CS4102: Backtracking, Exhaustive Search

e Read: Section 4.5

e And slides here

e You won't be responsible for the Hamilton cycle code
in the book

e In class:
e | ook at these slides

e Work in groups of at most 4 to do the 3 in-class
exercises

e Turn in you work by the end of class

Graph Search vs. Search in General

e DFS and BFS
e A graph is given as input
e We traverse nodes (that exist in the graph)...
following edges that exist in a graph
e A more general form: State-space search
e Each node represents one state of the problem
e Adjacent nodes are generated dynamically
e They're legal states reachable from the current state

e The algorithm generates one or more states based on
the current one

e Chooses which state to search next (possibly
remembering other choices)

e Backtrack when stuck

State-space Search Applied

e Many games and puzzles
* N-queens problem
e tic-tac-toe
e chess
e Many other problems in CS
e Problem 4.13: subset-sum problem
e Problem 4.14: Find all m-colorings of a graph

e These may not be efficient solutions!
e Exhaustively try all possibilities

e Example later in these slides:
e Hamilton paths and cycles

More on state-space search later...

Exhaustive Search

e Exhaustive search for graphs is just like DFS with
one teeny-tiny change

Remember? Recursive DFS visit

def dfs_recurso(graph, curnode, visited):

visited[curnode] = True
alist = graph.get_adjlist(curnode)
for v in alist:

if v not in visited

dfs_recurso(graph, v, visited)

about to back up from curnode...
return

* Let's change it slightly!

Remember? Recursive DFS visit

def exh_srch_recurs(graph, curnode, visited):

visited[curnode] = True
alist = graph.get_adjlist(curnode)
for v in alist:

if v not in visited

exh_srch_recurs(graph, v, visited)

about to back up from curnode..
visted[curnode] = False
return

e When done with adj. nodes and about to back up,
“forget” you've been there

e Using colors? Set it to "white”

Remember? Recursive DFS visit

dfs_recurs(adj,start) {

// reached node “start”; do something?
visit[start] = true
trav = adj[start]
while (trav != null) {

v = trav.ver

if (lvisit[v])

dfs_recurs(adj,v)
trav = trav.next

}

// about to leave “start”; do something?

}

* Let's change it slightly!

Recursive Exhaustive Search visit

exh_search_recurs(adj,start) {
// reached node “start”; do something?
visit[start] = true
trav = adj[start]
while (trav != null) {
v = trav.ver
1if (lvisit[v])
exh_search_recurs(adj,v)
trav = trav.next
}
// about to leave “start”; “un-mark” 1t
visit[start] = false

}

In-class Exercise 1

e Trace exhaustive search on this graph
e Start at A

e Draw the exhaustive search tree

o Visit nodes in alphabetic order when
there’s a choice

e Note: after you back up from a node,
you can visit it again if you come back to

it from another path! / \
e Your tree will have more 52 _¢ \D_

than n nodes in it \\E /

In-class Exercise 2

e Discuss these questions with your group:

e What do the set of paths from A to each leaf
represent?

e From the tree, can you identify Hamilton paths?
e I.e. a simple path that visits all nodes

e From the tree, can you identify Hamilton cycles?
e A Hamilton Path that also connects back to start node

e \Write down:

e Describe clearly how you could modify the DFS code
to recognize Hamilton paths and Hamilton cycles

e You can modify the pseudo-code or give me a clear
description in words

Summary of What to Turn In

e EXxercise 1:
e A drawing of the exhaustive search tree for the given
graph
o Exercise 2:

e How to modify exh_search_recurs() to find
Hamilton paths and cycles

e Put the names of all group members on the
paper and turn it in

N-Queens Problem

o See the textbook for the explanation
e Especially Figure 4.5.2 on page 196

o Note:

e No input graph! Initial state is an empty board

e Generate new state by placing next queen in next
acceptable legal position

e When impossible to place the next queen,
remove it and backtrack to previous state

Comparison to DFS

e How is this like DFS?

e Follow one path as far as you can.
e Backtrack as little as possible when stuck

e How not like DFS?

e No fixed set of edges or nodes to limit how much
work you do

e |Less clear what to measure in terms of amount of
work.

e Possible measures of work
e Number of states generated (nodes in the graph)

e Number of attempts to place a queen (cumulative #
of attempts listed by nodes in the graph on p. 196)

In-class Exercise 1

e Problem 3, page 207:

e Show all solutions to the 4-queens problem

e Hints:
e See figure 4.5.2 on page 196 — they've done one solution for
you!
e Do parallel processing in your group

o Part of the group does the search with the first queen in row 3,
while the other part of the group does the search with the first
queen in row 4

e Note: please trace the backtracking search to do
this so you understand how this works
e (There are other ways to do figure this out)

State Space Search and Best-First Search

o State-space Search
e Given a start-state and a goal-state

e Generate new states that can be “visited” from the
current state

e Choose (somehow) which state to go to next
e Stop when you reach the goal (or exhaust all possible
states)

e Very useful for many problems in Artificial
Intelligence

e Puzzles, games
e Expert systems
e Theorem provers

o FEtc.

Heuristic Search

e We could use BFS or DFS on such problems

e Use a a heuristic to evaluate each state

e Assigns a value f(state) that is some measure of how
similar the state is to the goal state

o Best-first Search strategy

e Like BFS but use a priority queue and visit the state
that has the highest heuristic score f(n)

e Open states: a list of states that could be chosen
next (i.e. they're in the PQueue)

e Closed states: a list of states we've already visited
(i.e. they're in the tree)

Best-First Strategy

e The strategy:

e While there are open states in the PQueue

e current = PQueue.next();

e Put current on the closed list.

o If current is the goal, we're done

e For each state s that can be generated from current
e If sis on the closed list, ignore it. Otherwise...
e Calculate its score f(s)
e Store (s, f(s)) in the PQueue

e End for

e End while

Example: The 8-puzzle

8 numbered tiles in a 3x3 frame

Repeatedly slide a tile into the “blank” position
to reach some goal configuration

Given a current state, generating child-states is
what moves are possible
Heuristic?

e Count how many tiles (including the blank) are out of
position

See following slides.
Note: There's also a 15-puzzle with a 4x4 frame

Figure 5.6 The start state, first set of moves, and goal
state for an 8-puzzle instance.

2113 1/2|3
: 4 s B 4
75|86 7/6|5

Goal

Figure 5.7 An 8-puzzle state with a goal and two
reversals: 1 and 2, 5 and 6.

5
33

7

31

2[8]3][2
sll1lalsl1[5[ell1]s]3
32

Goal

8]L7 5[517 30K

45

3

8

2

2181341

44

43

42

41

SIS

40

8

AR AR AN AE

39

8
8l4]3)16]4

38

Qg |
o
wlolo el |~ a
SES =[~]e B
Nl
- ™ K3
o|e|w N
Nl -]~ Lol L] hd el L
ol ad Rtd Kid
(o] oo
LY B S M d K8V
- ol —fr
45\3
m|o|o
mjom|o
I
o |~ 7-T
2) ofe|n ..4H|n hid Il i
= iR < 3) b b b
P Py P P P ole|n %
njo|o
o™ ~ oleln
L L
@)~
<
i oo
o
mlein i
@]~ |0 —-|w
o~ 8—27
olelw - nd
o|~|o
[~ 4 2
@l~lo
™|« |n s
oo~] o~
N il I B B
© ~ o|e|r~
Nl —- 261_

showing order in which states were

removed from open.

"
1
2
8
1

2
1
813
64
1715
11 12
22 23
3
8|4
715
2 2
AnAR ARnA

36 37

35

3

2lslaj2
BED RO REOREDNEDRNE

34

<I
N

mje|n el R d bt

@iw|~ @~

W=D _[RE
o o
- N

Figure 3.15 Breadth-first search of the 8-puzzie,

6 ——
8|2
Up Left Down Right
3 1 3 1 3 1 3
7| als 6 7/8l6 7
5|82 5|8]2 3 E 582
Left Right Up Down Left Right Up Down
3 B <] [ela][1]e]a][" K 1
sll7lalell1]7]6lls5]|7l6ll7lelel|7|8]|6||7|6]3|[7]6]3
2 380Aal DAl BAIE s|8l2][s]s]2

-gnd oy | | =
- ||

Fo

Figure 3.6 State space of the 8-puzzle generated by
“move blank™” operations. @\

-1 ||

—{m |» | s

Here f(n) is a count
of how many tiles

JEE (incl. the blank) are
B anE out of place.
= / ‘\1\2 3 The next state that
P et will be chosen will
o S : be State-f with
pen list Goal
Figure 5.11 open and closed as they appear after the score 5

third iteration of heuristic search.

A Better Use of Heuristics

* If f(n) is the number of tiles out of place,
this is really an estimate of how many
moves are need to reach the goal.

» Better idea: let f(n) = g(n) + h(n) where
—g(n) is the cost to the current node (the length

of the path here), and

— h(n) is an estimate of the cost to reach the
goal from the current node

2[5
1]6
7
2]8]3
8l4
17]8
- BE 2]8[3
AR A O 2
11715 11715 7
0 BEA E 2[8[3 2
2|6/4] [8]8]¢ 6|4 6
1[7]5) [T17]5 11715 [
8]3 2|8lall2
2|6jali2fll«|ls]8]allalalafis|alalia]a]s 7 7
JEHOBEBNEDDEANEDRNE AARAL

Figure 5.12 Comparison of state space searched using
heuristic search with space searched by
breadth-first search. The portion of the
graph searched heuristically is shaded. The
optimal solution path is in bold. Heuristic
used is f(n) = g(n) + h(n) where h(n) is
tiles out of place.

