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CS 4102 – Algorithms 

– Dynamic programming 
• Also, memoization 

– Examples: 
• Longest Common Subsequence 

– Readings: 8.1, pp. 334-335, 8.4, p. 361 
• Also, handout on 0/1 knapsack 
• Wikipedia articles 
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Dynamic programming 
  Old “bad” name (see Wikipedia or Notes, p. 361) 

  It is used, when the solution can be recursively 
described in terms of solutions to subproblems 
(optimal substructure) 

  Algorithm finds solutions to subproblems and 
stores them in memory for later use 

  More efficient than “brute-force methods”, 
which solve the same subproblems over and over 
again 
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Optimal Substructure Property 

  Definition on p. 334 
–  If S is an optimal solution to a problem, then the 

components of S are optimal solutions to 
subproblems 

  Examples: 
–  True for knapsack 
–  True for coin-changing (p. 334) 
–  True for single-source shortest path 
–  Not true for longest-simple-path (p. 335) 
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Dynamic Programming 

  Works “bottom-up” 
– Finds solutions to small sub-problems first 
– Stores them 
– Combines them somehow to find a solution 

to a slightly larger subproblem 
  Compare to greedy approach 

– Also requires optimal substructure 
– But greedy makes choice first, then solves 
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Problems Solved with Dyn. Prog. 
  Coin changing (Section 8.2, we won’t do) 
  Multiplying a sequence of matrices (8.3, we 

might do if we have time) 
–  Can do in various orders: (AB)C vs. A(BC) 
–  Pick order that does fewest number of scalar 

multiplications 
  Longest common subsequence (8.4, we’ll do) 
  All-pairs shortest paths (Floyd’s algorithm) 

–  Remember from CS216? 
  Constructing optimal binary search trees 
  Knapsack problems (we’ll do 0/1) 
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Remember Fibonacci numbers? 
  Recursive code: 

   long fib(int n) { 
       assert(n >= 0); 
       if ( n == 0 ) return 0; 
       if ( n == 1 ) return 1; 
       return fib(n-1) + fib(n-2); 
   } 

  What’s the problem? 
– Repeatedly solves the same subproblems 
–  “Obscenely” exponential (p. 326) 
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Memoization 

 Before talking about dynamic 
programming, another general 
technique:  Memoization 
– AKA using a memory function 

 Simple idea: 
– Calculate and store solutions to 

subproblems 
– Before solving it (again), look to see if 

you’ve remembered it 
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Memoization 
  Use a Table abstract data type 

– Lookup key: whatever identifies a 
subproblem 

– Value stored: the solution 
  Could be an array/vector 

– E.g. for Fibonacci, store fib(n) using 
index n 

– Need to initialize the array 
  Could use a map / hash-table 
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Memoization and Fibonacci 
  Before recursive code below called, must 

initialize results[] so all values are -1 

   long fib_mem(int n, long results[]) { 
       if ( results[n] != -1 ) 
           return results[n];  // return stored value 
       long val; 
       if ( n == 0 || n ==1 ) val = n; // odd but right 
       else 
           val = fib_mem(n-1, results) 
                 + fib_mem(n-2, results); 
       results[n] = val; // store calculated value  
       return val; 
   } 
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Observations on fib_mem() 

 Same elegant top-down, recursive 
approach based on definition 
– Without repeated subproblems 

 Memory function: a function that 
remembers 
– Save time by using extra space 

 Can show this runs in Θ(n) 



12 

Memoization and Functional 
Languages 

  Languages like Lisp and Scheme are 
functional languages 

  How could memoization help? 
  What could go wrong? Would this 

always work? 
– Side effects 
– Haskell does this (call-by-need) 



13 

General Strategy of Dyn. Prog. 
1.  Structure: What’s the structure of an optimal 

solution in terms of solutions to its 
subproblems? 

2.  Give a recursive definition of an optimal 
solution in terms of optimal solutions to 
smaller problems 
–  Usually using min or max 

3.  Use a data structure (often a table) to store 
smaller solutions in a bottom-up fashion 
–  Optimal value found in the table 

4.  (If needed) Reconstruct the optimal solution 
–  I.e. what produced the optimal value 
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Dyn. Prog. vs. Divide and Conquer 

  Remember D & C? 
– Divide into subproblems.  Solve each. 

Combine. 
  Good when subproblems do not 

overlap, when they’re independent 
– No need to repeat them 

  Divide and conquer: top-down 
  Dynamic programming: bottom-up 
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LCS: Section 8.4 

  A “significant” example 
  Lots of detail 

– Look at example here and the one in the 
book 
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Longest Common Subsequence 
(LCS) 

Application: comparison of two DNA strings 
Ex: X= {A B C B D A B }, Y= {B D C A B A}  
Longest Common Subsequence:  
X =  A B     C     B D A B 
Y =      B D C A B     A 
Brute force algorithm would compare each 

subsequence of X with the symbols in Y 
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LCS Algorithm 
  if |X| = m, |Y| = n, then there are 2m 

subsequences of X; we must compare each 
with Y (n comparisons) 

  So the running time of the brute-force 
algorithm is O(n 2m) 

  Notice that the LCS problem has optimal 
substructure: solutions of subproblems are 
parts of the final solution. 

  Subproblems: “find LCS of pairs of prefixes 
of X and Y” 
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LCS Algorithm 
  First we’ll find the length of LCS. Later we’ll 

modify the algorithm to find LCS itself. 
  Define Xi, Yj to be the prefixes of X and Y of 

length i and j respectively 
  Define c[i,j] to be the length of LCS of Xi and 

Yj 
  Then the length of LCS of X and Y will be 

c[m,n] 
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LCS recursive solution 

  We start with i = j = 0 (empty substrings of x 
and y) 

  Since X0 and Y0 are empty strings, their LCS 
is always empty (i.e. c[0,0] = 0) 

  LCS of empty string and any other string is 
empty, so for every i and j: c[0, j] = c[i,0] = 0 
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LCS recursive solution 

  When we calculate c[i,j], we consider two 
cases: 

  First case: x[i]=y[j]: one more symbol in 
strings X and Y matches, so the length of LCS 
Xi and Yj equals to the length of LCS of 
smaller strings Xi-1 and Yi-1 , plus 1 



21 

LCS recursive solution 

  Second case: x[i] != y[j] 

  As symbols don’t match, our solution is not 
improved, and the length of LCS(Xi , Yj) is 
the same as before (i.e. maximum of  
LCS(Xi, Yj-1) and LCS(Xi-1,Yj) 

Why not just take the length of LCS(Xi-1, Yj-1) ? 
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LCS Length Algorithm 
LCS-Length(X, Y) 
1. m = length(X)  // get the # of symbols in X 
2. n  = length(Y) // get the # of symbols in Y 
3. for i = 1 to m  c[i,0] = 0  // special case: Y0 
4. for j = 1 to n   c[0,j] = 0  // special case: X0 
5. for i = 1 to m    // for all Xi  
6.  for j = 1 to n     // for all Yj 
7.   if ( Xi == Yj )    
8.    c[i,j] = c[i-1,j-1] + 1 
9.   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 
10. return c[m,n]   // return LCS length for X and Y 
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LCS Example 
We’ll see how LCS algorithm works on the 

following example: 
  X = ABCB 
  Y = BDCAB 

LCS(X, Y) = BCB 
X = A B     C     B 
Y =     B D C A B 

What is the Longest Common Subsequence  
of X and Y? 
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LCS Example (0) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

X = ABCB;   m = |X| = 4 
Y = BDCAB; n = |Y| = 5 
Allocate array c[5,4]   

ABCB 
BDCAB 
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LCS Example (1) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

for i = 1 to m  c[i,0] = 0   
for j = 1 to n   c[0,j] = 0   

ABCB 
BDCAB 
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LCS Example (2) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 

ABCB 
BDCAB 
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LCS Example (3) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 

ABCB 
BDCAB 
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LCS Example (4) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 1 

ABCB 
BDCAB 
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LCS Example (5) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 1 1 

ABCB 
BDCAB 
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LCS Example (6) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 1 0 1 

1 

ABCB 
BDCAB 
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LCS Example (7) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 1 1 1 

ABCB 
BDCAB 
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LCS Example (8) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 1 1 1 2 

ABCB 
BDCAB 
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LCS Example (10) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

2 1 1 1 1 

1 1 

ABCB 
BDCAB 
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LCS Example (11) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 1 

1 1 2 

ABCB 
BDCAB 
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LCS Example (12) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

ABCB 
BDCAB 
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LCS Example (13) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 

ABCB 
BDCAB 
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LCS Example (14) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 

ABCB 
BDCAB 
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LCS Example (15) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 

ABCB 
BDCAB 
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LCS Algorithm Running Time 

  LCS algorithm calculates the values of each 
entry of the array c[m,n] 

  So what is the running time? 

O(m*n) 

since each c[i,j] is calculated in 
constant time, and there are m*n 
elements in the array 
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How to find actual LCS 
  So far, we have just found the length of LCS, but 

not LCS itself. 
  We want to modify this algorithm to make it output 

Longest Common Subsequence of X and Y 
Each c[i,j] depends on c[i-1,j] and c[i,j-1]  
or c[i-1, j-1] 
For each c[i,j] we can say how it was acquired: 

2 

2 3 

2 For example, here  
c[i,j] = c[i-1,j-1] +1 = 2+1=3 
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How to find actual LCS - continued 
  Remember that 

  So we can start from c[m,n] and go backwards 
  Look first to see if 2nd case above was true 
  If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i]   

(because x[i] is a part  of LCS) 
  When i=0 or j=0 (i.e. we reached the beginning), 

output remembered letters in reverse order 



42 

Algorithm to find actual LCS 
  Here’s a recursive algorithm to do this: 

LCS_print(x, m, n, c) { 
   if (c[m][n] == c[m-1][n]) // go up? 
      LCS_print(x, m-1, n, c); 
   else if (c[m][n] == c[m][n-1] // go left? 
      LCS_print(x, m, n-1, c); 
   else { // it was a match! 
      LCS_print(x, m-1, n-1, c); 
      print(x[m]); // print after recursive call 
    } 
} 
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Finding LCS 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 B 
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Finding LCS (2) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 B 

B C B LCS (reversed order): 
LCS (straight order): B  C  B  
(this string turned out to be a palindrome) 
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Review: Dynamic programming 
  DP is a method for solving certain kind of 

problems 
  DP can be applied when the solution of a 

problem includes solutions to subproblems 
  We need to find a recursive formula for the 

solution 
  We can recursively solve subproblems, 

starting from the trivial case, and save their 
solutions in memory 

  In the end we’ll get the solution of the 
whole problem 
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Properties of a problem that can be 
solved with dynamic programming 
  Simple Subproblems 

– We should be able to break the original 
problem to smaller subproblems that have the 
same structure 

  Optimal Substructure of the problems 
– The solution to the problem must be a 

composition of subproblem solutions 
  Subproblem Overlap 

– Optimal subproblems to unrelated problems can 
contain subproblems in common 
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Review:  Longest Common 
Subsequence (LCS) 

  Problem: how to find the longest pattern of 
characters that is common to two text 
strings X and Y 

  Dynamic programming algorithm: solve 
subproblems until we get the final solution 

  Subproblem: first find the LCS of prefixes 
of X and Y. 

  this problem has optimal substructure: LCS 
of two prefixes is always a part of LCS of 
bigger strings 
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Conclusion 
  Dynamic programming is a useful technique 

of solving certain kind of problems 
  When the solution can be recursively 

described in terms of partial solutions, we 
can store these partial solutions and re-use 
them as necessary 

  Running time (Dynamic Programming 
algorithm vs. naïve algorithm): 
– LCS: O(m*n) vs. O(n * 2m) 
–  0-1 Knapsack problem: O(W*n) vs. O(2n) 


