
CS4102: Graph Traversals 

•  Review: Section 2.5 
•  Definitions, data structures 
•  Note: review definitions, data structures, and BFS 

from CS216 slides from 4-16-03 
http://www.cs.virginia.edu/~cs216/notes/slides/graphs2.pdf 

•  Read: Chapter 4 (from 4.2 on) 
•  Traversing Graphs 

•  Depth-first Search (DFS) 
•  Breadth-first Search (BFS) 

•  Applications of DFS strategy (things not in text) 
•  Backtracking, Exhaustive Search (handout) 



Problems: e.g. Airline Routes 



Problems: e.g. Flowcharts 



Problems: e.g. Binary relation 

•  x is a proper factor of y 



Problems: e.g. Computer Networks 



Terms You Should Know or Learn Now 

•  Vertex (plural vertices) or Node 
•  Edge (sometimes referred to as an arc) 

•  Note the meaning of incident 
•  Degree of a vertex: how many adjacent vertices 

•  Digraph: in-degree (num. of incoming edges) vs. out-degree 

•  Graphs can be: 
•  Directed or undirected 
•  Weighted or not weighted 

•  weights can be reals, integers, etc. 
•  weight also known as: cost, length, distance, capacity,… 

•  Undirected graphs: 
•  Normally an edge can’t connect a vertex to itself 

•  A directed graph (also known as a digraph) 
•  “Originating” node is the head, the target the tail 
•  An edge may connect a vertex to itself 



Terms You Should Know or Learn Now 

•  Size of graph? Two measures: 
•  Number of nodes.  Usually n 
•  Number of edges: usually m 

•  Dense graph: many edges 
•  Maximally dense? 
•  Undirected: each node connects to all others, so  

m = n(n-1)/2 
Called a complete graph 

•  Directed:   m = n(n-1)        why? 

•  Sparse graph: fewer edges 
•  Could be zero edges… 



Terms You Should Know or Learn Now 

•  Path vs. simple path 
•  One vertex is reachable from another vertex 

•  A connected graph 
•  undirected graph, where each vertex is reachable 

from all others 

•  A strongly connected digraph: 
•  direction affects this! 
•  node u may be reachable from v, but not v from u 
•  Strongly connected means both directions 

•  Connected components for undirected graphs 



Terms You Should Know or Learn Now 

•  Cycle 
•  Directed graph: non-empty path with same starting 

and ending node 
•  An edge may appear more than once (but why?) 

•  Simple cycle: no node repeated except start and end 

•  Undirected graph: same idea 
•  If an edge appears more than once (I.e. non-simple) then we 

traverse it in the same direction 

•  Acyclic:  no-cycles 
•  A connected, acyclic undirected graph: free tree 

•  If we specificy a root, it’s a rooted tree 
•  Acyclic but not connected?  a undirected forest 

•  Directed acyclic graph: a DAG 



Self-test: Understand these Terms? 

•  Subgraph 
•  Symmetric digraph 
•  complete graph 
•  Adjacency relation 
•  Path, simple path, reachable 
•  Connected, Strongly Connected 
•  Cycle, simple cycle 
•  acyclic 
•  undirected forest  
•  free tree, undirected tree 
•  rooted tree 
•  Connected component 





Definition: Directed graph 

•  Directed Graph 
•  A directed graph, or digraph, is a pair  
•  G = (V, E)  
•  where V is a set whose elements are called vertices, 

and 
•  E is a set of ordered pairs of elements of V.  

•  Vertices are often also called nodes.  
•  Elements of E are called edges, or directed edges, or arcs.  
•  For directed edge (v, w) in E, v is its tail and w its head;  
•  (v, w) is represented in the diagrams as the arrow, v -> w.  
•  In text we simple write vw. 



Definition: Undirected graph 

•  Undirected Graph 
•  A undirected graph is a pair  
•  G = (V, E)  
•  where V is a set whose elements are called vertices, 

and 
•  E is a set of unordered pairs of distinct elements of V.  

•  Vertices are often also called nodes.  
•  Elements of E are called edges, or undirected edges.  
•  Each edge may be considered as a subset of V containing 

two elements, 
•  {v, w} denotes an undirected edge 
•  In diagrams this edge is the line v---w. 
•  In text we simple write vw, or wv 
•  vw is said to be incident upon the vertices v and w 



Definitions: Weighted Graph 

•  A weighted graph is a triple (V, E, W)  
•  where (V, E) is a graph (directed or undirected) and 
•  W is a function from E into R, the reals (integer or 

rationals).  
•  For an edge e, W(e) is called the weight of e. 



Graph Representations using Data 
Structures 

•  Adjacency Matrix Representation 
•  Let G = (V,E), n = |V|, m = |E|, V = {v1, v2, …, vn) 
•  G can be represented by an n × n matrix 



Array of Adjacency Lists 
Representation 

•  From 
•  to 



Adjacency Matrix for weight digraph 



Array of Adjacency Lists 
Representation 

from -> to, weight 



Traversing Graphs 

•  “Traversing” means processing each vertex edge in some 
organized fashion by following edges between vertices 
•  We speak of visiting a vertex.  Might do something while there. 

•  Recall traversal of binary trees: 
•  Several strategies: In-order, pre-order, post-order 
•  Traversal strategy implies an order of visits 
•  We used recursion to describe and implement these 

•  Graphs can be used to model interesting, complex 
relationships 
•  Often traversal used just to process the set of vertices or edges 
•  Sometimes traversal can identify interesting properties of the 

graph 
•  Sometimes traversal (perhaps modified, enhanced) can answer 

interesting questions about the problem-instance that the graph 
models 



Traversal Strategies 

•  Note: traversal algorithms start at some vertex 
•  Which?  Trees have a root, but graphs don’t. 
•  Might matter, might not. 

•  Breadth-first search and depth-first search 
•  efficient way to “visit” each vertex and edge exactly 

once. 

•  Later we’ll see exhaustive search 
•  Can visit vertices and edges more than once 
•  Exhaustively finds…  (wait and see!) 

•  We’ll see that BFS will tell us something about 
distances between a vertex and other vertices 

•  We’ll see that DFS will be a generally useful 
approach for solving many graph problems. 



BFS Strategy 

•  Breadth-first search: Strategy (for digraph) 
•  choose a starting vertex, distance d = 0 
•  vertices are visited in order of increasing distance 

from the starting vertex,  
•  examine all edges leading from vertices (at distance 

d) to adjacent vertices (at distance d+1) 
•  then, examine all edges leading from vertices at 

distance d+1 to distance d+2, and so on,  
•  until no new vertex is discovered 



Breath-first search, e.g. 

•  e.g. Start from vertex A, at d = 0 
•  visit B, C, F; at d = 1 
•  visit D; at d = 2 

•  e.g. Start from vertex E, at d = 0 
•  visit G; at d = 1 



Breadth-first search: I/O Data 
Structures 



Breadth-first search: Algorithm 



Breadth-first search: Analysis 

•  For a digraph having n vertices and m edges 
•  Each edge is processed once in the while loop for a 

cost of θ(m) 
•  Each vertex is put into the queue once and removed 

from the queue and processed once, for a cost θ(n) 
•  Extra space is used for color array and queue, there 

are  θ(n) 

•  From a tree (breadth-first spanning tree) 
•  the path in the tree from start vertex to any vertex 

contains the minimum possible number of edges 

•  Not all vertices are necessarily reachable from a 
selected starting vertex 



DFS: the Strategy in Words 

•  Depth-first search: Strategy 
•  Go as deep as can visiting un-visited nodes 

•  Choose any un-visited vertex when you have a choice 

•  When stuck at a dead-end, backtrack as little as 
possible 

•  Back up to where you could go to another unvisited vertex 

•  Then continue to go on from that point 
•  Eventually you’ll return to where you started 

•  Reach all vertices?  Maybe, maybe not 

•  Things are a bit different for directed vs. 
undirected graphs 
•  It’s not really that different, until you get interested in 

using DFS to find cycles 



Observations about the DFS Strategy 

•  Note: we must keep track of what nodes we’ve 
visited 

•  DFS traverses a subset of E (the set of edges) 
•  Creates a tree, rooted at the starting point: 

    the Depth-first Search Tree (DFS tree) 
•  Each node in the DFS tree has a distance from the 

start.  (We often don’t care about this, but we could.) 

•  At any point, all nodes are either: 
•  Un-discovered 
•  Finished (you backed up from it), or 
•  Discovered (I.e. visited) but not finished 

•  On the path from the current node back to the root 
•  We might back up to it 

•  (Later we’ll call these states: white, black and gray) 



An Example of DFS 

and so on… 



Depth-first Search, e.g. trace it, in 
order 

•  Vertex status: undiscovered, discovered, finished 
•  Edge status: part of DFS tree or not? 



Recursive DFS visit function 

dfs_recurs(adj,start) { 
  // reached node “start”; do something?  
  visit[start] = true 
   trav = adj[start] 
   while (trav != null) { 
    v = trav.ver 
    if (!visit[v]) 
       dfs_recurs(adj,v) 
     trav = trav.next 
  } 
  // about to leave “start”; do something? 
} 

•  Sometimes called dfs_visit().  



Calling Function for DFS 

Input Parameters: adj,start 
Output Parameters: None 

dfs(adj,start)  { 
  // do any initializations 
  n = adj.last 
  for i = 1 to n 
    visit[i] = false 

 // one call to recursive function at start 
   dfs_recurs(adj,start) 
} 

•  Purpose: do all required initializations, then call 
dfs_recurs() at a given node (just one call) 



DFS to Process all Vertices in a Graph 

dfs_sweep(adj)  { 
  n = adj.last 
  // do any initializations 
  for i = 1 to n 
    visit[i] = false 

 // loop called on any unvisited node 
  for i = 1 to n 
     if (!visit[i]) dfs_recurs(adj, i) 
} 

•  Purpose: do all required initializations, then 
call dfs_recurs() as many times as needed to 
visit all nodes. May create a DFS forest. 



Notes on dfs_recurs() function 

•  Often called “dfsVisit” (or something like that) 
•  Creates one DFS tree from a given start node 

•  Must be called by some caller function 
•  May not visit all nodes in a the graph G 

•  Assumes that all nodes have been initialized as 
“undiscovered” 

•  Sometimes an “else” clause that does something 
to nodes not visited (or edges to those) 



General Skeleton Similar to  DFS_recurs 
(Cormen) 



Using DFS to Find if a Graphic is Acyclic 

•  Does a graph have a cycle? 
•  DFS is great for this 
•  But, slightly harder if graph is undirected 

•  Use DFS tree: classify edges and nodes as you 
process them 
•  Nodes: 

•  White: unvisited 
•  Black: done with it, backed up from it (never to return) 
•  Gray: Have reached it; exploring it’s adjacent nodes; but not 

done with it 

•  Also, have a “time counter”, say, ctr 
•  Set d[v] = ctr++ as discovery time 
•  Set f[v] = ctr++ as finish time 



Depth-first search tree 

•  edges classified:  
•  tree edge, back edge, descendant edge, and cross 

edge 



Using Non-Tree Edges to Identify Cycles 

•  From the previous graph, note that: 
•  Back edges (indicates a cycle) 

•  dfs_recurs() sees a vertex that is gray 
•  This back edge goes back up the DFS tree to a vertex 

that is on the path from the current node to the root 

•  Cross Edges and Descendant Edges (not cycles) 
•  dfs_recurs() sees a vertex that is black 
•  Descendant edge: connects current node to a 

descendant in the DFS tree 
•  Cross edge: connects current node to a node in 

another subtree – not a descendant of current node 



Non-tree Edges in DFS 

•  Question 1: Finding back edges for an 
undirected tree is not quite this simple: 
•  The parent node of the current node is gray 
•  Not a cycle, is it?  It’s the same edge you just 

traversed 
•  Question: how would you modify our code to 

recognize this? 

•  Question 2: 
•  How could you modify the code to distinguish cross 

edges from descendant edges? 
•  Hint: use discovery and finish times 



Time Complexity of DFS 

•  For a digraph having n vertices and m edges 
•  Each edge is processed once in the while loop of 

dfs_recurs() for a cost of θ(m) 
•  Think about adjacency list data structure. 
•  Traverse each list exactly once. (Never back up) 
•  There are a total of 2m nodes in all the lists 

•  The dfs_sweep() algorithm will do θ(n) work even if 
there are no edges in the graph 

•  Thus over all time-complexity is θ(n+m) 
•  Remember: this means the larger of the two values 
•  Note: This is considered “linear” for graphs since there are 

two size parameters for graphs. 

•  Extra space is used for color array. 
Space complexity is θ(n) 





Directed Acyclic Graphs 

•  A directed acyclic graph or DAG is a directed 
graph with no directed cycles: 



Topological Sort 

•  Topological sort of a DAG: 
•  Linear ordering of all vertices in graph G such that 

vertex u comes before vertex v if edge (u, v) ∈ G 

•  Real-world example: getting dressed 



Getting Dressed 

Underwear Socks 

Shoes Pants 

Belt 

Shirt 

Watch 

Tie 

Jacket 



Getting Dressed 

Underwear Socks 

Shoes Pants 

Belt 
Shirt 

Watch 

Tie 

Jacket 

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket 

This is the same graph 
with a different layout. 



Topological Sort Algorithm 

Topological-Sort() 
{ 

Run DFS_recurs() 
When a vertex is finished, output it 
Vertices are output in reverse 
topological order 
   (or add to stack/list) 

} 

•  Can stack/store vertices as found to store 
them in topologically sorted order 

•  Time: O(V+E) 



Topologoical Sort, Recursive Function 

top_sort_recurs(adj, start, ts) { 
 visit[start] = true 

   trav = adj[start] 
   while (trav != null) { 
    v = trav.ver 
    if (!visit[v]) 
             top_sort_recurs(adj,v,ts) 
               trav = trav.next 
  } 

 ts[k] = start 
 k = k – 1 

} 



top_sort(adj, ts)  { 
  n = adj.last 

 // k is the index in ts where the next vertex is to be 
 // stored in topological sort. k is assumed global. 
 k = n 

  for i = 1 to n 
    visit[i] = false 

 for i = 1 to n 
  if (!visit[v]) 

          top_sort_recurs(adj, i, ts) 
      } 
} 

Topological Sort: Driver 



Forward vs. Reverse 

•  Topological sort is a type of sort 
•  Implies an ordering 
•  Can sort backwards, of course 

•  Forward topological order 
•  If edge vw in graph, then topo[v] < topo[w] 

•  Reverse topological order 
•  If edge vw in graph, then topo[v] > topo[w] 

•  And, every directed graph has a transpose, 
which means… (see next slide) 



What’s an Edge Mean? 

•  What’s our graph model? 
•  Edge uv means do u first, then v.  Or, … 
•  Edge uv means task u depends on v (I.e. v must be done 

first) 

•  The latter called a dependency graph 
•  “forward in time” vs. “depend on this one” 

•  Big deal? No, we can order vertices in reverse 
topological order if needed 

Underwear 

Shoes 

Pants 

Underwear 

Shoes 

Pants 



Sort this! 

1 

5 

7 

2 

6 

3 

8 

4 

9 


