
CS 4102, Algorithms: More Sorting 

•  Let’s finish some sorting problems 
•  Chapter 6 in the textbook 
•  Insertion Sort, Quicksort 
•  Lower bound for sorting using key comparisons 



Reminder: Common Forms of Recurrence 
Equations 

•  Remember these? 
•  Divide and conquer: Like Mergesort 

  T(n) = bT(n/c) + f(n)  
•  Solve directly or apply master theorem 

•  Chip and conquer: 
   T(n) = T(n-c) + f(n) 

•  Note: One subproblem of lesser cost! 
•  Insertion sort will be like this. 

•  Chip and Be Conquered: 
   T(n) = b T(n-c) + f(n) where b > 1 

•  Like Towers of Hanoi 
•  Exponential!   See recursion tree argument on p. 140 



Insertion Sort 

•  The strategy: 
1. First section of list is sorted (say i-1 items) 
2. Increase this partial solution by… 
3. Shifting down next item beyond sorted section (i.e. 

the ith item) down to its proper place in sorted 
section.  (Must shift items up to make room.) 

4. Since one item alone is already sorted, we can put 
steps 1-3 in a loop going from the 2nd to the last 
item. 

•  Note: Example of general strategy: 
Extend a partial solution by increasing its size by 
one.  (Possible name: decrease and conquer) 



Insertion Sort: Pseudocode from text 

insertion_sort(a) { 
  n = a.last 
  for i = 2 to n { 
    val = a[i]  // save a[i] so it can be inserted  

  j = i – 1  // into the correct place 
    // if val < a[j],move a[j] right to make room for a[i] 
    while (j ≥ 1 && val < a[j]) { 
     a[j + 1] = a[j] 
      j = j - 1 
    } 
    a[j + 1] = val // insert val 
  } 
} 



Insertion sort in Python 

def insertion_sort(list): 
    n = len(list) 
    for i in range(1,n): 
        val = list[i] 
        j = i-1 
        while j >= 0 and val < list[j]: 
            list[j+1] = list[j] 
            j = j-1 
        list[j+1] = val 
    return 



Properties of Insertion Sort 

•  Easy to code 
•  In-place 
•  What’s it like if the list is sorted? 

•  Or almost sorted? 

•  Fine for small inputs 
•  Why? 



Insertion Sort: Analysis 

•  Worst-Case:  
•  Average Behavior 

•  Average number of comparisons in inner-loop? 

•  So for the ith element, we do roughly i/2 comparisons 

•  To calculate A(n), we note i goes from 2 to n-1 

•  Best-case behavior?  One comparison each time 
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Insertion Sort: Best of a breed? 

•  We know that other I.S. is one of many 
quadratic sort algorithms, and that log-linear 
sorts (i.e. Θ(n lg n ) ) do exist 

•  But, can we learn something about I.S. that tells 
us what it is about I.S. that “keeps it” in the 
slower class? 
•  Yes, by a lower-bounds argument on a restricted set 

of sort algorithms 
•  BTW, this is another example to show you how to 

make arguments about lower-bounds 



Removing Inversions 

•  Define an inversion in a sequence: 
  A pair of elements that are out of order 
•  E.g. { 2, 4, 1, 5, 3 } not sorted and has 4 inversions: 

     pairs (2,1)  (4,1)  (4,3)  (5,3) 
•  To sort, we must fix each of these 
•  What’s the maximum possible number of inversions? 

    n(n-1)/2     all possible pairs 
 This really can occur, e.g.   { 5, 4, 3, 2, 1 } 

•  Insertion sort only swaps adjacent elements 
•  This can only remove at most one inversion! 
•  Insertion sort only removes at most one inversion for 

each key comparison 



Lower-bounds and Insertion Sort 

•  Theorem 
•  Any algorithm that sorts by comparison of keys and 

removes at most one inversion after each comparison 
must do at least n(n-1)/2 comparisons in the worst 
case and at least n(n-1)/4 comparisons on the 
average (for n elements) 

•  Proof of average case? See text… 
•  Conclusion:  Insertion Sort is optimal for 

algorithms that works “locally” by interchanging 
only adjacent elements. 
•  These include BubbleSort, SelectionSort 

•  And, for any algorithm to be o(n2) it must swap 
elements that are not adjacent!   



Quicksort: Introduction 

•  Developed by C.A.R. (Tony) Hoare (a Turing 
Award winner) 
   http://www.wikipedia.org/wiki/C._A._R._Hoare 
•  Published in 1962 

•  Classic divide and conquer, but… 
•  Mergesort does no comparisons to divide, but a lot to 

combine results (i.e. the merge) at each step 
•  Quicksort does a lot of work to divide, but has nothing 

to do after the recursive calls.  No work to combine. 
(If we’re using arrays. Linked lists? Re-examine later.) 

•  Dividing done with algorithm often called 
partition 
•  Sometimes called split.  Several variations. 



Quicksort’s Strategy 

•  Called on subsection of array from first to last 
•  Like mergesort 

•  First, choose some element in the array to be the pivot 
element 
•  Any element!  Doesn’t matter for correctness. 
•  Often the first.  Or, we often move some element into the first 

position (to get better efficiency) 

•  Second, call partition, which does two things: 
•  Puts the pivot in its proper place, i.e. where it will be in the 

correctly sorted sequence 
•  All elements below the pivot are less-than the pivot, and all 

elements above the pivot are greater-than  

•  Third, use quicksort recursively on both sub-lists 



•  Use first element as pivot (or pick one and move it there) 

•  After call to partition… 

•  Now sort two parts recursively and we’re done! 

•  Note that splitPoint may be anywhere in first..last 
•  Note our assumption that all keys are distinct 

 Quicksort’s Strategy (a picture) 

pivot 
first last 

pivot < pivot (unsorted) > pivot (unsorted) 

first last split 
point 

pivot < pivot (sorted) > pivot (sorted) 

first last split 
point 



Quicksort Code 

Input Parameters: list, first, last 
Output Parameters: list 

def quicksort(list, first, last): 
    if first < last: 
        p = partition(list, first, last) 
        quicksort(list, first, p-1) 
        quicksort(list, p+1, last) 
    return 



Partition Does the Dirty Work 

•  Partition rearranges elements 
•  How?  How many comparisons?  How many swaps? 

•  How? Two algorithms 
•  In the chapter, Lomuto’s algorithm 
•  In the exercises, an interesting alternative: Hoare’s algorithm.  

(Page 269. Look at on your own.) 
•  Important: Both are in-place! 



Strategy for Lomuto’s Partition 

•  Strategy: 
•  Increment k  and look at next item a[k] 
•  If that item >= pivot, all is well! 
•  If that item < pivot, increment h and then swap items at 

positions h  and k 
•  When done, swap pivot with item at position h 

pivot 
last first 

>= pivot < pivot unexamined 

   h k 

•  Invariant: 
•  h  indexes the right-most element <pivot 
•  K  indexes the right-most element >= pivot 



Lomuto’s Partition: Code 

Input Parameters: list, first, last 
Output Parameters: list.   Return value: the split point 

def partition(list, first, last): 
    val = list[first] 
    h = first 
    for k in range(first+1,last+1): 
        if list[k] < val: 
            h = h+1 
            (list[h],list[k]) = (list[k],list[h]) # swap! 
    (list[first],list[h]) = (list[h],list[first]) # swap! 
    return h 



Strategy for Hoare’s Partition 

•  Hoare’s strategy: “Burn the candle from both ends!” 
•  Move items bigger than pivot to the end 
•  Move items smaller than pivot to beginning 
•  Items still to be examined are in the middle 
•  Keep two indexes pointing into the array to separate the 3 

sections 
•  These indexes move towards each other.  Done when they meet. 



Strategy for Hoare’s Partition 

•  Strategy: 
•  Move low  up until we find element >pivot 
•  Move high  down until we find element < pivot 
•  Swap them to restore invariant 

pivot 
last first 

unexamined <= pivot >= pivot 

low high 

•  Invariant: 
•  low indexes the right-most element <= pivot 
•  high indexes the left-most element >= pivot 



Code for Hoare’s Partition 

int Partition( Key E[], Key pivot, int first, int last ) { 
 int low = first; 
 int high = last+1; 
 int tmp; 
 while (true) { 
  while ( pivot < E[--high] ) ; // see Note A next slide 
  while ( E[++low] < pivot ) 
   if ( low == last ) break; // see Note B next slide 
  if ( low >= high ) break; 
  tmp = E[low]; E[low] = E[high]; E[high] = tmp; // swap 
 } 
 tmp = E[high]; E[high] = E[first]; E[first] = tmp; // swap 
 return high; 

} 



Python Code for Hoare’s Partition 

def partition2(list, first, last): 
    i = first  # used like low in previous code 
    j = last+1  # used like high in previous code 
    pval = list[first] 
    while True: 
        while True:  
            i = i+1 
            if i > last or list[i] >= pval: break 
        while True: 
            j = j-1 
            if list[j] <= pval: break 
        if i < j:   (list[i],list[j]) = (list[j],list[i]) # swap 
        else:      break 
    (list[first],list[j]) = (list[j],list[first]) # swap 
    return j 



Notes on Partition Code 

•  Essentially same strategy as in textbook (p. 269) 
•  Note low-section contains elements <= pivot and 

high-section contains elements >= pivot 

•  Note A: two inner while-loops move indexes, 
skipping over elements already in correct section 
•  Stops when hits elements that need swapping 



Notes on Partition Code (cont’d) 

•  Convince yourself this version works! 
•  It’s easy to goof up this code. Have we? 
•  What does it do in extreme cases? E.g. pivot is max 

or min, or all values equal 
•  Self-test exercise: use an example in text, and do one 

call to Partition on entire array. 
•  Draw array and show values for high, low at start of outer 

while-loop 

•  Duplicate values 
•  Some variants of partition handle this better 
•  Common situation (E.g. sort all students by major) 
•  See other texts (e.g. Sedgewick’s algorithms text) for 

more analysis 



Efficiency of Quicksort 

•  Partition divides into two sub-lists, perhaps 
unequal size 
•  Depends on value of pivot element 

•  Recurrence for Quicksort 
 T(n) = partition-cost + 
             T(size of 1st section) + T(size of 2nd section) 

•  If divides equally, T(n) = 2 T(n/2) + n-1 
•  Just like mergesort 
•  Solve by substitution or master theorem 

T(n) ∈ Θ(n lg n ) 

•  This is the best-case.  But… 



Worst Case of Quicksort 

•  What if divides in most unequal fashion possible? 
•  One subsection has size 0, other has size n-1 
•  T(n) = T(0) + T(n-1) + n-1 
•  What if this happens every time we call partition 

recursively? 

•  Uh oh.  Same as insertion sort. 
•  “Sorry Prof. Hoare – we have to take back that 

Turing Award now!” 
• Not so fast… € 
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Quicksort’s Average Case 

•  Good if it divides equally, bad if most unequal. 
•  Remember: when subproblems size 0 and n-1 
•  Can worst-case happen? 

Sure!  Many cases. One is when elements already sorted.  First 
element is min, pivot around that. 

•  What’s the average? 
•  Much closer to the best case 
•  To prove this, fun with recurrences (pages 250-252) 
•  Result:  If all permutations are equal, then 

     A(n) ≅ 1.386 n lg n (for large n) 

•  So very fast on average.  
•  And, we can take simple steps to avoid the worst case! 



Avoiding Quicksort’s Worst Case 

•  Make sure we don’t pivot around max or min 
•  Find a better choice and swap it with first element 
•  Then partition as before 

•  Recall we get best case if divides equally 
•  Could find median.  But this costs Θ(n).  Instead… 
•  Choose a random element between first and last and 

swap it with the first element 
•  Or, estimate the median by using the “median-of-

three” method 
•  Pick 3 elements (say, first, middle and last) 
•  Choose median of these and swap with first. (Cost?) 
•  If sorted, then this chooses real median.  Best case! 



Tuning Quicksort’s Performance 

•  In practice quicksort runs fast 
•  A(n) is log-linear, and the “constants” are smaller 

than mergesort and heapsort 
•  Often used in software libraries 
•  So worth tuning it to squeeze the most out of it 

1.  Always do something to avoid worst-case 
2.  Sort small sub-lists with (say) insertion sort 

•  For small inputs, insertion sort is fine 
•  No recursion, function calls 

•  Variation: don’t sort small sections at all.  After 
quicksort is done, sort entire array with insertion sort 
•  It’s efficient on almost-sorted arrays! 



Quicksort’s Space Complexity 

•  Looks like it’s in-place, but recursion stack 
•  Depends on your definition: some people define in-

place to not include stack space used by recursion 
•  E.g. the algorithms textbook by Cormen et. al. 
•  Our book differs (p. 224) 

•  How much goes on the stack? 
•  If most uneven splits, then Θ(n). 
•  If splits evenly every time, then Θ(lg n). 

•  Ways to reduce stack-space used due to 
recursion 
•  Various books cover the details (not ours, though) 
•  First, remove 2nd recursive call (tail-recursion) 
•  Second, always do recursive call on smaller section 



Summary: Quicksort 

•  In worst-case, efficiency is Θ(n2) 
•  But easy to avoid the worst-case 

•  On average, efficiency is Θ(n lg n) 
•  Better space-complexity than mergesort. 
•  In practice, runs fast and widely used 

•  Many ways to tune its performance 
•  Can be combined effectively 

•  Various strategies for Partition 
•  Some work better if duplicate keys 

•  See Sedgewick’s algorithms text for more details 
•  He’s the expert! PhD on this under Donald Knuth 





Lower Bounds for  
Sorting by Comparison of Keys 

•  What’s the best possible sorting algorithm? 
•  Lower Bound for Worst Case and for Average Behavior 

•  We’ll use another kind of decision tree for analyzing the 
class of all sorting algorithms that compare keys 
•  Each internal node represents one comparison for keys xi and xj; 

labeled i :j 
•  Leaf nodes are different: they represent a particular result.  I.e. 

a permutation of the original sequence 
•  The action of Sort on a particular input corresponds to following 

one path in its decision tree from the root to a leaf. 
•  (We assume the keys in the array to be sorted are distinct.) 

•  What can we say about such trees? 
•  Since a correct sort must handle all permutations of n items, 

there must be at least n! leaves 



•  Remember, the action of sort on a particular input corresponds to 
following one path in its decision tree from the root to a leaf. 

•  Some sort, for n = 3 

Decision tree for sorting algorithms 

< > 



Lower Bound for Worst Case 

•  Reminder: a tree’s height is number of “levels” minus 1 
•  Height of this decision tree is the W(n) number of comparisons 

•  From Theorem 2.6.8 (p. 91):  
•  Let L be the number of leaves in a binary tree and let h be its 

height.  
•  Then              .  (Number of leaves is no more than 2h.) 
•  Therefore                      (Height is not less than…) 
•  For a correct sorting algorithm, L >= n!  
•  Therefore 

•  Thus, for any algorithm that sorts by comparison of keys  
      W(n) is at least 
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Formula for the Lower Bound 

•  Can we lose that factorial?  Sure. 
•  Stirling’s formula: (n/e)n sqrt(2πn) 

•  Take the log of this approximation of n! and you’ll see that 
it’s Θ(n lg n) 

•  Better to re-write, use integrals, and… 
•  See me or a textbook for details (but not ours) 

•  Result: 

which is of course Θ(n lg n) 

•  Mergesort is very close to optimal 
•  But not for all values of n € 
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Lower Bound for Average Behavior 

•  How would you find the L.B. for A(n)? 
•  Consider all paths through the decision tree.  (Messy, huh?) 
•  We won’t prove this, but it’s in many textbooks (not ours) 

•  This Theorem has been shown: 
•  The average number of comparisons done by an algorithm to 

sort n items by comparison of keys is at least lg n!  
•  or approximately n lg n – 1.443 n  

•  The only difference from the worst-case lower bound is 
that there is no rounding up to an integer 
•  the average needs not be an integer,  
•  but the worst case must be. 

•  Note: LB for average-case is close to LB for worst-case 
•  This tells us that Mergesort can’t be much better on average 

than it is in the worst-case 



Summing Up So Far 

•  Our lower-bound proof shows any algorithm must 
be Ω(n lg n) in the worst-case 
if it works by comparing keys 
•  More precisely,  
•  Algorithms that can sort any type do key-comparisons 

•  Mergesort and Quicksort are in this order-class 
•  Mergesort is very close to the L.B. (but not in-place) 
•  But quicksort will run faster generally 

•  Why?  Constants and lower-order terms are smaller. 
In other words, the overhead per comparison is less. 

•  But Quicksort really could be Θ(n2) at its worst 
•  It does use stack space for recursion 

•  One more sort: Heapsort! In-place and Θ(n lg n)  
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