CS4102: Graph Traversals

- Review: Section 2.5
 - Definitions, data structures
 - Note: review definitions, data structures, and BFS from CS216 slides from 4-16-03 http://www.cs.virginia.edu/~cs216/notes/slides/graphs2.pdf
- Read: Chapter 4 (from 4.2 on)
 - Traversing Graphs
 - Depth-first Search (DFS)
 - Breadth-first Search (BFS)
 - Applications of DFS strategy (things not in text)
 - Backtracking, Exhaustive Search (handout)

Problems: e.g. Airline Routes

Problems: e.g. Flowcharts

(a) Flowchart

(b) Directed graph

Problems: e.g. Binary relation

Problems: e.g. Computer Networks

(a) A star network

(b) A ring network

- Vertex (plural *vertices*) or Node
- Edge (sometimes referred to as an *arc*)
 - Note the meaning of *incident*
- Degree of a vertex: how many adjacent vertices
 - Digraph: in-degree (num. of incoming edges) vs. out-degree
- Graphs can be:
 - Directed or undirected
 - Weighted or not weighted
 - weights can be reals, integers, etc.
 - weight also known as: cost, length, distance, capacity,...
- Undirected graphs:
 - Normally an edge can't connect a vertex to itself
- A directed graph (also known as a *digraph*)
 - "Originating" node is the *head*, the target the *tail*
 - An edge may connect a vertex to itself

- Size of graph? Two measures:
 - Number of nodes. Usually n
 - Number of edges: usually m
- Dense graph: many edges
 - Maximally dense?
 - Undirected: each node connects to all others, so m = n(n-1)/2 Called a *complete graph*
 - Directed: m = n(n-1) why?
- Sparse graph: fewer edges
 - Could be zero edges...

- Path vs. simple path
 - One vertex is *reachable* from another vertex
- A connected graph
 - undirected graph, where each vertex is reachable from all others
- A strongly connected <u>digraph</u>:
 - direction affects this!
 - node u may be reachable from v, but not v from u
 - <u>Strongly</u> connected means both directions
- Connected components for undirected graphs

- Cycle
 - Directed graph: non-empty path with same starting and ending node
 - An edge may appear more than once (but why?)
 - Simple cycle: no node repeated except start and end
 - Undirected graph: same idea
 - If an edge appears more than once (I.e. non-simple) then we traverse it in the same direction
- Acyclic: no-cycles
- A connected, acyclic undirected graph: *free tree*
 - If we specificy a root, it's a *rooted tree*
 - Acyclic but not connected? a undirected *forest*
- Directed acyclic graph: a DAG

Self-test: Understand these Terms?

- Subgraph
- Symmetric digraph
- complete graph
- Adjacency relation
- Path, simple path, reachable
- Connected, Strongly Connected
- Cycle, simple cycle
- acyclic
- undirected forest
- free tree, undirected tree
- rooted tree
- Connected component

Definition: Directed graph

- Directed Graph
 - A directed graph, or digraph, is a pair
 - G = (V, E)
 - where V is a set whose elements are called vertices, and
 - E is a set of ordered pairs of elements of V.
 - Vertices are often also called nodes.
 - Elements of E are called edges, or directed edges, or arcs.
 - For directed edge (v, w) in E, v is its tail and w its head;
 - (v, w) is represented in the diagrams as the arrow, v -> w.
 - In text we simple write vw.

Definition: Undirected graph

- Undirected Graph
 - A undirected graph is a pair
 - G = (V, E)
 - where V is a set whose elements are called vertices, and
 - E is a set of *unordered* pairs of *distinct* elements of V.
 - Vertices are often also called nodes.
 - Elements of E are called edges, or undirected edges.
 - Each edge may be considered as a subset of V containing two elements,
 - {v, w} denotes an undirected edge
 - In diagrams this edge is the line v---w.
 - In text we simple write vw, or wv
 - vw is said to be *incident* upon the vertices v and w

Definitions: Weighted Graph

- A weighted graph is a triple (V, E, W)
 - where (V, E) is a graph (directed or undirected) and
 - W is a function from E into R, the reals (integer or rationals).
 - For an edge e, W(e) is called the weight of e.

Graph Representations using Data Structures

- Adjacency Matrix Representation
 - Let G = (V,E), n = |V|, m = |E|, $V = \{v1, v2, ..., vn\}$
 - G can be represented by an $n \times n$ matrix

(a) An undirected graph

(b) Its adjacency matrix

Array of Adjacency Lists Representation

(a) An undirected graph

(b) Its adjacency matrix

Adjacency Matrix for weight digraph

/0	25.0	80	00	00	~	∞ \
~	0	10.0	14.0	80	00	~
5.0	80	0	80	8	16.0	8
80	6.0	18.0	0	8	00	8
8	~	8	~	0	8	~
~	~	8	32.0	42.0	0	14.0
\∞	8	00	~	00	11.0	0 /

(a) A weighted digraph

(b) Its adjacency matrix

Array of Adjacency Lists Representation

0	25.0	00	00	00	~	~ \
00	0	10.0	14.0	~	~	~)
5.0	~	0	~	00	16.0	~
~	6.0	18.0	0	~	~	\sim
00	~	~	~	0	~	~
00	~	8	32.0	42.0	0	14.0
000	~	8	~	00	11.0	0 /

(a) A weighted digraph

from -> to, weight

Traversing Graphs

- "Traversing" means processing each vertex edge in some organized fashion by following edges between vertices
 - We speak of *visiting* a vertex. Might do something while there.
- Recall traversal of binary trees:
 - Several strategies: In-order, pre-order, post-order
 - Traversal strategy implies an <u>order</u> of visits
 - We used recursion to describe and implement these
- Graphs can be used to model interesting, complex relationships
 - Often traversal used just to process the set of vertices or edges
 - Sometimes traversal can identify interesting properties of the graph
 - Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the problem-instance that the graph models

Traversal Strategies

- Note: traversal algorithms start at some vertex
 - Which? Trees have a root, but graphs don't.
 - Might matter, might not.
- Breadth-first search and depth-first search
 - efficient way to "visit" each vertex and edge exactly once.
- Later we'll see exhaustive search
 - Can visit vertices and edges more than once
 - Exhaustively finds... (wait and see!)
- We'll see that BFS will tell us something about distances between a vertex and other vertices
- We'll see that DFS will be a generally useful approach for solving many graph problems.

BFS Strategy

- Breadth-first search: Strategy (for digraph)
 - choose a starting vertex, distance d = 0
 - vertices are visited in order of increasing distance from the starting vertex,
 - examine all edges leading from vertices (at distance d) to adjacent vertices (at distance d+1)
 - then, examine all edges leading from vertices at distance d+1 to distance d+2, and so on,
 - until no new vertex is discovered

Breath-first search, e.g.

- e.g. Start from vertex A, at d = 0
 - visit B, C, F; at d = 1
 - visit D; at d = 2
- e.g. Start from vertex E, at d = 0
 - visit G: at d = 1

Breadth-first search: I/O Data Structures

Input: G = (V, E), a graph represented by an adjacency list structure, adjVertices, as described in Section 7.2.3, where $V = \{1, ..., n\}$; $s \in V$, the vertex from which the search begins.

Output: A breadth-first spanning tree, stored in the parent array. The parent array is passed in and the algorithm fills it.

Remarks: For a queue Q, we assume operations of the Queue abstract data type (Section 2.4.2) are used. The array color[1], ..., color[n] denotes the current search status of all vertices. Undiscovered vertices are white; those that are discovered but not yet processed (in the queue) are gray; those that are processed are black.

Breadth-first search: Algorithm

```
void breadthFirstSearch(IntList[] adjVertices, int n, int s, int[] parent)
   int[] color = new int[n+1];
   Queue pending = create(n);
   Initialize color[1], ..., color[n] to white.
   parent[s] = -1;
   color[s] = gray;
   enqueue(pending, s);
   while (pending is nonempty)
       v = front(pending);
       dequeue(pending);
       For each vertex w in the list adjVertices[v]:
           if (color[w] == white)
               color[w] = gray:
               enqueue(pending, w);
               parent[w] = v; // Process tree edge vw.
           // Continue through list.
       // Process vertex v here.
       color[v] = black:
   return;
```

Breadth-first search: Analysis

- For a digraph having n vertices and m edges
 - Each edge is processed once in the while loop for a cost of $\theta(m)$
 - Each vertex is put into the queue once and removed from the queue and processed once, for a cost $\theta(n)$
 - Extra space is used for color array and queue, there are $\theta(n)$
- From a *tree* (breadth-first spanning tree)
 - the path in the tree from start vertex to any vertex contains the *minimum* possible number of edges
- Not all vertices are necessarily reachable from a selected starting vertex

DFS: the Strategy in Words

- Depth-first search: Strategy
 - Go as deep as can visiting un-visited nodes
 - Choose any un-visited vertex when you have a choice
 - When stuck at a dead-end, backtrack as little as possible
 - Back up to where you could go to another unvisited vertex
 - Then continue to go on from that point
 - Eventually you'll return to where you started
 - Reach all vertices? Maybe, maybe not
- Things are a bit different for directed vs. undirected graphs
 - It's not really that different, until you get interested in using DFS to find cycles

Observations about the DFS Strategy

- Note: we must keep track of what nodes we've visited
- DFS traverses a subset of E (the set of edges)
 - Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
 - Each node in the DFS tree has a distance from the start. (We often don't care about this, but we could.)
- At any point, all nodes are either:
 - Un-discovered
 - Finished (you backed up from it), or
 - Discovered (I.e. visited) but not finished
 - On the path from the current node back to the root
 - We might back up to it
 - (Later we'll call these states: white, black and gray)

An Example of DFS

and so on...

Depth-first Search, e.g. trace it, in order

- Vertex status: undiscovered, discovered, finished
- Edge status: part of DFS tree or not?

Recursive DFS visit function

```
dfs_recurs(adj,start) {
  // reached node "start"; do something?
  visit[start] = true
  trav = adj[start]
  while (trav != null) {
     v = trav.ver
     if (!visit[v])
          dfs_recurs(adj,v)
     trav = trav.next
  }
  // about to leave "start"; do something?
}
```

• Sometimes called dfs_visit().

Calling Function for DFS

 Purpose: do all required initializations, then call dfs_recurs() at a given node (just one call)

```
Input Parameters: adj,start
Output Parameters: None
```

```
dfs(adj,start) {
   // do any initializations
   n = adj.last
   for i = 1 to n
     visit[i] = false
```

}

```
// one call to recursive function at start
dfs_recurs(adj,start)
```

DFS to Process all Vertices in a Graph

 Purpose: do all required initializations, then call dfs recurs() as many times as needed to visit all nodes. May create a DFS forest.

```
dfs_sweep(adj) {
  n = adj.last
 // do any initializations
  for i = 1 to n
     visit[i] = false
  // loop called on any unvisited node
  for i = 1 to n
```

}

```
if (!visit[i]) dfs_recurs(adj, i)
```

Notes on dfs_recurs() function

- Often called "dfsVisit" (or something like that)
- Creates one DFS tree from a given start node
 - Must be called by some caller function
 - May not visit all nodes in a the graph G
- Assumes that all nodes have been initialized as "undiscovered"
- Sometimes an "else" clause that does something to nodes not visited (or edges to those)

General Skeleton Similar to DFS_recurs (Cormen)

```
int dfs(IntList[] adjVertices, int[] color, int v, . . .)
    int w:
    IntList remAdj;
    int ans;

    color[v] = gray;

Preorder processing of vertex v
remAdj = adjVertices[v];

    while (remAdj ≠ nil)

        w = first(remAdj);
5.
        if (color[w] == white)
6
            Exploratory processing for tree edge vw
7.
            int wAns = dfs(adjVertices, color, w, . . .);
 8
            Backtrack processing for tree edge vw. using wAns (like inorder)
 9
        else
10
            Checking (i.e., processing) for nontree edge vw
11
        remAdj = rest(remAdj)
 12
 13. Postorder processing of vertex v, including final computation of ans

 color[v] = black;
```

15. return ans;

Using DFS to Find if a Graphic is Acyclic

- Does a graph have a cycle?
 - DFS is great for this
 - But, slightly harder if graph is undirected
- Use DFS tree: classify edges and nodes as you process them
 - Nodes:
 - White: unvisited
 - Black: done with it, backed up from it (never to return)
 - Gray: Have reached it; exploring it's adjacent nodes; but not done with it
 - Also, have a "time counter", say, ctr
 - Set d[v] = ctr++ as discovery time
 - Set f[v] = ctr++ as finish time

Depth-first search tree

- edges classified:
 - tree edge, back edge, descendant edge, and cross edge

Using Non-Tree Edges to Identify Cycles

- From the previous graph, note that:
- Back edges (indicates a cycle)
 - dfs_recurs() sees a vertex that is gray
 - This back edge goes back up the DFS tree to a vertex that is on the path from the current node to the root
- Cross Edges and Descendant Edges (not cycles)
 - dfs_recurs() sees a vertex that is black
 - Descendant edge: connects current node to a descendant in the DFS tree
 - Cross edge: connects current node to a node in another subtree – not a descendant of current node

Non-tree Edges in DFS

- Question 1: Finding back edges for an undirected tree is not **quite** this simple:
 - The parent node of the current node is gray
 - Not a cycle, is it? It's the same edge you just traversed
 - Question: how would you modify our code to recognize this?
- Question 2:
 - How could you modify the code to distinguish cross edges from descendant edges?
 - Hint: use discovery and finish times

Time Complexity of DFS

- For a digraph having n vertices and m edges
 - Each edge is processed once in the while loop of dfs_recurs() for a cost of θ(m)
 - Think about adjacency list data structure.
 - Traverse each list exactly once. (Never back up)
 - There are a total of 2m nodes in all the lists
 - The dfs_sweep() algorithm will do $\theta(n)$ work even if there are no edges in the graph
 - Thus over all time-complexity is $\theta(n+m)$
 - Remember: this means the larger of the two values
 - Note: This is considered "linear" for graphs since there are two size parameters for graphs.
 - Extra space is used for color array. Space complexity is $\theta(n)$

Directed Acyclic Graphs

• A *directed acyclic graph* or *DAG* is a directed graph with no directed cycles:

Topological Sort

- *Topological sort* of a DAG:
 - Linear ordering of all vertices in graph G such that vertex *u* comes before vertex *v* if edge $(u, v) \in G$
- Real-world example: getting dressed

Getting Dressed

Getting Dressed

Topological Sort Algorithm

```
Topological-Sort()
{
   Run DFS_recurs()
   When a vertex is finished, output it
   Vertices are output in reverse
      topological order
        (or add to stack/list)
```

}

- Can stack/store vertices as found to store them in topologically sorted order
- Time: O(V+E)

Topologoical Sort, Recursive Function

```
top_sort_recurs(adj, start, ts) {
      visit[start] = true
      trav = adj[start]
      while (trav != null) {
             v = trav.ver
             if (!visit[v])
                 top_sort_recurs(adj,v,ts)
             trav = trav.next
      ts[k] = start
      k = k - 1
}
```

Topological Sort: Driver

```
top_sort(adj, ts) {
   n = adj.last
   // k is the index in ts where the next vertex is to be
   // stored in topological sort. k is assumed global.
   k = n
   for i = 1 to n
       visit[i] = false
   for i = 1 to n
       if (!visit[v])
         top_sort_recurs(adj, i, ts)
   }
```

Forward vs. Reverse

- Topological sort is a type of sort
 - Implies an ordering
 - Can sort backwards, of course
- Forward topological order
 - If edge **vw** in graph, then topo[**v**] < topo[**w**]
- Reverse topological order
 - If edge **vw** in graph, then topo[**v**] > topo[**w**]
- And, every directed graph has a transpose, which means... (see next slide)

What's an Edge Mean?

- What's our graph model?
 - Edge **uv** means do **u** first, then **v**. Or, ...
 - Edge uv means task u depends on v (I.e. v must be done first)

- The latter called a dependency graph
- "forward in time" vs. "depend on this one"
- Big deal? No, we can order vertices in reverse topological order if needed

Sort this!

