
CS 4102, Algorithms: More Divide and
Conquer

•  Read: Algorithms text, Chapter 5
•  Examples:

•  Mergesort
•  Trominos
•  Closest Pair of Points
•  Strassen’s Matrix Multiplication Algorithm

New Problem: Sorting a Sequence

•  The problem:

•  Given a sequence a0 … an

reorder them into a permutation a’0 … a’n
such that a’i <= a’i+1 for all pairs

•  Specifically, this is sorting in non-descending order…

•  Basic operation
•  Comparison of keys. Why?

•  Controls execution, so total operations often proportional
•  Important for definition of a solution
•  Often an expensive operation (say, large strings are keys)

•  However, swapping items is often expensive
•  We can apply same techniques to count swapping in a separate

analysis

Why Do We Study Sorting?

•  An important problem, often needed
•  Often users want items in some order
•  Required to make many other algorithms work well.

Example: For searching on sorted data by comparing
keys, optimal solutions require θ(log n) comparisons
using binary search

•  And, for the study of algorithms…
•  A history of solutions
•  Illustrates various design strategies and data

structures
•  Illustrates analysis methods
•  Can prove something about optimality

 Mergesort is Classic Divide & Conquer

•  Mergesort Strategy

Algorithm: Mergesort

•  Specification:
•  Input: Array list and indexes first, and Last, such that

the elements list[i] are defined for first <= i <= last.
•  Output: list[first], …, list[last] is sorted rearrangement

of the same elements
•  Algorithm:

def mergesort(list, first, last):
 if first < last:
 mid = (first+last)/2
 mergesort(list, first, mid)
 mergesort(list, mid+1, last)
 merge(list, first, mid, last)
 return

Exercise: Trace Mergesort Execution

•  Can you trace MergeSort() on this list?
 A = {8, 3, 2, 9, 7, 1, 5, 4};

Efficiency of Mergesort

•  Cost to divide in half? No comparisons
•  Two subproblems: each size n/2
•  Combining results? What is the cost of merging

two lists of size n/2
•  Soon we’ll see it’s n-1 in the worst-case

•  Recurrence relation:
 W(1) = 0
 W(n) = 2 W(n/2)+ Wmerge(n)

 = 2 W(n/2) + n-1
You can now show that this W(n) ∈ θ(n log n)

Merging Sorted Sequences

•  Problem:
•  Given two sequences A and B sorted in non-

decreasing order, merge them to create one sorted
sequence C

•  Input size: C has n items, and A and B each have n/2

•  Strategy:
•  determine the first item in C: It is the minimum

between the first items of A and B. Suppose it is the
first items of A. Then, rest of C consisting of merging
rest of A with B.

Algorithm: Merge

Merge(A, B, C) // where A, B, and C are sequences
if (A is empty)

rest of C = rest of B

else if (B is empty)
rest of C = rest of A

else if (first of A <= first of B)
first of C = first of A
merge (rest of A, B, rest of C)

else
first of C = first of B
merge (A, rest of B, rest of C)

return
•  W(n) = n – 1

More on Merge, Sorting,…

•  See Algorithms text, pp. 220-1, for more detailed code
for merge
•  See Python example on course-website

•  In-place merge is possible (see text)
•  What’s “in-place” mean?
•  Space usage is constant, or Θ(1)

•  When is a sort stable?
•  If duplicate keys, their relative order is the same after sorting as

it was before
•  Sometimes this is important for an application
•  Why is mergesort stable?

•  Tiling problems
•  For us, a game: Trominos
•  In “real” life: serious tiling problems regarding

component layout on VLSI chips

•  Definitions
•  Tromino
•  A deficient board

•  n x n where n = 2k

•  exactly one square missing

•  Problem statement:
•  Given a deficient board, tile it with trominos

•  Exact covering, no overlap

Next Example: Trominos

Trominos: Playing the Game, Strategy

•  Java app for Trominos:
http://www3.amherst.edu/~nstarr/puzzle.html

•  How can we approach this problem using Divide and
Conquer?

•  Small solutions: Can we solve them directly?
•  Yes: 2 x 2 board

•  Next larger problem: 4 x 4 board
•  Hmm, need to divide it
•  Four 2 x 2 boards
•  Only one of these four has the missing square

•  Solve it directly!

•  What about the other three?

Trominos: Key to the Solution

•  Place one tromino where three 2 x 2 boards
connect
•  You now have three 2 x 2 deficient boards
•  Solve directly!

•  General solution for deficient board of size n
•  Divide into four boards
•  Identify the smaller board that has the removed tile
•  Place one tromino that covers the corner of the other

three
•  Now recursively process all four deficient boards
•  Don’t forget! First, check for n==2

Input Parameters: n, a power of 2 (the board size);
 the location L of the missing square
Output Parameters: None
tile(n,L) {
 if (n == 2) {
 // the board is a right tromino T
 tile with T
 return
 }
 divide the board into four n/2 × n/2 subboards
 place one tromino as in Figure 5.1.4(b)
 // each of the 1 × 1 squares in this tromino

 // is considered as missing
 let m1,m2,m3,m4 be the locations of the missing squares

 tile(n/2,m1)
 tile(n/2,m2)
 tile(n/2,m3)
 tile(n/2,m4)

}

Trominos: Analysis

•  What do we count? What’s the basic operation?
•  Note we place a tromino and it stays put
•  No loops or conditionals other than placing a tile
•  Assume placing or drawing a tromino is constant
•  Assume that finding which subproblem has the

missing tile is constant

•  Conclusion: we can just count how many
trominos are placed

•  How many fit on a n x n board?
•  (n2 – 1) / 3

•  Do you think this optimal?

Problem: Find Closest Pair of Points

•  Given a set of points in 2-space, find a pair that
has the minimum distance between them
•  Distance is Euclidean distance

•  A computational geometry problem…
•  And other applications where distance is some

similarity measure
•  Pattern recognition problems

•  Items identified by a vector of scores

•  Graphics
•  VLSI
•  Etc.

Obvious Solution: Closest Pair of Points

•  For the complete set of n(n-1)/2 pairings,
calculate the distances and keep the smallest
•  Θ(n2)

An aside: k Nearest Neighbors problem

•  How to find the “k nearest neighbors” of a given
point X?
•  Pattern recognition problem
•  All points belong to a category, say “cancer risk” and

“not at risk”.
•  Each point has a vector of size n containing values for

some set of features
•  Given an new unclassified point, find out which

category it is most like
•  Find its k nearest neighbors and use their

classifications to decide (i.e. they “vote”)
•  If k=1 then this is the closest point problem for n=2

Solving k-NN problem

•  Obvious solution:
•  Calculate distance from X to all other points
•  Store in a list, sort the list, choose the k smallest

•  Better solution, better data structure?
(Think back to CS2150)
•  Keep a max-heap with the k smallest values seen so

far
•  Calculate distance from X to the next point
•  If smaller than the heap’s root, remove the root and

insert that point into the heap
•  Why a max-heap?

Back to Closest Pairs

•  How’s it work?
•  See class notes (done on board), or the textbook

Summary of the Algorithm

•  Strategy:
•  Sort points by x-coordinate
•  Divide into two halves along x-coordinate.
•  Get closest pair in first-half, closest-pair in second-

half. Let d be value of the closest of these two.
•  In recursion, if 3 points or fewer, solve directly to find closest

pair.

•  Gather points in strip of width 2d into an array v
•  For each point in v

•  Look at the next 7 points in v to see if they closer than d

Analysis: Closest Pairs

•  What are we counting exactly?
•  Several parts of this algorithm. No single basic-

operation for the whole thing

•  (1) Sort all points by x-coordinate: Θ(n lgn)
•  (2) Recurrence: T(3) = k

 T(n) = 2T(n/2) + cn
•  Checking the strip is clearly O(n)

•  This is Case 2 of the Main Theorem, so the
recursive part is also Θ(n lgn)

Matrix Multiplication

•  We known how to multiply matrices for a long
time!
•  If we count how many arithmetic operations, then it

takes n3 multiplications and n3 additions
•  So Θ(n3) is “normal”, but could we do better.
•  Hard to see how….

•  But matrices and can be broken up into sub-
matrices and operated on
•  See pages 233-234 in text book
•  Leads to recursive way to multiply matrices

•  One approach: T(n) = 8T(n/2) + n2

Strassen’s Matrix Multiplication

•  In 1969, Strassen found a different approach
•  Mathematicians were surprised

•  Look at what his approach calculates on p 233.
•  Important fact (for us)

•  Just needs 7 multiplications of n/2 size matrices, not 8
•  Also requires Θ(n2) arithmetical operations
•  T(n) = 7T(n/2) + n2 = nlg7 = n2.807
•  Why? Go back and look at our theorems!

•  Not just a theoretical result: useful for n>50
•  Better result later: Θ(n2.375)

Divide and Conquer: Bottom-line

•  Powerful technique for a wide array of problems
•  Don’t let a lot of “extra” work fool you:

•  Sometimes recursive pays off
•  But you need to know when
•  Algorithm analysis!

