
 1 3/30/10

CS 4102: Greedy Algorithms

 Topics covered for greedy algorithms
  General principles
  Making change
  Knapsack problems
  Activity Selection
  Minimum spanning trees: Prim’s, Kruskal’s

algorithms
  Single-source shortest path: Dijkstra’s algorithm
  Approximation algorithms

 2 3/30/10

Greedy Method: Overview

 Optimization problems: terminology
  Solutions judged on some criteria:

 Objective function
Example: Sum of edge weights in path is smallest
  A solution must meet certain constraints

 A solution is feasible
Example: All edges in solution are in graph, form a

simple path
  One (or more) feasible solutions that scores

highest (by the objective function) is the optimal
solution(s)

 3 3/30/10

Greedy Method: Overview

 Greedy strategy:
  Build solution by stages, adding one item to partial

solution found so far
  At each stage, make locally optimal choice based

on the greedy rule (sometimes called the selection
function)
 Locally optimal, I.e. best given what info we have now

  Irrevocable, a choice can’t be un-done
  Sequence of locally optimal choices leads to

globally optimal solution (hopefully)
 Must prove this for a given problem!
 Approximation algorithms, heuristics

 4 3/30/10

Making Change

  Remember? We did this one in class on Day 1
  Inputs:

  Value N of the change to be returned
  An unlimited number of coins of values d1, d2,.., dk

  Output: the smallest possible set of coins that sums to
N

  Objective function? Smallest set
  Constraints on feasible solutions? Must sum to N
  Greedy rule: choose coin of largest value that is less

than N - Sum(coins chosen so far)
  Always optimal? Depends on set of coin values

 5 3/30/10

Algorithm 7.1.1 Greedy Coin Changing
This algorithm makes change for an amount A using coins of
denominations
 denom[1] > denom[2] > ··· > denom[n] = 1.

Input Parameters: denom,A
Output Parameters: None
greedy_coin_change(denom,A) {
 i = 1
 while (A > 0) {
 c = A/denom[i]
 println(“use ” + c + “ coins of denomination ” +
 denom[i])

 A = A - c * denom[i]
 i = i + 1
 }
}

 6 3/30/10

 7 3/30/10

Knapsack Problems

 Section 7.6 in text
  Inputs:

  n items, each with a weight w_i and a value v_i
  capacity of the knapsack, C

 Output:
  Fractions for each of the n items, x_I
  Chosen to maximize total profit but not to exceed

knapsack capacity

 8 3/30/10

Two Types of Knapsack Problem

  0/1 knapsack problem
  Each item is discrete. Must choose all of it or none of it.

So each x_i is 0 or 1
  Greedy approach does not produce optimal solutions
  But another approach, dynamic programming, does

  Continuous knapsack problem
  Can pick up fractions of each item
  The correct selection function yields a greedy algorithm

that produces optimal results

 9 3/30/10

Greedy Rule for Knapsack?

  Build up a partial solution by choosing x_i for one
item until knapsack is full (or no more items). Which
item to choose?

  There are several choices. Pick one and try on this:
  n = 3, C = 20
  weights = (18, 15, 10)
  values = (25, 24, 15)

  What answer do you get?
  The optimal answer is: (0, 1, 0.5), total=31.5

Can you verify this?

 10 3/30/10

Possible Greedy Rules for Knapsack

 Build up a partial solution by choosing x_i for
one item until knapsack is full (or no more
items). Which item to choose?
  Maybe this: take as much as possible of the

remaining item that has largest value, v_i
  Or maybe this: take as much as possible of the

remaining items that has smallest weight, w_i
  Neither of these produce optimal values! The one

that does “combines” these two approaches.
 Use ratio of profit-to-weight

 11 3/30/10

Example Knapsack Problem

 For this example:
  n = 3, C = 20
  weights = (18, 15, 10)
  values = (25, 24, 15)

 Ratios = (25/18, 24/15, 15/10)
 = (1.39, 1.6, 1.5)

 The optimal answer is: (0, 1, 0.5)

 12 3/30/10

 13 3/30/10

Activity-Selection Problem

 Problem: You and your classmates go on
Semester at Sea
  Many exciting activities each morning
  Each starting and ending at different times
  Maximize your “education” by doing as many as

possible. (They’re all equally good!)
 Welcome to the activity selection problem

The Activities!

Id Start End Activity
1 9:00 10:45 Fractals, Recursion and Crayolas
2 9:15 10:15 Tropical Drink Engineering with Prof. Bloomfield
3 9:30 12:30 Managing Keyboard Fatigue with Swedish Massage
4 9:45 10:30 Applied ChemE: Suntan Oil or Lotion?
5 9:45 11:15 Optimization, Greedy Algorithms, and the Buffet Line
6 10:15 11:00 Hydrodynamics and Surfing
7 10:15 11:30 Computational Genetics and Infectious Diseases
8 10:30 11:45 Turing Award Speech Karaoke
9 11:00 12:00 Pool Tanning for Pale Engineers

10 11:00 12:15 Mechanics, Dynamics and Shuffleboard Physics
11 12:00 12:45 Discrete Math Applications in Gambling

 14 3/30/10

Generalizing Start, End

Id Start End Len Activity

1 0 6 7 Fractals, Recursion and Crayolas

2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage

4 3 5 3 Applied ChemE: Suntan Oil or Lotion?

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line

6 5 7 3 Hydrodynamics and Surfing

7 5 9 5 Computational Genetics and Infectious Diseases

8 6 10 5 Turing Award Speech Karaoke

9 8 11 4 Pool Tanning for Pale Engineers

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics

11 12 14 3 Discrete Math Applications in Gambling

 15 3/30/10

Greedy Approach

1.  Select a first item.
2.  Eliminate items that are incompatible with

that item. (I.e. they overlap.)
3.  Apply the greedy rule (AKA selection

function) to pick the next item.
4.  Go to Step 2

What is a good greedy rule for selecting next item?

 16 3/30/10

Some Possibilities

 Pick the next compatible one that starts earliest
 Pick the shortest one
 Pick the one that has the least conflicts (i.e.

overlaps)

 17 3/30/10

 18 3/30/10

Activity-Selection

 Formally:
  Given a set S of n activities

 si = start time of activity i
 fi = finish time of activity i

  Find max-size subset A of compatible activities

  Assume (wlog) that f1 ≤ f2 ≤ … ≤ fn

1
2

3
4

5

6

 19 3/30/10

Activity Selection:
Optimal Substructure

 Let k be the minimum activity in A (i.e., the
one with the earliest finish time). Then A - {k}
is an optimal solution to S’ = {i ∈ S: si ≥ fk}
  In words: once activity #1 is selected, the problem

reduces to finding an optimal solution for activity-
selection over activities in S compatible with #1

  Proof: if we could find optimal solution B’ to S’
with |B| > |A - {k}|,
 Then B U {k} is compatible
 And |B U {k}| > |A|

 20 3/30/10

Activity Selection:
A Greedy Algorithm

 So actual algorithm is simple:
  Sort the activities by finish time
  Schedule the first activity
  Then schedule the next activity in sorted list which

starts after previous activity finishes
  Repeat until no more activities

  Intuition is even more simple:
  Always pick next activity that finishes earliest

Back to Semester at Sea…

Id Start End Len Activity

2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield

4 3 5 3 Applied ChemE: Suntan Oil or Lotion?

1 0 6 7 Fractals, Recursion and Crayolas

6 5 7 3 Hydrodynamics and Surfing

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line

7 5 9 5 Computational Genetics and Infectious Diseases

8 6 10 5 Turing Award Speech Karaoke

9 8 11 4 Pool Tanning for Pale Engineers

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage

11 12 14 3 Discrete Math Applications in Gambling

 21 3/30/10

 22 3/30/10

Minimum Spanning Tree

 Problem: given a connected, undirected,
weighted graph:

14
10

3

6 4
5

2

9

15

8

 23 3/30/10

Minimum Spanning Tree

 Problem: given a connected, undirected,
weighted graph, find a spanning tree using
edges that minimize the total weight

14
10

3

6 4
5

2

9

15

8

 24 3/30/10

Minimum Spanning Tree

 Which edges form the minimum spanning tree
(MST) of the below graph?

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

 25 3/30/10

Minimum Spanning Tree

 Answer:

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

 26 3/30/10

Minimum Spanning Tree

  MSTs satisfy the optimal substructure property.
(More on this in Chapter 8.)
Here: an optimal tree is composed of optimal subtrees
  Let T be an MST of G with an edge (u,v) in the middle
  Removing (u,v) partitions T into two trees T1 and T2
  Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of

G2 = (V2,E2)
  Proof: w(T) = w(u,v) + w(T1) + w(T2)

(There can’t be a better tree than T1 or T2, or T would be
suboptimal)

 27 3/30/10

Prim’s MST Algorithm

  Greedy strategy:
  Choose some start vertex as current-tree
  Greedy rule: Add edge from graph to current-tree that

  has the lowest weight of edges that…
  have one vertex in the tree and one not in the tree.

  Thus builds-up one tree by adding a new edge to it
  Can this lead to an infeasible solution?

(Tell me why not.)
  Is it optimal? (Yes. Need a proof.)

 28 3/30/10

Tracking Edges for Prim’s MST

  Candidates edges: edge from a tree-node to a non-
tree node
  Since we’ll choose smallest, keep only one candidate edge

for each non-tree node
  But, may need to make sure we always have the smallest

edge for each non-tree node
  Fringe-nodes: non-trees nodes adjacent to the tree
  Need data structure to hold fringe-nodes

  Priority queue, ordered by min-edge weight
  May need to update priorities!

 29 3/29/10

Prim’s Algorithm

14 10

3

6 4
5

2

9

15

8

Run on example graph

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 30 3/29/10

prim(adj,start,parent) { // Textbook’s code – compare!
 n = adj.last

 for i = 1 to n
 key[i] = ∞ // key is a local array
 key[start] = 0
 parent[start] = 0
 // the following statement initializes the
 // container h to the values in the array key

 h.init(key,n)
 for i = 1 to n {
 v = h.del()
 ref = adj[v]
 while (ref != null) {
 w = ref.ver
 if (h.isin(w) && ref.weight < h.keyval(w)) {
 parent[w] = v
 h.decrease(w,ref.weight)
 }
 ref = ref.next
 }
 }
}

 31 3/29/10

Prim’s Algorithm

? ? ?

? ? ?

?

?

14 10

3

6 4
5

2

9

15

8

Run on example graph

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 32 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

? ? ?

0 ? ?

?

?

14 10

3

6 4
5

2

9

15

8

Pick a start vertex s s

 33 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

? ? ?

0 ? ?

?

?

14 10

3

6 4
5

2

9

15

8

Red vertices have been
removed from PQ

 34 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

? ? ?

0 ? ?

3

?

14 10

3

6 4
5

2

9

15

8

•  Red arrows indicate parent
pointers.
•  Numbers in nodes are fringe
weight.

•  ? in node means node is
unseen.

 35 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

14 ? ?

0 ? ?

3

?

14 10

3

6 4
5

2

9

15

8

 36 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

14 ? ?

0 ? ?

3

?

14 10

3

6 4
5

2

9

15

8
v

 37 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

14 ? ?

0 8 ?

3

?

14 10

3

6 4
5

2

9

15

8
v

 38 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

10 ? ?

0 8 ?

3

?

14 10

3

6 4
5

2

9

15

8
v

•  Note update of fringe
node! FringeWt better,
new parent.

 39 3/29/10

Prim’s Algorithm

10 ? ?

0 8 ?

3

?

14 10

3

6 4
5

2

9

15

8
v

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 40 3/29/10

Prim’s Algorithm

10 2 ?

0 8 ?

3

?

14 10

3

6 4
5

2

9

15

8
v

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 41 3/29/10

Prim’s Algorithm

10 2 ?

0 8 15

3

?

14 10

3

6 4
5

2

9

15

8
v

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 42 3/29/10

Prim’s Algorithm

10 2 ?

0 8 15

3

?

14 10

3

6 4
5

2

9

15

8

v MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 43 3/29/10

Prim’s Algorithm

10 2 9

0 8 15

3

?

14 10

3

6 4
5

2

9

15

8

v MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 44 3/29/10

Prim’s Algorithm

10 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 45 3/29/10

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

•  Note update of fringe
node! FringeWt better,
new parent.

 46 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v

 47 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v

 48 3/29/10

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 49 3/29/10

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 50 3/29/10

Cost of Prim’s Algorithm

  (Assume connected graph)
 Clearly it looks at every edge, so Ω(n+m)
  Is there more?

  Yes, priority queue operations
  ExtractMin called n times

 How expensive? Depends on the size of the PQ

  descreaseKey could be called for each edge
 How expensive is each call?

 51 3/29/10

Worst Case

  If all nodes connected to start, then size of PQ is n-1
right away.
  Decreases by 1 for each node selected
  Total cost is O(cost of extractMin for size n-1)

  Note use of Big-Oh (not Big-Theta)

  Could descreaseKey be called a lot?
  Yes! Imagine an input that adds all nodes to the PQ at the

first step, and then after that calls descreaseKey every
possible time. (For you to do.)

 52 3/29/10

Priority Queue Costs and Prim’s

 Simplest choice: unordered list
  PQ.ExtractMin() is just a “findMin”

 Cost for one call is Θ(n)
 Total cost for all n calls is Θ(n2)

  PQ.decreaseKey() on a node finds it, changes it.
 Cost for one call is Θ(n)
 But, if we can index an array by vertex number, the cost

would be Θ(1).
If so, worst-case total cost is Θ(m)

 Conclusion: Easy to get Θ(n2)

 53 3/29/10

Better PQ Implementations

  Consider using a min-heap for the Priority Queue
  PQ.ExtractMin() is O(lg n) each time

  Called n times, so like Heap’s Construct: efficient!
  What about PQ.decreaseKey() ?

  Our need: given a vertex-ID, change the value stored
  But our basic heap implementation does not allow look-ups

based on vertex-ID!
  Solution: Indirect heaps (see pages 142-145)

  Heap structure stores indices to data in an array that doesn’t
change

  Can increase or decrease key in O(lg n) after O(1) lookup

 54 3/29/10

Better PQ Implementations (2)

 Use Indirect Heaps for the PQ
  PQ.decreaseKey() is O(lg n) also

 Called for each edge encountered in MST algorithm
 So O(m x lg n)
 Overall: Might be better Θ(n2) than if m << n2

 Fibonacci heaps: an even more efficient PQ
implementation. We won’t cover these.
 Θ(m + n lg n)

 55 3/29/10

Kruskal’s MST Algorithm

 Prim’s approach:
  Build one tree. Make the one tree bigger and as

good as it can be.
 Kruskal’s approach

  Choose the best edge possible: smallest weight
  Not one tree – maintain a forest!
  Each edge added will connect two trees.

Can’t form a cycle in a tree!
  After adding n-1 edges, you have one tree, the

MST

 56 3/29/10

 57 3/29/10

Prim’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

 58 3/29/10

Kruskal’s Algorithm

5 2 9

0 8 15

3

4

14 10

3

6 4
5

2

9

15

8

v

Builds the same tree as Prim’s?

Sorted list of edges:
  DC 2
  AB 3
  DF 4
  DE 5
  EF 6
  CB 8
  DG 9
  BE 10
  AE 14
  CH 15

 59 3/29/10

Strategy for Kruskal’s

  EL = sorted set of edges ascending by weight
  Foreach edge e in EL

  T1 = tree for head(e)
  T2 = tree for tail(e)
  If (T1 != T2)

  add e to the output (the MST)
  Combine trees T1 and T2

  Seems simple, no?
  But, how do you keep track of what trees a node is in?
  Trees are sets. Need to findset(v) and “union” two sets

 60 3/29/10

kruskal(edgelist,n) {
 sort(edgelist)
 for i = 1 to n
 makeset(i)
 count = 0
 i = 1
 while (count < n - 1) {
 if (findset(edgelist[i].v) !=
 findset(edgelist[i].w)) {
 println(edgelist[i].v + “ ”
 + edgelist[i].w)
 count = count + 1
 union(edgelist[i].v,edgelist[i].w)
 }
 i = i + 1
 }
}

 61 3/29/10

Union/Find and Disjoint Sets

 See Section 3.6, page 150-161
 Sets stored as a parent array (see bottom of p.

151)
  findset(v): trace upward in parent array
  union(i,j): make one tree a child of a node it the

other
  Improvements! E.g. path compression

  O(lg m)

 62 3/29/10

Complexity for Kruskal’s

 Overall: Θ(m lg m)

 63 3/29/10

Single Source Shortest Path

 Problem: Given a node v, find the minimum
distance from v to either another node w or to
all other nodes,
where distance is the sum of the edge-weights
on the path

 A solution: Dijkstra’s algorithm
  Who’s Dijkstra? See class wall-of-fame!

 64 3/29/10

Dijkstra’s Shortest Path Algorithm

  Identical in structure to Prim’s MST algorithm
  Of course it solves a different problem!
  Same time complexity

  Additional input parameter(s)
  Start node v
  Destination node w (if needed)

  Different output: a path from v to w and a cost (or
sets of paths and costs)
  The tree is the sets of shortest paths to nodes

  Different greedy strategy:
  Store shortest paths to fringe-nodes in priority queue
  Store path-distance to node, not just the one edge-weight

 65 3/29/10

MST-Prim(G, wt)
 init PQ to be empty;
 PQ.Insert(s, wt=0);
 parent[s] = NULL;
 while (PQ not empty){
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 PQ.Insert(w, wt(v,w));
 parent[w] = v;
 }

 else if (w is fringe && wt[v,w] < fringeWt(w)){
 PQ.decreaseKey(w, wt[v,w]);
 parent[w] = v;
 }

Reminder: Prim’s Algorithm

 66 3/29/10

dijkstra(G, wt, s)
 init PQ to be empty;
 PQ.Insert(s, dist=0);
 parent[s] = NULL; dist[s] = 0;
 while (PQ not empty)
 v = PQ.ExtractMin();
 for each w adj to v
 if (w is unseen) {
 dist[w] = dist[v] + wt(v,w)
 PQ.Insert(w, dist[w]);
 parent[w] = v;
 }

 else if (w is fringe && dist[v] + wt(v,w) < dist[w])
{

 dist[w] = dist[v] + wt(v,w)
 PQ.decreaseKey(w, dist[w]);
 parent[w] = v;
 }

Dijkstra' Algorithm

 67 3/29/10

Notes on Dijkstra’s Algorithm

 Use dist[] to store distances from start to any
fringe or tree node

 Store and calculate using distances instead of
edge-weights (like in Kruskal’s MST)

 What’s the output?
  Tree captured in the parent[] array
  Shortest distance to each node in dist[] array
  Trace shortest path in reverse by using parent[] to

move from target back to start node, s

 68 3/29/10

dijkstra(adj, start, parent) {
 n = adj.last

 for i = 1 to n { key[i] = ∞} // key is a local array
 key[start] = 0; predecessor[start] = 0

 // the following statement initializes the
 // container h to the values in the array key

 h.init(key,n)
 for i = 1 to n {
 v = h.min_weight_index()

 min_cost = h.keyval(v)
 v = h.del()

 ref = adj[v]
 while (ref != null) {
 w = ref.ver
 if (h.isin(w) && min_cost + ref.weight < h.keyval(w)) {
 predecessor[w] = v
 h.decrease(w, min_cost+ref.weight)
 } // end if
 ref = ref.next
 } // end while
 } // end for
}

 69 3/29/10

Correctness of These Greedy
Algorithms

 Recall that the greedy approach may or may
not guarantee an optimal result

 Do these produce optimal solutions?
  The min weight spanning tree? Kruskal’s, Prim’s
  The shortest path from s? Dijkstra’s

 Answer: Yes, they do.
  Proofs in the text
  Proofs by induction, also using proof by

contradiction

