
CS 4102, Algorithms: Heapsort

•  Expectations:
•  Section 3.5 and CS216 slides
•  Next: Sections 4.2-4.5

•  Graph searching

•  Problems to do are coming…

Review from CS216

•  Review these slides!
•  Slides from 3-26-03 on Priority Queues (Binary Min

Heaps)
http://www.cs.virginia.edu/~cs216/notes/slides/heaps.pdf

Reminders, Terminology

•  ADT priority queue
•  What’s an ADT?
•  What’s high priority?
•  Operations?
•  How is data stored?

•  Heap data structure
•  The heap structure: an almost-complete binary tree
•  The heap condition or heap order property:

•  At any given node j, value[j] has higher priority than either of
its child nodes’ values

•  Heaps are weakly sorted

•  Higher priority: large or small?
•  Max-heap vs min-heap

Storing Heaps in Lists

•  Heap structure allows us to store heaps in lists
(arrays, vectors) effectively

•  Indexing in our text: v[1] is the root. v[n] is
the last item

•  parent of node j is at j/2
•  left-child of node j is at:

•  2*j

•  right-child of node j is at:
•  2*j + 1

•  “first leaf” is
•  n/2 + 1

Basic Heap Algorithms

•  Let’s work with max-heaps for know
•  Define a set of simple heap operations

•  Traverse tree, thus logarithmic complexity

•  Highest item?
•  At the root. Just return it.

•  Insert an item?
•  Add after the nth item (end of list)
•  Out of place? Swap with parent. Repeat, pushing it

up the tree until in proper place

•  Remove an item?
•  Hmm...

Insert, Algorithm 3.5.10, p. 140
This algorithm inserts the value val into a heap containing n elements.
The array v represents the heap.

Input Parameters: val,v,n
Output Parameters: v,n

heap_insert(val,v,n) {
 i = n = n + 1
 // i is the child and i/2 is the parent.
 // If i > 1, i is not the root.
 while (i > 1 && val > v[i/2]) {
 v[i] = v[i/2]
 i = i/2
 }
 v[i] = val
}

Siftdown: Fix a Heap if Root Wrong

•  Algorithm 3.5.7, p. 138
•  Also known as “Fixheap” and “heapify” (ugh)
•  Called at a given index (often root, but perhaps not)

•  Assumption:
•  The left and right subtrees of node i are heaps.
•  The element at node i may violate heap condition

•  Strategy:
•  Find larger of two children of current node
•  If current node is out-of-place, then swap with largest

of its children
•  Keep pushing it down until in the right place or it’s a

leaf

// Input Parameter: v,i,n Output Parameters: v
siftdown(v,i,n) {
 temp = v[i]

 // 2 * i ≤ n tests for a left child
 while (2 * i ≤ n) {
 child = 2 * i
 // if there is a right child and it is
 // bigger than the left child, move child

 if (child < n && v[child + 1] > v[child])
 child = child + 1
 // move child up?
 if (v[child] > temp)
 v[i] = v[child]
 else
 break // exit while loop
 i = child
 }
 // insert original v[i] in correct spot
 v[i] = temp
}

Delete, Algorithm 3.5.9, p. 139
This algorithm deletes the root (the item with largest value) from a heap
containing n elements. The array v represents the heap.

Input Parameters: v,n
Output Parameters: v,n

heap_delete(v,n) {
 v[1] = v[n]
 n = n - 1
 siftdown(v,1,n)

}

How to Build a Heap
•  Option 1:

•  Repeatedly Insert() a new item, start with a heap of 1
item

•  Cost: Θ(n lg n) (Can you do the sum?)

•  Option 2:
•  Take an unordered list, build the heap in place
•  Heapify() algorithm, page 141
•  Strategy:

•  Work bottom up, starting with lowest sub-heaps
•  Call Siftdown() on each

•  Note: This often called “BuildHeap” etc.
•  Cormen et. al. calls Siftdown() “heapify”

Heapify, Algorithm 3.5.12, p. 141
This algorithm rearranges the data in the array v, indexed
from 1 to n, so that Heapsort it represents a heap.

Input Parameters: v,n
Output Parameters: v

heapify(v,n) {
 // n/2 is the index of the parent of
 // the last node
 for i = n/2 downto 1
 siftdown(v,i,n)
}

Complexity? Θ(n) See p. 142

Heapsort: the Strategy

•  We can sort in-place by
•  Putting large items at the end of the list
•  Keeping a heap in the space in front of those

•  So, to start off:
•  Put the largest item in the last position
•  Make sure items 1 through n-1 are a heap of size n-1
•  Repeat, moving the 2nd largest into the n-1 position,

etc.

Heapsort, Algorithm 3.5.16, p. 145

This algorithm sorts the array v[1], ... , v[n] in nondecreasing order. It uses
the siftdown and heapify algorithms (Algorithms 3.5.7 and 3.5.12).

Input Parameters: v,n
Output Parameter: v
heapsort(v,n) {
 // make v into a heap
 heapify(v,n)
 for i = n downto 2 {
 // v[1] is the largest among v[1], ... , v[i].
 // Put it in the correct cell.
 swap(v[1],v[i])
 // Heap is now at indexes 1 through i - 1.
 // Restore heap.
 siftdown(v,1,i - 1)
 }
}

Heapsort’s Complexity

•  Constructing the heap: Θ(n)
•  Each call to Siftdown()

•  No greater than lg n, so O(lg n)
•  There are n-1 of these, so
•  Overall, O(n lg n)
•  We know it’s Θ(n lg n) because of the lower-bound

proof done earlier
•  Can prove directly it’s Θ(n lg n) but our book doesn’t

(so let’s not bother)
•  In practice, slower then randomized Quicksort
•  But truly in-place, and guaranteed log-linear

