
CS4102: Backtracking, Exhaustive Search

•  Read: Section 4.5
•  And slides here
•  You won’t be responsible for the Hamilton cycle code

in the book

•  In class:
•  Look at these slides
•  Work in groups of at most 4 to do the 3 in-class

exercises
•  Turn in you work by the end of class

Graph Search vs. Search in General

•  DFS and BFS
•  A graph is given as input
•  We traverse nodes (that exist in the graph)…

following edges that exist in a graph

•  A more general form: State-space search
•  Each node represents one state of the problem
•  Adjacent nodes are generated dynamically
•  They’re legal states reachable from the current state
•  The algorithm generates one or more states based on

the current one
•  Chooses which state to search next (possibly

remembering other choices)
•  Backtrack when stuck

State-space Search Applied

•  Many games and puzzles
•  n-queens problem
•  tic-tac-toe
•  chess

•  Many other problems in CS
•  Problem 4.13: subset-sum problem
•  Problem 4.14: Find all m-colorings of a graph
•  These may not be efficient solutions!

•  Exhaustively try all possibilities

•  Example later in these slides:
•  Hamilton paths and cycles

More on state-space search later…

Exhaustive Search

•  Exhaustive search for graphs is just like DFS with
one teeny-tiny change

Remember? Recursive DFS visit

def	
 dfs_recurs0(graph,	
 curnode,	
 visited):	

	
 	
 	
 	
 visited[curnode]	
 =	
 True	

	
 	
 	
 	
 alist	
 =	
 graph.get_adjlist(curnode)	

	
 	
 	
 	
 for	
 v	
 in	
 alist:	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 v	
 not	
 in	
 visited	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dfs_recurs0(graph,	
 v,	
 visited)	

	
 	
 	
 	
 #	
 about	
 to	
 back	
 up	
 from	
 curnode….	

	
 	
 	
 	
 return	

•  Let’s change it slightly!

Remember? Recursive DFS visit

def	
 exh_srch_recurs(graph,	
 curnode,	
 visited):	

	
 	
 	
 	
 visited[curnode]	
 =	
 True	

	
 	
 	
 	
 alist	
 =	
 graph.get_adjlist(curnode)	

	
 	
 	
 	
 for	
 v	
 in	
 alist:	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 v	
 not	
 in	
 visited	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exh_srch_recurs(graph,	
 v,	
 visited)	

	
 	
 	
 	
 #	
 about	
 to	
 back	
 up	
 from	
 curnode…	

	
 	
 	
 	
 visted[curnode]	
 =	
 False	

	
 	
 	
 	
 return	

•  When done with adj. nodes and about to back up,
“forget” you’ve been there

•  Using colors? Set it to “white”

Remember? Recursive DFS visit

dfs_recurs(adj,start) {
 // reached node “start”; do something?
 visit[start] = true
 trav = adj[start]
 while (trav != null) {
 v = trav.ver
 if (!visit[v])
 dfs_recurs(adj,v)
 trav = trav.next
 }
 // about to leave “start”; do something?
}

•  Let’s change it slightly!

Recursive Exhaustive Search visit

exh_search_recurs(adj,start) {
 // reached node “start”; do something?
 visit[start] = true
 trav = adj[start]
 while (trav != null) {
 v = trav.ver
 if (!visit[v])
 exh_search_recurs(adj,v)
 trav = trav.next
 }
 // about to leave “start”; “un-mark” it
 visit[start] = false
}

In-class Exercise 1

•  Trace exhaustive search on this graph
•  Start at A

•  Draw the exhaustive search tree
•  Visit nodes in alphabetic order when

there’s a choice
•  Note: after you back up from a node,

you can visit it again if you come back to
it from another path!

•  Your tree will have more
than n nodes in it

In-class Exercise 2

•  Discuss these questions with your group:
•  What do the set of paths from A to each leaf

represent?
•  From the tree, can you identify Hamilton paths?

•  I.e. a simple path that visits all nodes

•  From the tree, can you identify Hamilton cycles?
•  A Hamilton Path that also connects back to start node

•  Write down:
•  Describe clearly how you could modify the DFS code

to recognize Hamilton paths and Hamilton cycles
•  You can modify the pseudo-code or give me a clear

description in words

Summary of What to Turn In

•  Exercise 1:
•  A drawing of the exhaustive search tree for the given

graph

•  Exercise 2:
•  How to modify exh_search_recurs() to find

Hamilton paths and cycles

•  Put the names of all group members on the
paper and turn it in

N-Queens Problem

•  See the textbook for the explanation
•  Especially Figure 4.5.2 on page 196

•  Note:
•  No input graph! Initial state is an empty board
•  Generate new state by placing next queen in next

acceptable legal position
•  When impossible to place the next queen,

remove it and backtrack to previous state

Comparison to DFS

•  How is this like DFS?
•  Follow one path as far as you can.
•  Backtrack as little as possible when stuck

•  How not like DFS?
•  No fixed set of edges or nodes to limit how much

work you do
•  Less clear what to measure in terms of amount of

work.

•  Possible measures of work
•  Number of states generated (nodes in the graph)
•  Number of attempts to place a queen (cumulative #

of attempts listed by nodes in the graph on p. 196)

In-class Exercise 1

•  Problem 3, page 207:
•  Show all solutions to the 4-queens problem
•  Hints:

•  See figure 4.5.2 on page 196 – they’ve done one solution for
you!

•  Do parallel processing in your group
•  Part of the group does the search with the first queen in row 3,

while the other part of the group does the search with the first
queen in row 4

•  Note: please trace the backtracking search to do
this so you understand how this works
•  (There are other ways to do figure this out)

State Space Search and Best-First Search

•  State-space Search
•  Given a start-state and a goal-state
•  Generate new states that can be “visited” from the

current state
•  Choose (somehow) which state to go to next
•  Stop when you reach the goal (or exhaust all possible

states)

•  Very useful for many problems in Artificial
Intelligence
•  Puzzles, games
•  Expert systems
•  Theorem provers
•  Etc.

Heuristic Search

•  We could use BFS or DFS on such problems
•  Use a a heuristic to evaluate each state

•  Assigns a value f(state) that is some measure of how
similar the state is to the goal state

•  Best-first Search strategy
•  Like BFS but use a priority queue and visit the state

that has the highest heuristic score f(n)
•  Open states: a list of states that could be chosen

next (i.e. they’re in the PQueue)
•  Closed states: a list of states we’ve already visited

(i.e. they’re in the tree)

Best-First Strategy

•  The strategy:

•  While there are open states in the PQueue
•  current = PQueue.next();
•  Put current on the closed list.
•  If current is the goal, we’re done
•  For each state s that can be generated from current

•  If s is on the closed list, ignore it. Otherwise…
•  Calculate its score f(s)
•  Store (s, f(s)) in the PQueue

•  End for

•  End while

Example: The 8-puzzle

•  8 numbered tiles in a 3x3 frame
•  Repeatedly slide a tile into the “blank” position

to reach some goal configuration
•  Given a current state, generating child-states is

what moves are possible
•  Heuristic?

•  Count how many tiles (including the blank) are out of
position

•  See following slides.
•  Note: There’s also a 15-puzzle with a 4x4 frame

Here f(n) is a count
of how many tiles
(incl. the blank) are
out of place.
The next state that
will be chosen will
be State-f with
score 5

A Better Use of Heuristics

•  If f(n) is the number of tiles out of place,
this is really an estimate of how many
moves are need to reach the goal.

•  Better idea: let f(n) = g(n) + h(n) where
– g(n) is the cost to the current node (the length

of the path here), and
– h(n) is an estimate of the cost to reach the

goal from the current node

