e Also, memoization

— Examples:

* Longest Common Subsequence

— Readings: 8.1, pp. 334-335, 8.4, p. 361

 Also, handout on 0/1 knapsack
* Wikipedia articles

I CS 4102 — Algorithms
— Dynamic programming
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Dynamic programming

m Old “bad” name (see Wikipedia or Notes, p. 361)

m It 1s used, when the solution can be recursively
described 1n terms of solutions to subproblems

(optimal substructure)

m Algorithm finds solutions to subproblems and

stores them 1n memory for later use

m More efficient than “brute-force methods”,

which solve the same subproblems over and over

again




Optimal Substructure Property

m Definition on p. 334

— If S is an optimal solution to a problem, then the
0 components of S are optimal solutions to
N

subproblems

m Examples:
— True for knapsack
— True for coin-changing (p. 334)
— True for single-source shortest path
— Not true for longest-simple-path (p. 335)




Dynamic Programming

I m Works “bottom-up”

— Finds solutions to small sub-problems first
i — Stores them
N

— Combines them somehow to find a solution
to a slightly larger subproblem

m Compare to greedy approach
— Also requires optimal substructure
— But greedy makes choice first, then solves




Problems Solved with Dyn. Prog.

m Coin changing (Section 8.2, we won’t do)

m Multiplying a sequence of matrices (8.3, we
might do if we have time)

— Can do in various orders: (AB)C vs. A(BC)

— Pick order that does fewest number of scalar
multiplications

m Longest common subsequence (8.4, we’ll do)

m All-pairs shortest paths (Floyd’s algorithm)
— Remember from CS2167

m Constructing optimal binary search trees
m Knapsack problems (we’ll do 0/1)







Remember Fibonacci numbers?

m Recursive code:

I long fib(int n) {
assert(n >= 0);
__ if (n==0)return O;
if (n==1)return 1;
return fib(n-1) + flb(n 2);
]

m What s the problem??

— Repeatedly solves the same subproblems
— “Obscenely” exponential (p. 326)




Memoization

m Before talking about dynamic
programming, another general
= technique: Memoization

N
l —Before solving it (again), look to see if

— AKA using a memory function
m Simple idea:

— Calculate and store solutions to
subproblems

you've remembered it 8




Memoization

m Use a Table abstract data type

— Lookup key: whatever identifies a
subproblem

— Value stored: the solution

m Could be an array/vector

— E.g. for Fibonacci, store fib(n) using
iIndex n

— Need to initialize the array
m Could use a map / hash-table




Memoization and Fibonacci

m B_efor_e recursive code below called, must
Initialize results[] so all values are -1

long fib_mem(int n, long results[]) {

iIf ( results[n] I=-1)

return results[n]; // return stored value
long val,;
if(n==0]||n==1)val =n;// odd but right
else

val = fib_mem(n-1, results)

+ fib_mem(n-2, results);

results[n] = val; // store calculated value
return val;




Observations on fib mem()

m Same elegant top-down, recursive
approach based on definition

i —Without repeated subproblems
]

m Memory function: a function that
remembers

—Save time by using extra space
m Can show this runs in ©(n)




Memoization and Functional
Languages

m Languages like Lisp and Scheme are
functional languages

m How could memoization help?

m What could go wrong”? Would this
always work?

— Side effects
— Haskell does this (call-by-need)




General Strategy of Dyn. Prog.

1.

Structure: What's the structure of an optimal
solution in terms of solutions to its
subproblems?

Give a recursive definition of an optimal
solution in terms of optimal solutions to
smaller problems

— Usually using min or max

Use a data structure (often a table) to store
smaller solutions in a bottom-up fashion

— Optimal value found in the table

(If needed) Reconstruct the optimal solution
— l.e. what produced the optimal value




Dyn. Prog. vs. Divide and Conquer

m Remember D & C?

— Divide into subproblems. Solve each.
Combine.

m Good when subproblems do not
overlap, when they're independent

— No need to repeat them
m Divide and conquer: top-down
"= = Dynamic programming: bottom-up




LCS: Section 8.4

m A “significant” example

m Lots of detaill

— Look at example here and the one in the
book




Longest Common Subsequence
(LCS)

Application: comparison of two DNA strings
Ex: X={ABCBDAB},Y={BDCABA}

Longest Common Subsequence:
X=AB C BDAB

BDCAB A

Brute force algorithm would compare each
subsequence of X with the symbols in Y

!
&
~




LCS Algorithm

m 1if | X| =m, |Y|=n, then there are 2™
subsequences of X; we must compare each
with Y (n comparisons)

B So the running time of the brute-force

i algorithm 1s O(n 2™)
N

m Notice that the LCS problem has optimal
substructure: solutions of subproblems are
parts of the final solution.

m Subproblems: “find LCS of pairs of prefixes
of X and Y”




LCS Algorithm

m First we’ll find the length of LCS. Later we’ll
modify the algorithm to find LCS itself.

m Detine X, ¥, to be the prefixes of X and Y of
= length i and j respectively

m Define c/i,j] to be the length of LCS of X. and
Y.

J

m Then the length of LCS of X and Y will be
c/m,n/

L [di-LL g -1]+1 if x[i] =y /],

l Ah.71= {max(c[i, j=11.c[i=1,/]) otherwise




max(c[i, j=1],cli-1,j]) otherwise

m We start with i = = 0 (empty substrings of x

[.CS recursive solution
cli-1,7-1]+1 it x[i] = y[j],
o

and y)

m Since X, and Y, are empty strings, their LCS

1s always empty (1.e. ¢/0,0] = 0)

2 = LCS of empty string and any other string 1s
l empty, so for every 1 and j: ¢/0, j] = ¢/[i,0] =0




LCS recursive solution

cli-1,7-1]+1 it x[i] =y J],

C[ia ]] = .. . : .
max(c[i, j —1],c[i—1, j]) otherwise

Tk When we calculate ¢/i,j/, we consider two

Casces.

m First case: x/i/=y/j/: one more symbol in
strings X and Y matches, so the length of LCS

B X, and Y; equals to the length of LCS of

l smaller strings X, ; and Y, ; , plus 1




LCS recursive solution

cli-1,j-1]+1 if x[i] = y[ /],
max(c[i, j=1],cli-1,j]) otherwise

m Second case: x/i/ = y/j]

m As symbols don’t match, our solution 1s not
improved, and the length of LCS(X; , Y;) 1s
the same as before (1.e. maximum of
LCS(X;, Y;,,) and LCS(X; 1,Y;)

Why not just take the length of LCS(X, ;, Y, ) ?

1-1°

.
!
~




LCS Length Algorithm
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2.n =length(Y) // get the # of symbols in Y
3.fori=1tom ¢[1,0]=0 //special case: Y,
4.forj=1ton ¢[0,)]=0 //special case: X,
5.for1=1tom // for all X,
6. forj=1ton // for all Y
7. if (X;==Y;)
8. c[Lj] =c[1-1,-1] + 1
9. else c[1,]] = max( c[1-1,3], c[1,]-1] )
10. return c[m,n] // return LCS length for X and ,y




LCS Example

We’ll see how LCS algorithm works on the
following example:

m X = ABCB
o m Y =BDCAB

What is the Longest Common Subsequence
of X and Y?

s LCS(X,Y)=BCB

X=AB C B
l Y= BDCAB 23




ABCB

Allocate array c[5,4]

CS Example (0)
Do 1 , N 5 BDCAB

i Yy B D C A B

0 Xi

i A

0 B

3 C

4 B

X=ABCB; m=|X|=4

Y =BDCAB;n=1|Y|=5




CS Example (1) 45¢8
0 4

| ; | ) ; 5BDCAB
i Y B D C A B

0 Xlg oo 0] o0 | o0

1 Al

2 B 0

3 C | o

4 B 0

fori=1tom c[1,0]

forj=1ton c[0,1]




J

X1
B
C
B

ABCB

CS Example (2)

0 1 2 3 4 SBDCAB
Yi (B) D C A B

0,0 0 | 0 | 0 |0

__»V

0 0

0

0

0

if (X;==Y,)

e[ij] = c[i-1,j-1] + 1
else c[1,]] = max( c[1-1,], c[1,]-1] )




J

ABCB
OCS Exazmplf (3) _BDCAB

i YjIIBDCAB
0 Xtlog 1ol o o |0 | o
1 Alol ol o0 | o
2 B |,
3 C | o
4 B |

if (X, ==Y,)

e[ij] = c[i-1,j-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




ABCB
OCS Examp136 (441) BDCAR

] 1 2 5

1 Yy B D C A) B
0 X1

0 0 0 0 0 0

O T

1 0 0 0 0 1
2 B 0
3 C 0
4 B 0

if (X;==Y;)

c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




BDCAB

2
D C A B

CS Example (5) 25¢B
0 34

| 1
i Yi B B
0 Xtlog 1ol o o |0 | o
1 @0 0 0 |0 | 141
2 B |,
3 C | o
4 B |
if(X. =Y:)

e[ij] = c[i-1,j-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




CS Example (6) 255
0 3 4

; q ) 5BDCAB

i Yi (BY D C A B

0 XKlbol ol ol ol o | o

1 Aol oo |0 |1 |1

™

2 0 1

3 C 0

4 B 0

if (X, =Y,)

c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




Xi
A

C
B

LCS Example (7) ABCB

BDCAB
& > B
0 0 0 0
0| 0|0 | 0 |, 1 |1
— — R

0

0

if (X;==Y;)
c[ij] =c[i-1,5-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




CS Example (8) 2B¢B
. BDCAB
io0 1 2 3 4
Yi B D C A @
Xtiog o] oo | o
Adlolo o0 o |1
0o | 1|1 | 1|1
C o
B | o
if (X, ==Y,)

c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




LCS Example (10) 2B¢B
i 3 4

j 0 5
1 Yy (B D C A B
0 0

0 X1 0 0

— — /
— —

0 0 1 1

0 | 1| 1 | 1 | 1|2

S AN ) (\®)

()

<
=
|
\/

<
=

if (X;==Y;)
c[ij] =c[i-1,5-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




LCS Example (11) 2B¢B
] 0 1 2 4 5 BDCAB
i Yj D @ A B
0 0

B
0 XLl ol ol o | o
0

0 0 1 1

0 | 1| 101 | 1|2

0 | 1 1 2
B | o

~ W )
o

if (X;==Y;)
c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




BDCAB

] |
1 Y] D C (A B

LCS Example (12) 2B¢B
' 0 2 3

B
. N —

0 XKlbol ol ol ol o | o

1 Alololo | o | 1|1

2 B lol 111 1] 1].2

|
!
3 @0 1|1 | 2T27T2

if (X;==Y;)
c[ij] =c[i-1,5-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




LCS Example (13) 255
i 0 2 3 4

; 5BDCAB
i vi (BY D C A B
0 XKool ol ol ol o | o
1 Alololo | o | 1|1
2 Blol 11|11 ]2
3 Clog1|1 |2 |2 ]2
\
: 0 |

if (X;==Y;)
c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




LCS Example (14) AB¢B
' 0 4

; | P 5BDCAB
i yi B b C @ B
0 Xlolol ol o] o o
1 Alololo | o | 1|1
2 B lol 111 1] 1] 2
3 Clo | 1|1 |2 | 2|2
I K
4 0| 1T 1 2 T2
if (X, ==Y,)

c[ij] =c[i-1,5-1] + 1
else c[1,)] = max( c[1-1,], c[1,)-1])




BDCAB

] |
i Yj DCA

LCS Example (15) 255
i 0 2 3 4

B
0 Klglol oo |0 o
1 Alololo o |11
2 B lol 11|11 2
3 Clo | 1] 1 | 2 | 22
4 0 1| 1 2 2@

if (X;==Y;)
c[ij] =c[i-1,-1] + 1
else c[1,]] = max( c[1-1;], c[1,]-1] )




LCS Algorithm Running Time

m LCS algorithm calculates the values of each
entry of the array ¢c[m,n]

®m So what 1s the running time?

O(m*n)

since each c[1,j] 1s calculated 1n
constant time, and there are m*n
elements 1n the array




How to find actual LCS

m So far, we have just found the length of LCS, but
not LCS itself.

m We want to modify this algorithm to make 1t output
Longest Common Subsequence of X and Y

B Each ¢/, jJ depends on c¢/i-1,j] and c/i,j-1]
or cfi-1, j-1]

For each c[1,j] we can say how 1t was acquired:

\ 2 For example, here
7 3 C[I,J] — C[i-l,j-l] +]1 =2+1=3




How to find actual LCS - continued

m Remember that

cli-1,7-1]+1 it x[i] =y J],

C[ia ]] = .. . : .
max(c[i, j —1],c[i—1, j]) otherwise

®m So we can start from ¢/m,n/ and go backwards

m Look first to see if 2" case above was true

m If not, then ¢/i,j] = c[i-1, j-1]+1, so remember x/i]
(because x/i/ 1s a part of LCS)

m When 1=0 or j=0 (i.e. we reached the beginning),
output remembered letters in reverse order




Algorithm to find actual LCS

m Here's a recursive algorithm to do this:

LCS_print(x, m, n, ¢) {
if (c[m][n] == c[m-1][n]) // go up?
LCS_print(x, m-1, n, c);
else if (c[m][n] == c[m][n-1] // go left?
LCS_print(x, m, n-1, c);
else { // it was a match!
LCS_print(x, m-1, n-1, ¢);
print(x[m]); // print after recursive call
)
)




Finding LCS
0 | 2 3 4 5
Y B D C A B
0 0| o 0 | o
0 0 0 | 0 | 1 |1
\
0 1< 1 \ 1 1 2
0 | 1 | 1 | 2+-2x 2
o 1|1 |2 |2 |3




Fmdlng LCS (2)

. \ —
0 Xtlolol ol ol o o
1 A 0\0 o | 0o | 1 | 1
2 B ) 1«—1\1 1 | 2
3 Clo | 1] 1 2«—2\2
4 B )o | 1|1 |2 |2 |3

LCS (reversed order): B C B

LCS (straight order): BCB
(this string turned out to be a palindrome)







Review: Dynamic programming
m DP 1s a method for solving certain kind of
problems
m DP can be applied when the solution of a
problem includes solutions to subproblems
=
N

m We need to find a recursive formula for the
solution

m We can recursively solve subproblems,
starting from the trivial case, and save their
solutions in memory

® In the end we’ll get the solution of the

l whole problem




Properties of a problem that can be
solved with dynamic programming

®m Simple Subproblems

— We should be able to break the original
problem to smaller subproblems that have the

- same structure
N

m Optimal Substructure of the problems

— The solution to the problem must be a
composition of subproblem solutions

m Subproblem Overlap

— Optimal subproblems to unrelated problems can

contain subproblems in common o




Review: Longest Common
Subsequence (LCS)

m Problem: how to find the longest pattern of
characters that 1s common to two text
strings X and Y

® Dynamic programming algorithm: solve
subproblems until we get the final solution

m Subproblem: first find the LCS of prefixes
of Xand Y.

m this problem has optimal substructure: LCS
of two prefixes 1s always a part of LCS of
bigger strings




Conclusion

®m Dynamic programming 1s a useful technique
of solving certain kind of problems

® When the solution can be recursively
described 1n terms of partial solutions, we
can store these partial solutions and re-use
them as necessary

® Running time (Dynamic Programming
algorithm vs. naive algorithm):

— LCS: O(m*n) vs. O(n * 2™)
— 0-1 Knapsack problem: O(W#*n) vs. O(2")




