
CS4102: Graph Traversals

•  Review: Section 2.5
•  Definitions, data structures
•  Note: review definitions, data structures, and BFS

from CS216 slides from 4-16-03
http://www.cs.virginia.edu/~cs216/notes/slides/graphs2.pdf

•  Read: Chapter 4 (from 4.2 on)
•  Traversing Graphs

•  Depth-first Search (DFS)
•  Breadth-first Search (BFS)

•  Applications of DFS strategy (things not in text)
•  Backtracking, Exhaustive Search (handout)

Problems: e.g. Airline Routes

Problems: e.g. Flowcharts

Problems: e.g. Binary relation

•  x is a proper factor of y

Problems: e.g. Computer Networks

Terms You Should Know or Learn Now

•  Vertex (plural vertices) or Node
•  Edge (sometimes referred to as an arc)

•  Note the meaning of incident
•  Degree of a vertex: how many adjacent vertices

•  Digraph: in-degree (num. of incoming edges) vs. out-degree

•  Graphs can be:
•  Directed or undirected
•  Weighted or not weighted

•  weights can be reals, integers, etc.
•  weight also known as: cost, length, distance, capacity,…

•  Undirected graphs:
•  Normally an edge can’t connect a vertex to itself

•  A directed graph (also known as a digraph)
•  “Originating” node is the head, the target the tail
•  An edge may connect a vertex to itself

Terms You Should Know or Learn Now

•  Size of graph? Two measures:
•  Number of nodes. Usually n
•  Number of edges: usually m

•  Dense graph: many edges
•  Maximally dense?
•  Undirected: each node connects to all others, so

m = n(n-1)/2
Called a complete graph

•  Directed: m = n(n-1) why?

•  Sparse graph: fewer edges
•  Could be zero edges…

Terms You Should Know or Learn Now

•  Path vs. simple path
•  One vertex is reachable from another vertex

•  A connected graph
•  undirected graph, where each vertex is reachable

from all others

•  A strongly connected digraph:
•  direction affects this!
•  node u may be reachable from v, but not v from u
•  Strongly connected means both directions

•  Connected components for undirected graphs

Terms You Should Know or Learn Now

•  Cycle
•  Directed graph: non-empty path with same starting

and ending node
•  An edge may appear more than once (but why?)

•  Simple cycle: no node repeated except start and end

•  Undirected graph: same idea
•  If an edge appears more than once (I.e. non-simple) then we

traverse it in the same direction

•  Acyclic: no-cycles
•  A connected, acyclic undirected graph: free tree

•  If we specificy a root, it’s a rooted tree
•  Acyclic but not connected? a undirected forest

•  Directed acyclic graph: a DAG

Self-test: Understand these Terms?

•  Subgraph
•  Symmetric digraph
•  complete graph
•  Adjacency relation
•  Path, simple path, reachable
•  Connected, Strongly Connected
•  Cycle, simple cycle
•  acyclic
•  undirected forest
•  free tree, undirected tree
•  rooted tree
•  Connected component

Definition: Directed graph

•  Directed Graph
•  A directed graph, or digraph, is a pair
•  G = (V, E)
•  where V is a set whose elements are called vertices,

and
•  E is a set of ordered pairs of elements of V.

•  Vertices are often also called nodes.
•  Elements of E are called edges, or directed edges, or arcs.
•  For directed edge (v, w) in E, v is its tail and w its head;
•  (v, w) is represented in the diagrams as the arrow, v -> w.
•  In text we simple write vw.

Definition: Undirected graph

•  Undirected Graph
•  A undirected graph is a pair
•  G = (V, E)
•  where V is a set whose elements are called vertices,

and
•  E is a set of unordered pairs of distinct elements of V.

•  Vertices are often also called nodes.
•  Elements of E are called edges, or undirected edges.
•  Each edge may be considered as a subset of V containing

two elements,
•  {v, w} denotes an undirected edge
•  In diagrams this edge is the line v---w.
•  In text we simple write vw, or wv
•  vw is said to be incident upon the vertices v and w

Definitions: Weighted Graph

•  A weighted graph is a triple (V, E, W)
•  where (V, E) is a graph (directed or undirected) and
•  W is a function from E into R, the reals (integer or

rationals).
•  For an edge e, W(e) is called the weight of e.

Graph Representations using Data
Structures

•  Adjacency Matrix Representation
•  Let G = (V,E), n = |V|, m = |E|, V = {v1, v2, …, vn)
•  G can be represented by an n × n matrix

Array of Adjacency Lists
Representation

•  From
•  to

Adjacency Matrix for weight digraph

Array of Adjacency Lists
Representation

from -> to, weight

Traversing Graphs

•  “Traversing” means processing each vertex edge in some
organized fashion by following edges between vertices
•  We speak of visiting a vertex. Might do something while there.

•  Recall traversal of binary trees:
•  Several strategies: In-order, pre-order, post-order
•  Traversal strategy implies an order of visits
•  We used recursion to describe and implement these

•  Graphs can be used to model interesting, complex
relationships
•  Often traversal used just to process the set of vertices or edges
•  Sometimes traversal can identify interesting properties of the

graph
•  Sometimes traversal (perhaps modified, enhanced) can answer

interesting questions about the problem-instance that the graph
models

Traversal Strategies

•  Note: traversal algorithms start at some vertex
•  Which? Trees have a root, but graphs don’t.
•  Might matter, might not.

•  Breadth-first search and depth-first search
•  efficient way to “visit” each vertex and edge exactly

once.

•  Later we’ll see exhaustive search
•  Can visit vertices and edges more than once
•  Exhaustively finds… (wait and see!)

•  We’ll see that BFS will tell us something about
distances between a vertex and other vertices

•  We’ll see that DFS will be a generally useful
approach for solving many graph problems.

BFS Strategy

•  Breadth-first search: Strategy (for digraph)
•  choose a starting vertex, distance d = 0
•  vertices are visited in order of increasing distance

from the starting vertex,
•  examine all edges leading from vertices (at distance

d) to adjacent vertices (at distance d+1)
•  then, examine all edges leading from vertices at

distance d+1 to distance d+2, and so on,
•  until no new vertex is discovered

Breath-first search, e.g.

•  e.g. Start from vertex A, at d = 0
•  visit B, C, F; at d = 1
•  visit D; at d = 2

•  e.g. Start from vertex E, at d = 0
•  visit G; at d = 1

Breadth-first search: I/O Data
Structures

Breadth-first search: Algorithm

Breadth-first search: Analysis

•  For a digraph having n vertices and m edges
•  Each edge is processed once in the while loop for a

cost of θ(m)
•  Each vertex is put into the queue once and removed

from the queue and processed once, for a cost θ(n)
•  Extra space is used for color array and queue, there

are θ(n)

•  From a tree (breadth-first spanning tree)
•  the path in the tree from start vertex to any vertex

contains the minimum possible number of edges

•  Not all vertices are necessarily reachable from a
selected starting vertex

DFS: the Strategy in Words

•  Depth-first search: Strategy
•  Go as deep as can visiting un-visited nodes

•  Choose any un-visited vertex when you have a choice

•  When stuck at a dead-end, backtrack as little as
possible

•  Back up to where you could go to another unvisited vertex

•  Then continue to go on from that point
•  Eventually you’ll return to where you started

•  Reach all vertices? Maybe, maybe not

•  Things are a bit different for directed vs.
undirected graphs
•  It’s not really that different, until you get interested in

using DFS to find cycles

Observations about the DFS Strategy

•  Note: we must keep track of what nodes we’ve
visited

•  DFS traverses a subset of E (the set of edges)
•  Creates a tree, rooted at the starting point:

 the Depth-first Search Tree (DFS tree)
•  Each node in the DFS tree has a distance from the

start. (We often don’t care about this, but we could.)

•  At any point, all nodes are either:
•  Un-discovered
•  Finished (you backed up from it), or
•  Discovered (I.e. visited) but not finished

•  On the path from the current node back to the root
•  We might back up to it

•  (Later we’ll call these states: white, black and gray)

An Example of DFS

and so on…

Depth-first Search, e.g. trace it, in
order

•  Vertex status: undiscovered, discovered, finished
•  Edge status: part of DFS tree or not?

Recursive DFS visit function

dfs_recurs(adj,start) {
 // reached node “start”; do something?
 visit[start] = true
 trav = adj[start]
 while (trav != null) {
 v = trav.ver
 if (!visit[v])
 dfs_recurs(adj,v)
 trav = trav.next
 }
 // about to leave “start”; do something?
}

•  Sometimes called dfs_visit().

Calling Function for DFS

Input Parameters: adj,start
Output Parameters: None

dfs(adj,start) {
 // do any initializations
 n = adj.last
 for i = 1 to n
 visit[i] = false

 // one call to recursive function at start
 dfs_recurs(adj,start)
}

•  Purpose: do all required initializations, then call
dfs_recurs() at a given node (just one call)

DFS to Process all Vertices in a Graph

dfs_sweep(adj) {
 n = adj.last
 // do any initializations
 for i = 1 to n
 visit[i] = false

 // loop called on any unvisited node
 for i = 1 to n
 if (!visit[i]) dfs_recurs(adj, i)
}

•  Purpose: do all required initializations, then
call dfs_recurs() as many times as needed to
visit all nodes. May create a DFS forest.

Notes on dfs_recurs() function

•  Often called “dfsVisit” (or something like that)
•  Creates one DFS tree from a given start node

•  Must be called by some caller function
•  May not visit all nodes in a the graph G

•  Assumes that all nodes have been initialized as
“undiscovered”

•  Sometimes an “else” clause that does something
to nodes not visited (or edges to those)

General Skeleton Similar to DFS_recurs
(Cormen)

Using DFS to Find if a Graphic is Acyclic

•  Does a graph have a cycle?
•  DFS is great for this
•  But, slightly harder if graph is undirected

•  Use DFS tree: classify edges and nodes as you
process them
•  Nodes:

•  White: unvisited
•  Black: done with it, backed up from it (never to return)
•  Gray: Have reached it; exploring it’s adjacent nodes; but not

done with it

•  Also, have a “time counter”, say, ctr
•  Set d[v] = ctr++ as discovery time
•  Set f[v] = ctr++ as finish time

Depth-first search tree

•  edges classified:
•  tree edge, back edge, descendant edge, and cross

edge

Using Non-Tree Edges to Identify Cycles

•  From the previous graph, note that:
•  Back edges (indicates a cycle)

•  dfs_recurs() sees a vertex that is gray
•  This back edge goes back up the DFS tree to a vertex

that is on the path from the current node to the root

•  Cross Edges and Descendant Edges (not cycles)
•  dfs_recurs() sees a vertex that is black
•  Descendant edge: connects current node to a

descendant in the DFS tree
•  Cross edge: connects current node to a node in

another subtree – not a descendant of current node

Non-tree Edges in DFS

•  Question 1: Finding back edges for an
undirected tree is not quite this simple:
•  The parent node of the current node is gray
•  Not a cycle, is it? It’s the same edge you just

traversed
•  Question: how would you modify our code to

recognize this?

•  Question 2:
•  How could you modify the code to distinguish cross

edges from descendant edges?
•  Hint: use discovery and finish times

Time Complexity of DFS

•  For a digraph having n vertices and m edges
•  Each edge is processed once in the while loop of

dfs_recurs() for a cost of θ(m)
•  Think about adjacency list data structure.
•  Traverse each list exactly once. (Never back up)
•  There are a total of 2m nodes in all the lists

•  The dfs_sweep() algorithm will do θ(n) work even if
there are no edges in the graph

•  Thus over all time-complexity is θ(n+m)
•  Remember: this means the larger of the two values
•  Note: This is considered “linear” for graphs since there are

two size parameters for graphs.

•  Extra space is used for color array.
Space complexity is θ(n)

Directed Acyclic Graphs

•  A directed acyclic graph or DAG is a directed
graph with no directed cycles:

Topological Sort

•  Topological sort of a DAG:
•  Linear ordering of all vertices in graph G such that

vertex u comes before vertex v if edge (u, v) ∈ G

•  Real-world example: getting dressed

Getting Dressed

Underwear Socks

Shoes Pants

Belt

Shirt

Watch

Tie

Jacket

Getting Dressed

Underwear Socks

Shoes Pants

Belt
Shirt

Watch

Tie

Jacket

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket

This is the same graph
with a different layout.

Topological Sort Algorithm

Topological-Sort()
{

Run DFS_recurs()
When a vertex is finished, output it
Vertices are output in reverse
topological order
 (or add to stack/list)

}

•  Can stack/store vertices as found to store
them in topologically sorted order

•  Time: O(V+E)

Topologoical Sort, Recursive Function

top_sort_recurs(adj, start, ts) {
 visit[start] = true

 trav = adj[start]
 while (trav != null) {
 v = trav.ver
 if (!visit[v])
 top_sort_recurs(adj,v,ts)
 trav = trav.next
 }

 ts[k] = start
 k = k – 1

}

top_sort(adj, ts) {
 n = adj.last

 // k is the index in ts where the next vertex is to be
 // stored in topological sort. k is assumed global.
 k = n

 for i = 1 to n
 visit[i] = false

 for i = 1 to n
 if (!visit[v])

 top_sort_recurs(adj, i, ts)
 }
}

Topological Sort: Driver

Forward vs. Reverse

•  Topological sort is a type of sort
•  Implies an ordering
•  Can sort backwards, of course

•  Forward topological order
•  If edge vw in graph, then topo[v] < topo[w]

•  Reverse topological order
•  If edge vw in graph, then topo[v] > topo[w]

•  And, every directed graph has a transpose,
which means… (see next slide)

What’s an Edge Mean?

•  What’s our graph model?
•  Edge uv means do u first, then v. Or, …
•  Edge uv means task u depends on v (I.e. v must be done

first)

•  The latter called a dependency graph
•  “forward in time” vs. “depend on this one”

•  Big deal? No, we can order vertices in reverse
topological order if needed

Underwear

Shoes

Pants

Underwear

Shoes

Pants

Sort this!

1

5

7

2

6

3

8

4

9

