CS4102: Graph Traversals

e Review: Section 2.5

o Definitions, data structures

o Note: review definitions, data structures, and BFS
from CS216 slides from 4-16-03

http://www.cs.virginia.edu/~cs216/notes/slides/graphs2.pdf

e Read: Chapter 4 (from 4.2 on)

e Traversing Graphs
o Depth-first Search (DFS)
e Breadth-first Search (BFS)

e Applications of DFS strategy (things not in text)
e Backtracking, Exhaustive Search (handout)

Problems: e.g. Airline Routes

Problems: e.g. Flowcharts

-— Ent = Kne + | i

I = nternt

{a) Flowchan {b) Directed graph

Problems: e.g. Binary relation

e X is a proper factor of y

(8)
\ Pl
\2J PN
:‘/?\ —d =)
JY, 2/ » 3)
f
) je | - /,\

Problems: e.g. Computer Networks

O O/Q\
- ‘w

A

No_c

N

(a) A star network (D) A ring network

Terms You Should Know or Learn Now

o Vertex (plural vertices) or Node

e Edge (sometimes referred to as an arc)

e Note the meaning of incident
e Degree of a vertex: how many adjacent vertices

e Digraph: in-degree (num. of incoming edges) vs. out-degree
e Graphs can be:

e Directed or undirected

e Weighted or not weighted

e weights can be reals, integers, etc.
e weight also known as: cost, length, distance, capacity,...

e Undirected graphs:
e Normally an edge can’t connect a vertex to itself

e A directed graph (also known as a digraph)

e "“Originating” node is the head, the target the tail
e An edge may connect a vertex to itself

Terms You Should Know or Learn Now

e Size of graph? Two measures:

e Number of nodes. Usually n
e Number of edges: usually m

e Dense graph: many edges
e Maximally dense?

e Undirected: each node connects to all others, so
m = n(n-1)/2
Called a complete graph
e Directed: m = n(n-1) why?
e Sparse graph: fewer edges
e Could be zero edges...

Terms You Should Know or Learn Now

e Path vs. simple path
e One vertex is reachable from another vertex
e A connected graph

e undirected graph, where each vertex is reachable
from all others

o A strongly connected digraph:
o direction affects this!
e node u may be reachable from v, but not v from u
e Strongly connected means both directions

e Connected components for undirected graphs

Terms You Should Know or Learn Now

e Cycle
e Directed graph: non-empty path with same starting
and ending node

e An edge may appear more than once (but why?)
e Simple cycle: no node repeated except start and end

e Undirected graph: same idea

e If an edge appears more than once (I.e. non-simple) then we
traverse it in the same direction

e Acyclic: no-cycles
e A connected, acyclic undirected graph: free tree

o If we specificy a root, it's a rooted tree
e Acyclic but not connected? a undirected forest

e Directed acyclic graph: a DAG

Self-test: Understand these Terms?

e Subgraph

e Symmetric digraph

e complete graph

e Adjacency relation

e Path, simple path, reachable
e Connected, Strongly Connected
e Cycle, simple cycle

e acyclic

e undirected forest

o free tree, undirected tree

e rooted tree

e Connected component

Definition: Directed graph

e Directed Graph
e A directed graph, or digraph, is a pair
e G=(V, E)
e where V is a set whose elements are called vertices,
and
e E is a set of ordered pairs of elements of V.

e Vertices are often also called nodes.

Elements of E are called edges, or directed edges, or arcs.
For directed edge (v, w) in E, v is its tail and w its head;
(v, w) is represented in the diagrams as the arrow, v -> w.
In text we simple write vw.

Definition: Undirected graph

e Undirected Graph
e A undirected graph is a pair
* G=(V,E)

e where V is a set whose elements are called vertices,
and

e E is a set of unordered pairs of distinct elements of V.

e Vertices are often also called nodes.
e Elements of E are called edges, or undirected edges.

e Each edge may be considered as a subset of V containing
two elements,

e {v, W} denotes an undirected edge

In diagrams this edge is the line v---w.

In text we simple write vw, or wv

vw is said to be incident upon the vertices v and w

Definitions: Weighted Graph

e A weighted graph is a triple (V, E, W)
e where (V, E) is a graph (directed or undirected) and

e W is a function from E into R, the reals (integer or
rationals).

e For an edge e, W(e) is called the weight of e.

Graph Representations using Data
Structures

e Adjacency Matrix Representation
e letG=(V,E),n=|V|, m=|E|,V ={vl, V2, .., vn)
e G can be represented by an n x n matrix

O—0

s O Q)

(a) An undirected graph (b) Its adjacency matrix

i

Array of Adjacency Lists
Representation

e From °'°
e {0
& (&

adjVertices

v

("))

@

(a) An undirected graph

—
QOO0 =~0

QOO ™= =Qm™

OmQm O~

O=00=~0

O~00000

- -0 O

O=00QQ0Q0Q

(b) Its adjacency matrix

(")

mi

W

IJ

W

- 2 -
} r
-~ L N SR |
=T e S
=
— (S
-1 2) [
5 I nil
== 1
=7 =
6 'L n}

W

"

ntl

~)
r-—-l

nil

Adjacency Matrix for weight digraph

0 2350 o© o o o0 oo
/oo 0 100 140 © o = |
50 © 0 o o 160 =
o 60 180 0 o o

oo o0 o0 o () o oo
@ e o 320420 0 14.0}
oo o © 20 o0 []{} 0 /

(a) A weighted digraph (b) Its adjacency matnix

1J

Array of Adjacency Lists
Representation

oo O 100 140 o= oo == |\
5.0 =y O o3 oo 160 == \
= 6.0 180 O o Dwe S
oo o - 320 420 O 1120/
o oo) =) oo [l() O ;
from -> to, weight
3 10.0 4 14.0 nil
1 5.0 6 16.0 | nit |
- D 6.0 ! 3 13.0 nil
nil
4 32.0 -4—-—- s 42 .0 ¥ 120 | nii
*{ S 11.0 nil
AE———

Traversing Graphs

e “Traversing” means processing each vertex edge in some
organized fashion by following edges between vertices
e We speak of visiting a vertex. Might do something while there.
e Recall traversal of binary trees:
e Several strategies: In-order, pre-order, post-order
e Traversal strategy implies an order of visits
e We used recursion to describe and implement these
e Graphs can be used to model interesting, complex
relationships

o Often traversal used just to process the set of vertices or edges

e Sometimes traversal can identify interesting properties of the
graph
e Sometimes traversal (perhaps modified, enhanced) can answer

interesting questions about the problem-instance that the graph
models

Traversal Strategies

e Note: traversal algorithms start at some vertex
e Which? Trees have a root, but graphs don't.
e Might matter, might not.

e Breadth-first search and depth-first search

e efficient way to “visit” each vertex and edge exactly
once.

o Later we'll see exhaustive search
e Can visit vertices and edges more than once
e Exhaustively finds... (wait and see!)

o We'll see that BFS will tell us something about
distances between a vertex and other vertices

o We'll see that DFS will be a generally useful
approach for solving many graph problems.

BFS Strategy

o Breadth-first search: Strategy (for digraph)

choose a starting vertex, distanced = 0

vertices are visited in order of increasing distance
from the starting vertex,

examine all edges leading from vertices (at distance
d) to adjacent vertices (at distance d+1)

then, examine all edges leading from vertices at
distance d+1 to distance d+2, and so on,

until no new vertex is discovered

Breath-first search, e.g.

e e.g. Start from vertex A, atd =0
o visitB,C, F; atd =1
o visitD; atd = 2

e e.g. Start from vertex E, atd = 0
e visit G: atd = 1

Breadth-first search: I/0 Data
Structures

Input: G =(V, £), 2 graph represented by an adjacency lit structure, adjVertices, o

descbed in Section 723, where V =11, n): sV, the vertex from which the search
begins.

(hutput: A breadih-fst spanning tree, sored in th parent amay. The parent amay s
passed 1 and the algorithm flls it

Remarks: For a queue (), we assume operations of the Quete abstact daa type (Sec-
tion 2.4.2) are used. The amay color1}, .. colorn] denotes the current search status of
all vertices. Undliscovered vertices are white: those that ace iscovered but o Jet processed
imthe queue) ae gray: thoe that are processed ae black.

Breadth-first search: Algorithm

void breadthFirstSearch(IntList{] adjVertices, int n, int s, int(] parent)
int{] color = new int[n+11];
Queue pending = create(n):
Inmtialize color{1], . . ., colorin] to white.

parent{s] = -1
color(s] = gray;
enqueue(pending, s);
while (pending is nonempty)
v = frant{pending);
dequeue(pending);
" For each vertex w in the list adjVertices{v]:
iIf (colorfw] == white)
color{w] = gray;
enqueue(pending, w):
parentiw] = v; // Process tree edge vw.
/7 Continue through list.
// Process vertex v here.
coloriv] = black;
return;

Breadth-first search: Analysis

e For a digraph having n vertices and m edges

e Each edge is processed once in the while loop for a
cost of 6(m)

e Each vertex is put into the queue once and removed
from the queue and processed once, for a cost 6(n)

e Extra space is used for color array and queue, there
are 0(n)
e From a tree (breadth-first spanning tree)
e the path in the tree from start vertex to any vertex
contains the minimum possible number of edges

e Not all vertices are necessarily reachable from a
selected starting vertex

DFS: the Strategy in Words

e Depth-first search: Strategy
e (GO as deep as can visiting un-visited nodes
e Choose any un-visited vertex when you have a choice

e When stuck at a dead-end, backtrack as little as
possible

e Back up to where you could go to another unvisited vertex
e Then continue to go on from that point

e Eventually you'll return to where you started
e Reach all vertices? Maybe, maybe not

e Things are a bit different for directed vs.
undirected graphs

e It's not really that different, until you get interested in
using DFS to find cycles

Observations about the DFS Strategy

o Note: we must keep track of what nodes we've
visited
e DFS traverses a subset of E (the set of edges)

e Creates a tree, rooted at the starting point:
the Depth-first Search Tree (DFS tree)

e Each node in the DFS tree has a distance from the
start. (We often don't care about this, but we could.)
e At any point, all nodes are either:
e Un-discovered
e Finished (you backed up from it), or

e Discovered (I.e. visited) but not finished

e On the path from the current node back to the root
e We might back up to it

e (Later we'll call these states: white, black and gray)

An Example of DFS

Depth-first Search, e.g. trace it, In
order

e \ertex status: undiscovered, discovered, finished
e Edge status: part of DFS tree or not?

A

Recursive DFS visit function

dfs_recurs(adj,start) {

// reached node “start”; do something?
visit[start] = true
trav = adj[start]
while (trav != null) {

v = trav.ver

if (lvisit[v])

dfs_recurs(adj,v)
trav = trav.next

}

// about to leave “start”; do something?

}

* Sometimes called dfs_visit().

Calling Function for DFS

* Purpose: do all required initializations, then call
dfs recurs() at a given node (just one call)

Input Parameters: adj,start
Output Parameters: None

dfs(adj,start) {
// do any initializations
nh = adj.last
for i =1 to n
visit[i] = false

// one call to recursive function at start
dfs_recurs(adj,start)

}

DFS to Process all Vertices in a Graph

* Purpose: do all required initializations, then
call dfs_recurs() as many times as needed to
visit all nodes. May create a DFS forest.

dfs_sweep(adj) {
n = adj.last
// do any initializations
for i =1 to n
visit[i] = false

// loop called on any unvisited node
for 1 =1 ton
if ('visit[i]) dfs_recurs(adj, i)

Notes on dfs_recurs() function

e Often called “dfsVisit” (or something like that)

e Creates one DFS tree from a given start node
e Must be called by some caller function
e May not visit all nodes in a the graph G

e Assumes that all nodes have been initialized as
“undiscovered”

e Sometimes an “else” clause that does something
to nodes not visited (or edges to those)

General Skeleton Similar to DFS_recurs
(Cormen)

int dfs(intList[] adjVertices, int{] color, intv, ..)
int w;
IntList remAd);
int ans;
color|v] = gray;
Preorder processing of vertex v
remAdj = adjVertices[v];
while (remAdj # nil)
w = first(remAdj);
if (colorfw] == white)
Exploratory processing for tree edege vw
int wAns = dfs(adjVertices, color, w, ..)
Backtrack processing for tree edge vw. using wAns (like inorder)
else
Checking (i.e., processing) for nontree edge vw
remAdj = rest{remAd))
. Postorder processing of vertex v. including final computation of ans
colorfv] = black;
. return ans;

UI:"—-UJ!-J:-"CD.

Using DFS to Find if a Graphic is Acyclic

e Does a graph have a cycle?

e DFS is great for this
e But, slightly harder if graph is undirected

o Use DFS tree: classify edges and nodes as you
process them

e Nodes:
e White: unvisited
e Black: done with it, backed up from it (never to return)
e Gray: Have reached it; exploring it's adjacent nodes; but not
done with it
e Also, have a “time counter”, say, ctr
e Set d[v] = ctr++ as discovery time
o Set f[v] = ctr++ as finish time

Depth-first search tree

e edges classified:

e tree edge, back edge, descendant edge, and cross
edge

Using Non-Tree Edges to Identify Cycles

e From the previous graph, note that:

e Back edges (indicates a cycle)
e dfs_recurs() sees a vertex that is gray
e This back edge goes back up the DFS tree to a vertex

that is on the path from the current node to the root
e Cross Edges and Descendant Edges (not cycles)
e dfs_recurs() sees a vertex that is black

e Descendant edge: connects current node to a
descendant in the DFS tree

e Cross edge: connects current node to a node in
another subtree — not a descendant of current node

Non-tree Edges in DFS

e Question 1: Finding back edges for an
undirected tree is not quite this simple:
e The parent node of the current node is gray

e Not a cycle, is it? It's the same edge you just
traversed

e Question: how would you modify our code to
recognize this?
e Question 2:

e How could you modify the code to distinguish cross
edges from descendant edges?

e Hint: use discovery and finish times

Time Complexity of DFS

e For a digraph having n vertices and m edges

e Each edge is processed once in the while loop of
dfs_recurs() for a cost of 6(m)
e Think about adjacency list data structure.
e Traverse each list exactly once. (Never back up)
e There are a total of 2m nodes in all the lists

e The dfs_sweep() algorithm will do 6(n) work even if
there are no edges in the graph

e Thus over all time-complexity is 6(n+m)
e Remember: this means the larger of the two values
e Note: This is considered “linear” for graphs since there are
two size parameters for graphs.

e Extra space is used for color array.
Space complexity is 6(n)

Directed Acyclic Graphs

e A directed acyclic graph or DAG is a directed
graph with no directed cycles:

Topological Sort

e Topological sort of a DAG:

e Linear ordering of all vertices in graph G such that
vertex u comes before vertex vif edge (u, v) € G

o Real-world example: getting dressed

Getting Dressed

Underwear Socks
! ! [Watch]
Pants p j Shoes
/ Shirt
Belt p 4 .
Tie
Jacket

Getting Dressed

[Underwear [Socks]

[Pants } Shoes] [Watch]

fre] This is the same graph
y with a different layout.

S o N
[Socks] [UnderwearHPants]—>[Shoes] [Watch] [Shirt]—>[Belt] [Tie]—>[Jacket]

Topological Sort Algorithm

Topological-Sort ()
{
Run DFS recurs ()
When a vertex is finished, output it

Vertices are output 1n reverse
topological order
(or add to stack/list)

}

e Can stack/store vertices as found to store
them in topologically sorted order

e Time: O(V+E)

Topologoical Sort, Recursive Function

top _sort_recurs(adj, start, ts) {

visit[start] = true

trav = adj[start]

while (trav != null) {
v = trav.ver
if (Ivisit[v])

top_sort_recurs(adj,v,ts)

trav = trav.next

}

ts[k] = start

k=k-1

Topological Sort: Driver

top_sort(adj, ts) {

n = adj.last
Il k is the index in ts where the next vertex is to be
/] stored in topological sort. k is assumed global.
k=n
fori=1ton

visit[i] = false
fori=1ton

if (1visit{v])

top _sort _recurs(adj, i, ts)

Forward vs. Reverse

e Topological sort is a type of sort

e Implies an ordering
e Can sort backwards, of course

e Forward topological order

e If edge vw in graph, then topo[v] < topo[w]
e Reverse topological order

e If edge vw in graph, then topo[v] > topo[w]

e And, every directed graph has a transpose,
which means... (see next slide)

What's an Edge Mean?

e What's our graph model?
e Edge uv means do u first, then v. Or, ...

e Edge uv means task u depends on v (I.e. v must be done
first)

s

\

~

Underwear

S

s

\

Pants

~

>[.

S

e The latter called a dependency graph

s

~

Underwear

\

S

s

\

Pants

~

>[.

S

e “forward in time” vs. “depend on this one”
e Big deal? No, we can order vertices in reverse

topological order if needed

