CS4102: Graph Traversals

- Review: Section 2.5
- Definitions, data structures
- Note: review definitions, data structures, and BFS from CS216 slides from 4-16-03
http://www.cs.virginia.edu/~cs216/notes/slides/graphs2.pdf
- Read: Chapter 4 (from 4.2 on)
- Traversing Graphs
- Depth-first Search (DFS)
- Breadth-first Search (BFS)
- Applications of DFS strategy (things not in text)
- Backtracking, Exhaustive Search (handout)

Problems: e.g. Airline Routes

Problems: e.g. Flowcharts

(a) Flowchart
(b) Directed graph

Problems: e.g. Binary relation

- x is a proper factor of y

Problems: e.g. Computer Networks

(a) A star network

(b) A ring network

Terms You Should Know or Learn Now

- Vertex (plural vertices) or Node
- Edge (sometimes referred to as an arc)
- Note the meaning of incident
- Degree of a vertex: how many adjacent vertices
- Digraph: in-degree (num. of incoming edges) vs. out-degree
- Graphs can be:
- Directed or undirected
- Weighted or not weighted
- weights can be reals, integers, etc.
- weight also known as: cost, length, distance, capacity,...
- Undirected graphs:
- Normally an edge can't connect a vertex to itself
- A directed graph (also known as a digraph)
- "Originating" node is the head, the target the tail
- An edge may connect a vertex to itself

Terms You Should Know or Learn Now

- Size of graph? Two measures:
- Number of nodes. Usually n
- Number of edges: usually m
- Dense graph: many edges
- Maximally dense?
- Undirected: each node connects to all others, so $\mathrm{m}=\mathrm{n}(\mathrm{n}-1) / 2$
Called a complete graph
- Directed: $\mathrm{m}=\mathrm{n}(\mathrm{n}-1) \quad$ why?
- Sparse graph: fewer edges
- Could be zero edges...

Terms You Should Know or Learn Now

- Path vs. simple path
- One vertex is reachable from another vertex
- A connected graph
- undirected graph, where each vertex is reachable from all others
- A strongly connected digraph:
- direction affects this!
- node u may be reachable from v, but not v from u
- Strongly connected means both directions
- Connected components for undirected graphs

Terms You Should Know or Learn Now

- Cycle
- Directed graph: non-empty path with same starting and ending node
- An edge may appear more than once (but why?)
- Simple cycle: no node repeated except start and end
- Undirected graph: same idea
- If an edge appears more than once (I.e. non-simple) then we traverse it in the same direction
- Acyclic: no-cycles
- A connected, acyclic undirected graph: free tree
- If we specificy a root, it's a rooted tree
- Acyclic but not connected? a undirected forest
- Directed acyclic graph: a DAG

Self-test: Understand these Terms?

- Subgraph
- Symmetric digraph
- complete graph
- Adjacency relation
- Path, simple path, reachable
- Connected, Strongly Connected
- Cycle, simple cycle
- acyclic
- undirected forest
- free tree, undirected tree
- rooted tree
- Connected component

Definition: Directed graph

- Directed Graph
- A directed graph, or digraph, is a pair
- $G=(V, E)$
- where V is a set whose elements are called vertices, and
- E is a set of ordered pairs of elements of V .
- Vertices are often also called nodes.
- Elements of E are called edges, or directed edges, or arcs.
- For directed edge (v, w) in E, v is its tail and w its head;
- (v, w) is represented in the diagrams as the arrow, v -> w.
- In text we simple write vw.

Definition: Undirected graph

- Undirected Graph
- A undirected graph is a pair
- $G=(V, E)$
- where V is a set whose elements are called vertices, and
- E is a set of unordered pairs of distinct elements of V .
- Vertices are often also called nodes.
- Elements of E are called edges, or undirected edges.
- Each edge may be considered as a subset of V containing two elements,
- $\{\mathrm{v}, \mathrm{w}\}$ denotes an undirected edge
- In diagrams this edge is the line v ---w.
- In text we simple write vw, or wv
- vw is said to be incident upon the vertices v and w

Definitions: Weighted Graph

- A weighted graph is a triple (V, E, W)
- where (V, E) is a graph (directed or undirected) and
- W is a function from E into R, the reals (integer or rationals).
- For an edqe $e, W(e)$ is called the weight of e.

Graph Representations using Data Structures

- Adjacency Matrix Representation
- Let $G=(V, E), n=|V|, m=|E|, V=\{v 1, v 2, \ldots, v n)$
- G can be represented by an $n \times n$ matrix

(a) An undirected graph

(b) Its adjacency matrix

Array of Adjacency Lists Representation

- From
- to

(a) An undirected graph

$$
\left\{\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(b) Its adjacency matrix
adiVertices

Adjacency Matrix for weight digraph

$$
\left(\begin{array}{ccccccc}
0 & 25.0 & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & 10.0 & 14.0 & \infty & \infty & \infty \\
5.0 & \infty & 0 & \infty & \infty & 16.0 & \infty \\
\infty & 6.0 & 18.0 & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 32.0 & 42.0 & 0 & 14.0 \\
\infty & \infty & \infty & \infty & \infty & 11.0 & 0
\end{array}\right)
$$

(a) A weighted digraph
(b) Its adjacency matrix

Array of Adjacency Lists Representation

(a) A weighted cigraph

$$
\left(\begin{array}{ccccccc}
0 & 25.0 & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & 10.0 & 14.0 & \infty & \infty & \infty \\
5.0 & \infty & 0 & \infty & \infty & 16.0 & \infty \\
\infty & 6.0 & 18.0 & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 32.0 & 42.0 & 0 & 1+.0 \\
\infty & \infty & \infty & \infty & \infty & 11.0 & 0
\end{array}\right)
$$

from -> to, weight

Traversing Graphs

- "Traversing" means processing each vertex edge in some organized fashion by following edges between vertices
- We speak of visiting a vertex. Might do something while there.
- Recall traversal of binary trees:
- Several strategies: In-order, pre-order, post-order
- Traversal strategy implies an order of visits
- We used recursion to describe and implement these
- Graphs can be used to model interesting, complex relationships
- Often traversal used just to process the set of vertices or edges
- Sometimes traversal can identify interesting properties of the graph
- Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the problem-instance that the graph models

Traversal Strategies

- Note: traversal algorithms start at some vertex
- Which? Trees have a root, but graphs don't.
- Might matter, might not.
- Breadth-first search and depth-first search
- efficient way to "visit" each vertex and edge exactly once.
- Later we'll see exhaustive search
- Can visit vertices and edges more than once
- Exhaustively finds... (wait and see!)
- We'll see that BFS will tell us something about distances between a vertex and other vertices
- We'll see that DFS will be a generally useful approach for solving many graph problems.

BFS Strategy

- Breadth-first search: Strategy (for digraph)
- choose a starting vertex, distance $d=0$
- vertices are visited in order of increasing distance from the starting vertex,
- examine all edges leading from vertices (at distance d) to adjacent vertices (at distance d+1)
- then, examine all edges leading from vertices at distance d+1 to distance d+2, and so on,
- until no new vertex is discovered

Breath-first search, e.g.

- e.g. Start from vertex A, at $d=0$
- visit B, C, F; at d=1
- visit $D ;$ at $d=2$
- e.g. Start from vertex E, at $d=0$
- visit G: at $\mathrm{d}=1$

Breadth-first search: I/O Data Structures

Input: $G=(V, E)$, a graph represented by an adicency list structure, adjeretices, as described in Section 7 ?3, where $V=\{1, \ldots, n\} ; s \in V$, the verese from which hes seach begins.
Output: A breadth-hists spanming tree, stored in the parent aray. The parent aray is passed in and the alonoihm fill it.
Remarks: For a quevele, we assume operations of the Quever abstact daxa type (Sec. tion 2.4.2) are used. The aray color(1), ..., colorin) denoes she curent search staus of all verices. Undiscovered verices are whice, those that red discovered bu no y yet poccessed (in the quelele) are saray those that dre processed dre black.

Breadth-first search: Algorithm

void breadthFirstSearch(Intlist[] adjVertices, int n, int s, int[] parent) int[] color $=$ new int $[n+1]$; Queue pending $=$ create(n); Initialize color[l], . ., color[n] to white.
parent[s] $=-1$;
color[s] = gray;
enqueue(pending, s);
while (pending is nonempty)
$v=$ front(pending);
dequeue(pending):
For each vertex w in the list adjVertices[v]:
if (color $[w]==$ white)
color[w] = gray;
enqueue(pending, w);
parent[w] $=v$; // Process tree edge vw.
// Continue through /ist.
// Process vertex v here.
color $[v]=$ black;
return:

Breadth-first search: Analysis

- For a digraph having n vertices and m edges
- Each edge is processed once in the while loop for a cost of $\theta(\mathrm{m})$
- Each vertex is put into the queue once and removed from the queue and processed once, for a cost θ (n)
- Extra space is used for color array and queue, there are $\theta(n)$
- From a tree (breadth-first spanning tree)
- the path in the tree from start vertex to any vertex contains the minimum possible number of edges
- Not all vertices are necessarily reachable from a selected starting vertex

DFS: the Strategy in Words

- Depth-first search: Strategy
- Go as deep as can visiting un-visited nodes
- Choose any un-visited vertex when you have a choice
- When stuck at a dead-end, backtrack as little as possible
- Back up to where you could go to another unvisited vertex
- Then continue to go on from that point
- Eventually you'll return to where you started
- Reach all vertices? Maybe, maybe not
- Things are a bit different for directed vs. undirected graphs
- It's not really that different, until you get interested in using DFS to find cycles

Observations about the DFS Strategy

- Note: we must keep track of what nodes we've visited
- DFS traverses a subset of E (the set of edges)
- Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
- Each node in the DFS tree has a distance from the start. (We often don't care about this, but we could.)
- At any point, all nodes are either:
- Un-discovered
- Finished (you backed up from it), or
- Discovered (I.e. visited) but not finished
- On the path from the current node back to the root
- We might back up to it
- (Later we'll call these states: white, black and gray)

An Example of DFS

and so on...

Depth-first Search, e.g. trace it, in order

- Vertex status: undiscovered, discovered, finished
- Edge status: part of DFS tree or not?

Recursive DFS visit function

dfs_recurs(adj, start) \{
// reached node "start"; do something? visit[start] = true trav = adj[start]
while (trav != null) \{
$v=$ trav.ver
if (!visit[v])
dfs_recurs(adj,v)
trav = trav.next
// about to leave "start"; do something?
$\}$

- Sometimes called dfs_visit().

Calling Function for DFS

- Purpose: do all required initializations, then call dfs_recurs() at a given node (just one call)
Input Parameters: adj,start Output Parameters: None
dfs(adj,start) \{
// do any initializations
n = adj. 1ast
for $\mathbf{i}=1$ to n
visit[i] = false
// one call to recursive function at start dfs_recurs(adj,start)

DFS to Process all Vertices in a Graph

- Purpose: do all required initializations, then call dfs_recurs() as many times as needed to visit all nodes. May create a DFS forest.
dfs_sweep(adj) \{
n = adj.1ast
// do any initializations
for $i=1$ to n
visit[i] = false
// loop called on any unvisited node
for $\mathbf{i}=1$ to n
if (!visit[i]) dfs_recurs(adj, i)
\}

Notes on dfs_recurs() function

- Often called "dfsVisit" (or something like that)
- Creates one DFS tree from a given start node
- Must be called by some caller function
- May not visit all nodes in a the graph G
- Assumes that all nodes have been initialized as "undiscovered"
- Sometimes an "else" clause that does something to nodes not visited (or edges to those)

General Skeleton Similar to DFS_recurs (Cormen)

int $d f s($ intList[] adjVertices, int[] color, int v, \ldots)
int w;
IntList remAdj;
int ans;

1. color[v] = gray;
2. Preorder processing of vertex v
3. remAdj $=$ adjVertices[v];
t. while (remAdj \neq nil)
4. $w=$ first(remAdj);
5. if (color[w]==white)
6. Exploratory processing for tree edge $v w$
7. int $w A n s=$ dfs(adjVertices, color, w, \ldots);
8. Backtrack processing for tree edge $v w$. using wans (like inorder)
9. else
10. Checking (i.e., processing) for nontree edge $v u^{\prime}$
11. remAdj $=$ rest(remAdj)
12. Postorder processing of vertex v. including final computation of ans
13. color[v] = black;
14. return ans:

Using DFS to Find if a Graphic is Acyclic

- Does a graph have a cycle?
- DFS is great for this
- But, slightly harder if graph is undirected
- Use DFS tree: classify edges and nodes as you process them
- Nodes:
- White: unvisited
- Black: done with it, backed up from it (never to return)
- Gray: Have reached it; exploring it's adjacent nodes; but not done with it
- Also, have a "time counter", say, ctr
- Set d[v] = ctr++ as discovery time
- Set $f[v]=$ ctr++ as finish time

Depth-first search tree

- edges classified:
- tree edge, back edge, descendant edge, and cross edge

Using Non-Tree Edges to Identify Cycles

- From the previous graph, note that:
- Back edges (indicates a cycle)
- dfs_recurs() sees a vertex that is gray
- This back edge goes back up the DFS tree to a vertex that is on the path from the current node to the root
- Cross Edges and Descendant Edges (not cycles)
- dfs_recurs() sees a vertex that is black
- Descendant edge: connects current node to a descendant in the DFS tree
- Cross edge: connects current node to a node in another subtree - not a descendant of current node

Non-tree Edges in DFS

- Question 1: Finding back edges for an undirected tree is not quite this simple:
- The parent node of the current node is gray
- Not a cycle, is it? It's the same edge you just traversed
- Question: how would you modify our code to recognize this?
- Question 2:
- How could you modify the code to distinguish cross edges from descendant edges?
- Hint: use discovery and finish times

Time Complexity of DFS

- For a digraph having n vertices and m edges
- Each edge is processed once in the while loop of dfs_recurs() for a cost of $\theta(m)$
- Think about adjacency list data structure.
- Traverse each list exactly once. (Never back up)
- There are a total of 2 m nodes in all the lists
- The dfs_sweep() algorithm will do $\theta(n)$ work even if there are no edges in the graph
- Thus over all time-complexity is $\theta(n+m)$
- Remember: this means the larger of the two values
- Note: This is considered "linear" for graphs since there are two size parameters for graphs.
- Extra space is used for color array. Space complexity is $\theta(n)$

Directed Acyclic Graphs

- A directed acyclic graph or DAG is a directed graph with no directed cycles:

Topological Sort

- Topological sort of a DAG:
- Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in G$
- Real-world example: getting dressed

Getting Dressed

Getting Dressed

Topological Sort Algorithm

Topological-Sort()
\{
Run DFS recurs ()
When a vertex is finished, output it
Vertices are output in reverse topological order
(or add to stack/list)
\}

- Can stack/store vertices as found to store them in topologically sorted order
- Time: O(V+E)

Topologoical Sort, Recursive Function

top_sort_recurs(adj, start, ts) \{
visit[start] = true
trav = adj[start]
while (trav != null) \{
v = trav.ver
if (!visit[v])
top_sort_recurs(adj,v,ts)
trav = trav.next
\}
ts[k] = start
$k=k-1$
\}

Topological Sort: Driver

```
top_sort(adj, ts) {
    n = adj.last
    // k}\mathrm{ is the index in ts where the next vertex is to be
    // stored in topological sort. }k\mathrm{ is assumed global.
    k=n
    for i=1 to n
        visit[i] = false
    for i=1 to n
        if (!visit[v])
        top_sort_recurs(adj, i, ts)
    }
}
```


Forward vs. Reverse

- Topological sort is a type of sort
- Implies an ordering
- Can sort backwards, of course
- Forward topological order
- If edge vw in graph, then topo[v] < topo[w]
- Reverse topological order
- If edge vw in graph, then topo[v] > topo[w]
- And, every directed graph has a transpose, which means... (see next slide)

What's an Edge Mean?

- What's our graph model?
- Edge uv means do u first, then v. Or, ...
- Edge uv means task u depends on v (I.e. v must be done first)

- The latter called a dependency graph
- "forward in time" vs. "depend on this one"
- Big deal? No, we can order vertices in reverse topological order if needed

Sort this!

