geometry problem...
- And other applications where distance is some similarity measure
- Pattern recognition problems
- Items identified by a vector of scores
- Graphics
- VLSI
- Etc.

Obvious Solution: Closest Pair of Points

- For the complete set of $n(n-1) / 2$ pairings, calculate the distances and keep the smallest
- $\Theta\left(n^{2}\right)$

An aside: k Nearest Neighbors problem

- How to find the " k nearest neighbors" of a given point X ?
- Pattern recognition problem
- All points belong to a category, say "cancer risk" and "not at risk".
- Each point has a vector of size n containing values for some set of features
- Given an new unclassified point, find out which category it is most like
- Find its k nearest neighbors and use their classifications to decide (i.e. they "vote")
- If $k=1$ then this is the closest point problem for $n=2$

Solving k-NN problem

- Obvious solution:
- Calculate distance from X to all other points
- Store in a list, sort the list, choose the k smallest
- Better solution, better data structure?
(Think back to CS2150)
- Keep a max-heap with the k smallest values seen so far
- Calculate distance from X to the next point
- If smaller than the heap's root, remove the root and insert that point into the heap
- Why a max-heap?

Back to Closest Pairs

- How's it work?
- See class notes (done on board), or the textbook

Summary of the Algorithm

- Strategy:
- Sort points by x-coordinate
- Divide into two halves along x-coordinate.
- Get closest pair in first-half, closest-pair in secondhalf. Let \mathbf{d} be value of the closest of these two.
- In recursion, if 3 points or fewer, solve directly to find closest pair.
- Gather points in strip of width $\mathbf{2 d}$ into an array \mathbf{v}
- For each point in \mathbf{v}
- Look at the next 7 points in \mathbf{v} to see if they closer than \mathbf{d}

Analysis: Closest Pairs

- What are we counting exactly?
- Several parts of this algorithm. No single basicoperation for the whole thing
- (1) Sort all points by x-coordinate: $\Theta(n \operatorname{lgn})$
- (2) Recurrence: $T(3)=k$

$$
T(n)=2 T(n / 2)+c n
$$

- Checking the strip is clearly $O(n)$
- This is Case 2 of the Main Theorem, so the recursive part is also Θ ($n \lg n$)

Matrix Multiplication

- We known how to multiply matrices for a long time!
- If we count how many arithmetic operations, then it takes n^{3} multiplications and n^{3} additions
- So $\Theta\left(n^{3}\right)$ is "normal", but could we do better.
- Hard to see how....
- But matrices and can be broken up into submatrices and operated on
- See pages 233-234 in text book
- Leads to recursive way to multiply matrices
- One approach: $T(n)=8 T(n / 2)+n^{2}$

Strassen's Matrix Multiplication

- In 1969, Strassen found a different approach
- Mathematicians were surprised
- Look at what his approach calculates on p 233.
- Important fact (for us)
- Just needs 7 multiplications of $n / 2$ size matrices, not 8
- Also requires $\Theta\left(n^{2}\right)$ arithmetical operations
- $T(n)=7 T(n / 2)+n^{2}=n^{\lg 7}=n^{2.807}$
- Why? Go back and look at our theorems!
- Not just a theoretical result: useful for $\mathrm{n}>50$
- Better result later: $\Theta\left(\mathrm{n}^{2.375}\right)$

Divide and Conquer: Bottom-line

- Powerful technique for a wide array of problems
- Don't let a lot of "extra" work fool you:
- Sometimes recursive pays off
- But you need to know when
- Algorithm analysis!

