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CS 4102: Greedy Algorithms 

 Topics covered for greedy algorithms 
  General principles 
  Making change 
  Knapsack problems 
  Activity Selection 
  Minimum spanning trees: Prim’s, Kruskal’s 

algorithms 
  Single-source shortest path: Dijkstra’s algorithm 
  Approximation algorithms 
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Greedy Method: Overview 

 Optimization problems: terminology 
  Solutions judged on some criteria: 

  Objective function 
Example:  Sum of edge weights in path is smallest 
  A solution must meet certain constraints 

  A solution is feasible 
Example: All edges in solution are in graph, form a 

simple path 
  One (or more) feasible solutions that scores 

highest (by the objective function) is the optimal 
solution(s) 
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Greedy Method: Overview 

 Greedy strategy: 
  Build solution by stages, adding one item to partial 

solution found so far 
  At each stage, make locally optimal choice based 

on the greedy rule (sometimes called the selection 
function) 
 Locally optimal, I.e. best given what info we have now 

  Irrevocable, a choice can’t be un-done 
  Sequence of locally optimal choices leads to 

globally optimal solution (hopefully) 
 Must prove this for a given problem! 
 Approximation algorithms, heuristics 
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Making Change 

  Remember? We did this one in class on Day 1 
  Inputs: 

  Value N of the change to be returned 
  An unlimited number of coins of values d1, d2,.., dk 

  Output: the smallest possible set of coins that sums to 
N 

  Objective function? Smallest set 
  Constraints on feasible solutions? Must sum to N 
  Greedy rule: choose coin of largest value that is less 

than N - Sum(coins chosen so far) 
  Always optimal?  Depends on set of coin values 
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Algorithm 7.1.1 Greedy Coin Changing 
This algorithm makes change for an amount A using coins of 
denominations 
             denom[1] > denom[2] > ··· > denom[n] = 1. 

Input Parameters: denom,A 
Output Parameters: None 
greedy_coin_change(denom,A) { 
  i = 1 
   while (A > 0) { 
    c = A/denom[i] 
    println(“use ” + c + “ coins of denomination ” + 
         denom[i]) 

    A = A - c * denom[i] 
    i = i + 1 
  } 
} 



            6                 3/30/10 



            7                 3/30/10 

Knapsack Problems 

 Section 7.6 in text 
  Inputs: 

  n items, each with a weight w_i and a value v_i 
  capacity of the knapsack, C 

 Output: 
  Fractions for each of the n items, x_I 
  Chosen to maximize total profit but not to exceed 

knapsack capacity 
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Two Types of Knapsack Problem 

  0/1 knapsack problem 
   Each item is discrete.  Must choose all of it or none of it.  

So each x_i  is 0 or 1 
   Greedy approach does not produce optimal solutions 
   But another approach, dynamic programming, does 

  Continuous knapsack problem 
   Can pick up fractions of each item 
   The correct selection function yields a greedy algorithm 

that produces optimal results 
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Greedy Rule for Knapsack? 

  Build up a partial solution by choosing x_i for one 
item until knapsack is full (or no more items).  Which 
item to choose? 

  There are several choices. Pick one and try on this: 
  n = 3, C = 20 
  weights = (18, 15, 10) 
  values = (25, 24, 15) 

  What answer do you get? 
  The optimal answer is: (0, 1, 0.5), total=31.5 

Can you verify this? 
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Possible Greedy Rules for Knapsack 

 Build up a partial solution by choosing x_i for 
one item until knapsack is full (or no more 
items).  Which item to choose? 
  Maybe this:  take as much as possible of the 

remaining item that has largest value, v_i 
  Or maybe this: take as much as possible of the 

remaining items that has smallest weight, w_i 
  Neither of these produce optimal values!  The one 

that does “combines” these two approaches. 
 Use ratio of profit-to-weight 
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Example Knapsack Problem 

 For this example: 
  n = 3, C = 20 
  weights = (18, 15, 10) 
  values = (25, 24, 15) 

 Ratios  = (25/18, 24/15, 15/10) 
            = (1.39, 1.6, 1.5) 

 The optimal answer is: (0, 1, 0.5) 
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Activity-Selection Problem 

 Problem: You and your classmates go on 
Semester at Sea 
  Many exciting activities each morning 
  Each starting and ending at different times 
  Maximize your “education” by doing as many as 

possible.  (They’re all equally good!) 
 Welcome to the activity selection problem 



The Activities! 

Id Start End Activity 
1 9:00 10:45 Fractals, Recursion and Crayolas 
2 9:15 10:15 Tropical Drink Engineering with Prof. Bloomfield 
3 9:30 12:30 Managing Keyboard Fatigue with Swedish Massage 
4 9:45 10:30 Applied ChemE: Suntan Oil or Lotion? 
5 9:45 11:15 Optimization, Greedy Algorithms, and the Buffet Line 
6 10:15 11:00 Hydrodynamics and Surfing 
7 10:15 11:30 Computational Genetics and Infectious Diseases 
8 10:30 11:45 Turing Award Speech Karaoke 
9 11:00 12:00 Pool Tanning for Pale Engineers 

10 11:00 12:15 Mechanics, Dynamics and Shuffleboard Physics 
11 12:00 12:45 Discrete Math Applications in Gambling 
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Generalizing Start, End 

Id Start End Len Activity 

1 0 6 7 Fractals, Recursion and Crayolas 

2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield 

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage 

4 3 5 3 Applied ChemE: Suntan Oil or Lotion? 

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line 

6 5 7 3 Hydrodynamics and Surfing 

7 5 9 5 Computational Genetics and Infectious Diseases 

8 6 10 5 Turing Award Speech Karaoke 

9 8 11 4 Pool Tanning for Pale Engineers 

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics 

11 12 14 3 Discrete Math Applications in Gambling 
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Greedy Approach 

1.  Select a first item. 
2.  Eliminate items that are incompatible with 

that item.  (I.e. they overlap.) 
3.  Apply the greedy rule (AKA selection 

function) to pick the next item. 
4.  Go to Step 2 

What is a good greedy rule for selecting next item? 
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Some Possibilities 

 Pick the next compatible one that starts earliest 
 Pick the shortest one 
 Pick the one that has the least conflicts (i.e. 

overlaps) 
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Activity-Selection 

 Formally: 
  Given a set S of n activities 

 si = start time of activity i 
 fi = finish time of activity i 

  Find max-size subset A of compatible activities 

  Assume (wlog) that f1 ≤ f2 ≤ … ≤ fn 

1 
2 

3 
4 

5 

6 
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Activity Selection:  
Optimal Substructure  

 Let k be the minimum activity in A (i.e., the 
one with the earliest finish time).  Then A - {k} 
is an optimal solution to S’ = {i ∈ S: si ≥ fk} 
  In words: once activity #1 is selected, the problem 

reduces to finding an optimal solution for activity-
selection over activities in S compatible with #1 

  Proof: if we could find optimal solution B’ to S’ 
with |B| > |A - {k}|, 
 Then B U {k} is compatible  
 And |B U {k}| > |A| 
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Activity Selection: 
A Greedy Algorithm 

 So actual algorithm is simple: 
  Sort the activities by finish time 
  Schedule the first activity 
  Then schedule the next activity in sorted list which 

starts after previous activity finishes 
  Repeat until no more activities 

  Intuition is even more simple: 
  Always pick next activity that finishes earliest 



Back to Semester at Sea… 

Id Start End Len Activity 

2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield 

4 3 5 3 Applied ChemE: Suntan Oil or Lotion? 

1 0 6 7 Fractals, Recursion and Crayolas 

6 5 7 3 Hydrodynamics and Surfing 

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line 

7 5 9 5 Computational Genetics and Infectious Diseases 

8 6 10 5 Turing Award Speech Karaoke 

9 8 11 4 Pool Tanning for Pale Engineers 

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics 

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage 

11 12 14 3 Discrete Math Applications in Gambling 
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Minimum Spanning Tree 

 Problem: given a connected, undirected, 
weighted graph: 
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Minimum Spanning Tree 

 Problem: given a connected, undirected, 
weighted graph, find a spanning tree using 
edges that minimize the total weight 
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Minimum Spanning Tree 

 Which edges form the minimum spanning tree 
(MST) of the below graph? 
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Minimum Spanning Tree 

 Answer: 
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Minimum Spanning Tree 

  MSTs satisfy the optimal substructure property. 
(More on this in Chapter 8.) 
Here: an optimal tree is composed of optimal subtrees 
  Let T be an MST of G with an edge (u,v) in the middle 
  Removing (u,v) partitions T into two trees T1 and T2 
  Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of 

G2 = (V2,E2)             
  Proof: w(T) = w(u,v) + w(T1) + w(T2) 

(There can’t be a better tree than T1 or T2, or T would be 
suboptimal) 
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Prim’s MST Algorithm 

  Greedy strategy: 
  Choose some start vertex as current-tree 
  Greedy rule: Add edge from graph to current-tree that 

  has the lowest weight of edges that… 
  have one vertex in the tree and one not in the tree. 

  Thus builds-up one tree by adding a new edge to it 
  Can this lead to an infeasible solution? 

(Tell me why not.) 
  Is it optimal? (Yes. Need a proof.) 
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Tracking Edges for Prim’s MST 

  Candidates edges:  edge from a tree-node to a non-
tree node 
  Since we’ll choose smallest, keep only one candidate edge 

for each non-tree node 
  But, may need to make sure we always have the smallest 

edge for each non-tree node 
  Fringe-nodes: non-trees nodes adjacent to the tree 
  Need data structure to hold fringe-nodes 

  Priority queue, ordered by min-edge weight 
  May need to update priorities! 
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Prim’s Algorithm 
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Run on example graph 

MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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prim(adj,start,parent) { // Textbook’s code – compare! 
  n = adj.last 

 for i = 1 to n 
    key[i] = ∞  // key is a local array 
  key[start] = 0 
  parent[start] = 0 
   // the following statement initializes the 
   // container h to the values in the array key 

 h.init(key,n) 
   for i = 1 to n { 
    v = h.del() 
      ref = adj[v] 
      while (ref != null) { 
        w = ref.ver 
        if (h.isin(w) && ref.weight < h.keyval(w)) { 
           parent[w] = v 
            h.decrease(w,ref.weight) 
         } 
         ref = ref.next 
      } 
   } 
} 
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Prim’s Algorithm 
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Run on example graph 

MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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Pick a start vertex s s 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Red vertices have been 
removed from PQ 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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•  Red arrows indicate parent 
pointers. 
•  Numbers in nodes are fringe 
weight. 

•  ? in node means node is 
unseen. 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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•  Note update of fringe 
node! FringeWt better, 
new parent. 
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Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 



            40                 3/29/10 

Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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v MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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v MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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v MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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v MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

•  Note update of fringe 
node! FringeWt better, 
new parent. 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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v MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Cost of Prim’s Algorithm 

  (Assume connected graph) 
 Clearly it looks at every edge, so Ω(n+m) 
  Is there more? 

  Yes, priority queue operations 
  ExtractMin called n times 

 How expensive? Depends on the size of the PQ 

  descreaseKey could be called for each edge 
 How expensive is each call? 
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Worst Case 

  If all nodes connected to start, then size of PQ is n-1 
right away. 
  Decreases by 1 for each node selected 
  Total cost is O(cost of extractMin for size n-1) 

  Note use of Big-Oh (not Big-Theta) 

  Could descreaseKey be called a lot? 
  Yes! Imagine an input that adds all nodes to the PQ at the 

first step, and then after that calls descreaseKey every 
possible time.  (For you to do.) 
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Priority Queue Costs and Prim’s 

 Simplest choice: unordered list 
  PQ.ExtractMin() is just a “findMin” 

 Cost for one call is Θ(n) 
 Total cost for all n calls is Θ(n2) 

  PQ.decreaseKey() on a node finds it, changes it. 
 Cost for one call is Θ(n) 
 But, if we can index an array by vertex number, the cost 

would be Θ(1). 
If so, worst-case total cost is Θ(m) 

 Conclusion: Easy to get Θ(n2) 
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Better PQ Implementations 

  Consider using a min-heap for the Priority Queue 
  PQ.ExtractMin() is O(lg n) each time 

  Called n times, so like Heap’s Construct: efficient! 
  What about PQ.decreaseKey() ? 

  Our need: given a vertex-ID, change the value stored 
  But our basic heap implementation does not allow look-ups 

based on vertex-ID! 
  Solution: Indirect heaps (see pages 142-145) 

  Heap structure stores indices to data in an array that doesn’t 
change 

  Can increase or decrease key in O(lg n) after O(1) lookup 
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Better PQ Implementations (2) 

 Use Indirect Heaps for the PQ 
  PQ.decreaseKey() is O(lg n) also 

 Called for each edge encountered in MST algorithm 
 So O(m x lg n)  
 Overall: Might be better Θ(n2) than if m << n2 

 Fibonacci heaps: an even more efficient PQ 
implementation. We won’t cover these. 
 Θ(m + n lg n) 
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Kruskal’s MST Algorithm 

 Prim’s approach: 
  Build one tree.  Make the one tree bigger and as 

good as it can be. 
 Kruskal’s approach 

  Choose the best edge possible: smallest weight 
  Not one tree – maintain a forest! 
  Each edge added will connect two trees. 

Can’t form a cycle in a tree! 
  After adding n-1 edges, you have one tree, the 

MST 
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Prim’s Algorithm 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 
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Kruskal’s Algorithm 
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Builds the same tree as Prim’s? 

Sorted list of edges: 
  DC 2 
  AB 3 
  DF 4 
  DE 5 
  EF 6 
  CB 8 
  DG 9 
  BE 10 
  AE 14 
  CH 15 
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Strategy for Kruskal’s 

  EL = sorted set of edges ascending by weight 
  Foreach edge e in EL 

  T1 = tree for head(e) 
  T2 = tree for tail(e) 
  If (T1 != T2) 

  add e to the output (the MST) 
  Combine trees T1 and T2 

  Seems simple, no? 
  But, how do you keep track of what trees a node is in? 
  Trees are sets. Need to findset(v) and “union” two sets 
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kruskal(edgelist,n) { 
  sort(edgelist) 
  for i = 1 to n 
    makeset(i) 
   count = 0 
   i = 1 
   while (count < n - 1) { 
    if (findset(edgelist[i].v) != 
                 findset(edgelist[i].w)) { 
       println(edgelist[i].v + “ ” 
                  + edgelist[i].w) 
        count = count + 1 
        union(edgelist[i].v,edgelist[i].w) 
     } 
     i = i + 1 
  } 
} 
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Union/Find and Disjoint Sets 

 See Section 3.6, page 150-161 
 Sets stored as a parent array (see bottom of p. 

151) 
  findset(v): trace upward in parent array 
  union(i,j): make one tree a child of a node it the 

other 
  Improvements! E.g. path compression 

  O(lg m) 
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Complexity for Kruskal’s 

 Overall: Θ(m lg m) 
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Single Source Shortest Path 

 Problem: Given a node v, find the minimum 
distance from v to either another node w or to 
all other nodes, 
where distance is the sum of the edge-weights 
on the path 

 A solution: Dijkstra’s algorithm 
  Who’s Dijkstra? See class wall-of-fame! 
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Dijkstra’s Shortest Path Algorithm 

  Identical in structure to Prim’s MST algorithm 
  Of course it solves a different problem! 
  Same time complexity 

  Additional input parameter(s) 
  Start node v 
  Destination node w (if needed) 

  Different output: a path from v to w and a cost (or 
sets of paths and costs) 
  The tree is the sets of shortest paths to nodes 

  Different greedy strategy: 
  Store shortest paths to fringe-nodes in priority queue 
  Store path-distance to node, not just the one edge-weight 
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MST-Prim(G, wt) 
 init PQ to be empty; 
 PQ.Insert(s, wt=0); 
 parent[s] = NULL; 
 while (PQ not empty){ 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        PQ.Insert(w, wt(v,w)); 
        parent[w] = v; 
    } 

     else if (w is fringe && wt[v,w] < fringeWt(w)){ 
        PQ.decreaseKey(w, wt[v,w]); 
        parent[w] = v; 
     } 

Reminder: Prim’s Algorithm 
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dijkstra(G, wt, s) 
 init PQ to be empty; 
 PQ.Insert(s, dist=0); 
 parent[s] = NULL; dist[s] = 0; 
 while (PQ not empty) 
   v = PQ.ExtractMin(); 
   for each w adj to v 
     if (w is unseen) { 
        dist[w] = dist[v] + wt(v,w)  
        PQ.Insert(w, dist[w] ); 
        parent[w] = v; 
    } 

     else if (w is fringe && dist[v] + wt(v,w) < dist[w] ) 
{ 

        dist[w] = dist[v] + wt(v,w) 
        PQ.decreaseKey(w, dist[w]); 
        parent[w] = v; 
     } 

Dijkstra' Algorithm 
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Notes on Dijkstra’s Algorithm 

 Use dist[] to store distances from start to any 
fringe or tree node 

 Store and calculate using distances instead of 
edge-weights (like in Kruskal’s MST) 

 What’s the output? 
  Tree captured in the parent[] array 
  Shortest distance to each node in dist[] array 
  Trace shortest path in reverse by using parent[] to 

move from target back to start node, s 
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dijkstra(adj, start, parent) { 
  n = adj.last 

 for i = 1 to n { key[i] = ∞}  // key is a local array 
  key[start] = 0;   predecessor[start] = 0 

 // the following statement initializes the 
   // container h to the values in the array key 

 h.init(key,n) 
   for i = 1 to n { 
    v = h.min_weight_index() 

  min_cost = h.keyval(v) 
  v = h.del() 

       ref = adj[v] 
       while (ref != null) { 
        w = ref.ver 
         if (h.isin(w) && min_cost + ref.weight < h.keyval(w)) { 
                predecessor[w] = v 
                  h.decrease(w, min_cost+ref.weight) 
          } // end if 
          ref = ref.next 
       } // end while 
   } // end for 
} 
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Correctness of These Greedy 
Algorithms 

 Recall that the greedy approach may or may 
not guarantee an optimal result 

 Do these produce optimal solutions? 
  The min weight spanning tree?  Kruskal’s, Prim’s 
  The shortest path from s?  Dijkstra’s 

 Answer: Yes, they do. 
  Proofs in the text 
  Proofs by induction, also using proof by 

contradiction 


