
1

CS 4102 – Algorithms

– Dynamic programming
• Also, memoization

– Examples:
• Longest Common Subsequence

– Readings: 8.1, pp. 334-335, 8.4, p. 361
• Also, handout on 0/1 knapsack
• Wikipedia articles

2

Dynamic programming
  Old “bad” name (see Wikipedia or Notes, p. 361)

  It is used, when the solution can be recursively
described in terms of solutions to subproblems
(optimal substructure)

  Algorithm finds solutions to subproblems and
stores them in memory for later use

  More efficient than “brute-force methods”,
which solve the same subproblems over and over
again

3

Optimal Substructure Property

  Definition on p. 334
–  If S is an optimal solution to a problem, then the

components of S are optimal solutions to
subproblems

  Examples:
–  True for knapsack
–  True for coin-changing (p. 334)
–  True for single-source shortest path
–  Not true for longest-simple-path (p. 335)

4

Dynamic Programming

  Works “bottom-up”
– Finds solutions to small sub-problems first
– Stores them
– Combines them somehow to find a solution

to a slightly larger subproblem
  Compare to greedy approach

– Also requires optimal substructure
– But greedy makes choice first, then solves

5

Problems Solved with Dyn. Prog.
  Coin changing (Section 8.2, we won’t do)
  Multiplying a sequence of matrices (8.3, we

might do if we have time)
–  Can do in various orders: (AB)C vs. A(BC)
–  Pick order that does fewest number of scalar

multiplications
  Longest common subsequence (8.4, we’ll do)
  All-pairs shortest paths (Floyd’s algorithm)

–  Remember from CS216?
  Constructing optimal binary search trees
  Knapsack problems (we’ll do 0/1)

6

7

Remember Fibonacci numbers?
  Recursive code:

 long fib(int n) {
 assert(n >= 0);
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
 }

  What’s the problem?
– Repeatedly solves the same subproblems
–  “Obscenely” exponential (p. 326)

8

Memoization

 Before talking about dynamic
programming, another general
technique: Memoization
– AKA using a memory function

 Simple idea:
– Calculate and store solutions to

subproblems
– Before solving it (again), look to see if

you’ve remembered it

9

Memoization
  Use a Table abstract data type

– Lookup key: whatever identifies a
subproblem

– Value stored: the solution
  Could be an array/vector

– E.g. for Fibonacci, store fib(n) using
index n

– Need to initialize the array
  Could use a map / hash-table

10

Memoization and Fibonacci
  Before recursive code below called, must

initialize results[] so all values are -1

 long fib_mem(int n, long results[]) {
 if (results[n] != -1)
 return results[n]; // return stored value
 long val;
 if (n == 0 || n ==1) val = n; // odd but right
 else
 val = fib_mem(n-1, results)
 + fib_mem(n-2, results);
 results[n] = val; // store calculated value
 return val;
 }

11

Observations on fib_mem()

 Same elegant top-down, recursive
approach based on definition
– Without repeated subproblems

 Memory function: a function that
remembers
– Save time by using extra space

 Can show this runs in Θ(n)

12

Memoization and Functional
Languages

  Languages like Lisp and Scheme are
functional languages

  How could memoization help?
  What could go wrong? Would this

always work?
– Side effects
– Haskell does this (call-by-need)

13

General Strategy of Dyn. Prog.
1.  Structure: What’s the structure of an optimal

solution in terms of solutions to its
subproblems?

2.  Give a recursive definition of an optimal
solution in terms of optimal solutions to
smaller problems
–  Usually using min or max

3.  Use a data structure (often a table) to store
smaller solutions in a bottom-up fashion
–  Optimal value found in the table

4.  (If needed) Reconstruct the optimal solution
–  I.e. what produced the optimal value

14

Dyn. Prog. vs. Divide and Conquer

  Remember D & C?
– Divide into subproblems. Solve each.

Combine.
  Good when subproblems do not

overlap, when they’re independent
– No need to repeat them

  Divide and conquer: top-down
  Dynamic programming: bottom-up

15

LCS: Section 8.4

  A “significant” example
  Lots of detail

– Look at example here and the one in the
book

16

Longest Common Subsequence
(LCS)

Application: comparison of two DNA strings
Ex: X= {A B C B D A B }, Y= {B D C A B A}
Longest Common Subsequence:
X = A B C B D A B
Y = B D C A B A
Brute force algorithm would compare each

subsequence of X with the symbols in Y

17

LCS Algorithm
  if |X| = m, |Y| = n, then there are 2m

subsequences of X; we must compare each
with Y (n comparisons)

  So the running time of the brute-force
algorithm is O(n 2m)

  Notice that the LCS problem has optimal
substructure: solutions of subproblems are
parts of the final solution.

  Subproblems: “find LCS of pairs of prefixes
of X and Y”

18

LCS Algorithm
  First we’ll find the length of LCS. Later we’ll

modify the algorithm to find LCS itself.
  Define Xi, Yj to be the prefixes of X and Y of

length i and j respectively
  Define c[i,j] to be the length of LCS of Xi and

Yj
  Then the length of LCS of X and Y will be

c[m,n]

19

LCS recursive solution

  We start with i = j = 0 (empty substrings of x
and y)

  Since X0 and Y0 are empty strings, their LCS
is always empty (i.e. c[0,0] = 0)

  LCS of empty string and any other string is
empty, so for every i and j: c[0, j] = c[i,0] = 0

20

LCS recursive solution

  When we calculate c[i,j], we consider two
cases:

  First case: x[i]=y[j]: one more symbol in
strings X and Y matches, so the length of LCS
Xi and Yj equals to the length of LCS of
smaller strings Xi-1 and Yi-1 , plus 1

21

LCS recursive solution

  Second case: x[i] != y[j]

  As symbols don’t match, our solution is not
improved, and the length of LCS(Xi , Yj) is
the same as before (i.e. maximum of
LCS(Xi, Yj-1) and LCS(Xi-1,Yj)

Why not just take the length of LCS(Xi-1, Yj-1) ?

22

LCS Length Algorithm
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y0
4. for j = 1 to n c[0,j] = 0 // special case: X0
5. for i = 1 to m // for all Xi
6. for j = 1 to n // for all Yj
7. if (Xi == Yj)
8. c[i,j] = c[i-1,j-1] + 1
9. else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c[m,n] // return LCS length for X and Y

23

LCS Example
We’ll see how LCS algorithm works on the

following example:
  X = ABCB
  Y = BDCAB

LCS(X, Y) = BCB
X = A B C B
Y = B D C A B

What is the Longest Common Subsequence
of X and Y?

24

LCS Example (0)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

X = ABCB; m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,4]

ABCB
BDCAB

25

LCS Example (1)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

for i = 1 to m c[i,0] = 0
for j = 1 to n c[0,j] = 0

ABCB
BDCAB

26

LCS Example (2)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB
BDCAB

27

LCS Example (3)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0

ABCB
BDCAB

28

LCS Example (4)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1

ABCB
BDCAB

29

LCS Example (5)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1 1

ABCB
BDCAB

30

LCS Example (6)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 1 0 1

1

ABCB
BDCAB

31

LCS Example (7)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 1 1 1

ABCB
BDCAB

32

LCS Example (8)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 1 1 1 2

ABCB
BDCAB

33

LCS Example (10)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

2 1 1 1 1

1 1

ABCB
BDCAB

34

LCS Example (11)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1 1

1 1 2

ABCB
BDCAB

35

LCS Example (12)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

ABCB
BDCAB

36

LCS Example (13)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1

ABCB
BDCAB

37

LCS Example (14)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2

ABCB
BDCAB

38

LCS Example (15)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3

ABCB
BDCAB

39

LCS Algorithm Running Time

  LCS algorithm calculates the values of each
entry of the array c[m,n]

  So what is the running time?

O(m*n)

since each c[i,j] is calculated in
constant time, and there are m*n
elements in the array

40

How to find actual LCS
  So far, we have just found the length of LCS, but

not LCS itself.
  We want to modify this algorithm to make it output

Longest Common Subsequence of X and Y
Each c[i,j] depends on c[i-1,j] and c[i,j-1]
or c[i-1, j-1]
For each c[i,j] we can say how it was acquired:

2

2 3

2 For example, here
c[i,j] = c[i-1,j-1] +1 = 2+1=3

41

How to find actual LCS - continued
  Remember that

  So we can start from c[m,n] and go backwards
  Look first to see if 2nd case above was true
  If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i]

(because x[i] is a part of LCS)
  When i=0 or j=0 (i.e. we reached the beginning),

output remembered letters in reverse order

42

Algorithm to find actual LCS
  Here’s a recursive algorithm to do this:

LCS_print(x, m, n, c) {
 if (c[m][n] == c[m-1][n]) // go up?
 LCS_print(x, m-1, n, c);
 else if (c[m][n] == c[m][n-1] // go left?
 LCS_print(x, m, n-1, c);
 else { // it was a match!
 LCS_print(x, m-1, n-1, c);
 print(x[m]); // print after recursive call
 }
}

43

Finding LCS
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3 B

44

Finding LCS (2)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3 B

B C B LCS (reversed order):
LCS (straight order): B C B
(this string turned out to be a palindrome)

45

46

Review: Dynamic programming
  DP is a method for solving certain kind of

problems
  DP can be applied when the solution of a

problem includes solutions to subproblems
  We need to find a recursive formula for the

solution
  We can recursively solve subproblems,

starting from the trivial case, and save their
solutions in memory

  In the end we’ll get the solution of the
whole problem

47

Properties of a problem that can be
solved with dynamic programming
  Simple Subproblems

– We should be able to break the original
problem to smaller subproblems that have the
same structure

  Optimal Substructure of the problems
– The solution to the problem must be a

composition of subproblem solutions
  Subproblem Overlap

– Optimal subproblems to unrelated problems can
contain subproblems in common

48

Review: Longest Common
Subsequence (LCS)

  Problem: how to find the longest pattern of
characters that is common to two text
strings X and Y

  Dynamic programming algorithm: solve
subproblems until we get the final solution

  Subproblem: first find the LCS of prefixes
of X and Y.

  this problem has optimal substructure: LCS
of two prefixes is always a part of LCS of
bigger strings

49

Conclusion
  Dynamic programming is a useful technique

of solving certain kind of problems
  When the solution can be recursively

described in terms of partial solutions, we
can store these partial solutions and re-use
them as necessary

  Running time (Dynamic Programming
algorithm vs. naïve algorithm):
– LCS: O(m*n) vs. O(n * 2m)
–  0-1 Knapsack problem: O(W*n) vs. O(2n)

