
1

CS 4102 – Algorithms

– Dynamic programming
• Also, memoization

– Examples:
• Longest Common Subsequence

– Readings: 8.1, pp. 334-335, 8.4, p. 361
• Also, handout on 0/1 knapsack
• Wikipedia articles

2

Dynamic programming
  Old “bad” name (see Wikipedia or Notes, p. 361)

  It is used, when the solution can be recursively
described in terms of solutions to subproblems
(optimal substructure)

  Algorithm finds solutions to subproblems and
stores them in memory for later use

  More efficient than “brute-force methods”,
which solve the same subproblems over and over
again

3

Optimal Substructure Property

  Definition on p. 334
–  If S is an optimal solution to a problem, then the

components of S are optimal solutions to
subproblems

  Examples:
–  True for knapsack
–  True for coin-changing (p. 334)
–  True for single-source shortest path
–  Not true for longest-simple-path (p. 335)

4

Dynamic Programming

  Works “bottom-up”
– Finds solutions to small sub-problems first
– Stores them
– Combines them somehow to find a solution

to a slightly larger subproblem
  Compare to greedy approach

– Also requires optimal substructure
– But greedy makes choice first, then solves

5

Problems Solved with Dyn. Prog.
  Coin changing (Section 8.2, we won’t do)
  Multiplying a sequence of matrices (8.3, we

might do if we have time)
–  Can do in various orders: (AB)C vs. A(BC)
–  Pick order that does fewest number of scalar

multiplications
  Longest common subsequence (8.4, we’ll do)
  All-pairs shortest paths (Floyd’s algorithm)

–  Remember from CS216?
  Constructing optimal binary search trees
  Knapsack problems (we’ll do 0/1)

6

7

Remember Fibonacci numbers?
  Recursive code:

 long fib(int n) {
 assert(n >= 0);
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
 }

  What’s the problem?
– Repeatedly solves the same subproblems
–  “Obscenely” exponential (p. 326)

8

Memoization

 Before talking about dynamic
programming, another general
technique: Memoization
– AKA using a memory function

 Simple idea:
– Calculate and store solutions to

subproblems
– Before solving it (again), look to see if

you’ve remembered it

9

Memoization
  Use a Table abstract data type

– Lookup key: whatever identifies a
subproblem

– Value stored: the solution
  Could be an array/vector

– E.g. for Fibonacci, store fib(n) using
index n

– Need to initialize the array
  Could use a map / hash-table

10

Memoization and Fibonacci
  Before recursive code below called, must

initialize results[] so all values are -1

 long fib_mem(int n, long results[]) {
 if (results[n] != -1)
 return results[n]; // return stored value
 long val;
 if (n == 0 || n ==1) val = n; // odd but right
 else
 val = fib_mem(n-1, results)
 + fib_mem(n-2, results);
 results[n] = val; // store calculated value
 return val;
 }

11

Observations on fib_mem()

 Same elegant top-down, recursive
approach based on definition
– Without repeated subproblems

 Memory function: a function that
remembers
– Save time by using extra space

 Can show this runs in Θ(n)

12

Memoization and Functional
Languages

  Languages like Lisp and Scheme are
functional languages

  How could memoization help?
  What could go wrong? Would this

always work?
– Side effects
– Haskell does this (call-by-need)

13

General Strategy of Dyn. Prog.
1.  Structure: What’s the structure of an optimal

solution in terms of solutions to its
subproblems?

2.  Give a recursive definition of an optimal
solution in terms of optimal solutions to
smaller problems
–  Usually using min or max

3.  Use a data structure (often a table) to store
smaller solutions in a bottom-up fashion
–  Optimal value found in the table

4.  (If needed) Reconstruct the optimal solution
–  I.e. what produced the optimal value

14

Dyn. Prog. vs. Divide and Conquer

  Remember D & C?
– Divide into subproblems. Solve each.

Combine.
  Good when subproblems do not

overlap, when they’re independent
– No need to repeat them

  Divide and conquer: top-down
  Dynamic programming: bottom-up

15

LCS: Section 8.4

  A “significant” example
  Lots of detail

– Look at example here and the one in the
book

16

Longest Common Subsequence
(LCS)

Application: comparison of two DNA strings
Ex: X= {A B C B D A B }, Y= {B D C A B A}
Longest Common Subsequence:
X = A B C B D A B
Y = B D C A B A
Brute force algorithm would compare each

subsequence of X with the symbols in Y

17

LCS Algorithm
  if |X| = m, |Y| = n, then there are 2m

subsequences of X; we must compare each
with Y (n comparisons)

  So the running time of the brute-force
algorithm is O(n 2m)

  Notice that the LCS problem has optimal
substructure: solutions of subproblems are
parts of the final solution.

  Subproblems: “find LCS of pairs of prefixes
of X and Y”

18

LCS Algorithm
  First we’ll find the length of LCS. Later we’ll

modify the algorithm to find LCS itself.
  Define Xi, Yj to be the prefixes of X and Y of

length i and j respectively
  Define c[i,j] to be the length of LCS of Xi and

Yj
  Then the length of LCS of X and Y will be

c[m,n]

19

LCS recursive solution

  We start with i = j = 0 (empty substrings of x
and y)

  Since X0 and Y0 are empty strings, their LCS
is always empty (i.e. c[0,0] = 0)

  LCS of empty string and any other string is
empty, so for every i and j: c[0, j] = c[i,0] = 0

20

LCS recursive solution

  When we calculate c[i,j], we consider two
cases:

  First case: x[i]=y[j]: one more symbol in
strings X and Y matches, so the length of LCS
Xi and Yj equals to the length of LCS of
smaller strings Xi-1 and Yi-1 , plus 1

21

LCS recursive solution

  Second case: x[i] != y[j]

  As symbols don’t match, our solution is not
improved, and the length of LCS(Xi , Yj) is
the same as before (i.e. maximum of
LCS(Xi, Yj-1) and LCS(Xi-1,Yj)

Why not just take the length of LCS(Xi-1, Yj-1) ?

22

LCS Length Algorithm
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y0
4. for j = 1 to n c[0,j] = 0 // special case: X0
5. for i = 1 to m // for all Xi
6. for j = 1 to n // for all Yj
7. if (Xi == Yj)
8. c[i,j] = c[i-1,j-1] + 1
9. else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c[m,n] // return LCS length for X and Y

23

LCS Example
We’ll see how LCS algorithm works on the

following example:
  X = ABCB
  Y = BDCAB

LCS(X, Y) = BCB
X = A B C B
Y = B D C A B

What is the Longest Common Subsequence
of X and Y?

24

LCS Example (0)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

X = ABCB; m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,4]

ABCB
BDCAB

25

LCS Example (1)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

for i = 1 to m c[i,0] = 0
for j = 1 to n c[0,j] = 0

ABCB
BDCAB

26

LCS Example (2)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB
BDCAB

27

LCS Example (3)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0

ABCB
BDCAB

28

LCS Example (4)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1

ABCB
BDCAB

29

LCS Example (5)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1 1

ABCB
BDCAB

30

LCS Example (6)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 1 0 1

1

ABCB
BDCAB

31

LCS Example (7)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 1 1 1

ABCB
BDCAB

32

LCS Example (8)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 1 1 1 2

ABCB
BDCAB

33

LCS Example (10)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

2 1 1 1 1

1 1

ABCB
BDCAB

34

LCS Example (11)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1 1

1 1 2

ABCB
BDCAB

35

LCS Example (12)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

ABCB
BDCAB

36

LCS Example (13)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1

ABCB
BDCAB

37

LCS Example (14)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2

ABCB
BDCAB

38

LCS Example (15)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

B

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

 if (Xi == Yj)
 c[i,j] = c[i-1,j-1] + 1
 else c[i,j] = max(c[i-1,j], c[i,j-1])

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3

ABCB
BDCAB

39

LCS Algorithm Running Time

  LCS algorithm calculates the values of each
entry of the array c[m,n]

  So what is the running time?

O(m*n)

since each c[i,j] is calculated in
constant time, and there are m*n
elements in the array

40

How to find actual LCS
  So far, we have just found the length of LCS, but

not LCS itself.
  We want to modify this algorithm to make it output

Longest Common Subsequence of X and Y
Each c[i,j] depends on c[i-1,j] and c[i,j-1]
or c[i-1, j-1]
For each c[i,j] we can say how it was acquired:

2

2 3

2 For example, here
c[i,j] = c[i-1,j-1] +1 = 2+1=3

41

How to find actual LCS - continued
  Remember that

  So we can start from c[m,n] and go backwards
  Look first to see if 2nd case above was true
  If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i]

(because x[i] is a part of LCS)
  When i=0 or j=0 (i.e. we reached the beginning),

output remembered letters in reverse order

42

Algorithm to find actual LCS
  Here’s a recursive algorithm to do this:

LCS_print(x, m, n, c) {
 if (c[m][n] == c[m-1][n]) // go up?
 LCS_print(x, m-1, n, c);
 else if (c[m][n] == c[m][n-1] // go left?
 LCS_print(x, m, n-1, c);
 else { // it was a match!
 LCS_print(x, m-1, n-1, c);
 print(x[m]); // print after recursive call
 }
}

43

Finding LCS
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3 B

44

Finding LCS (2)
j 0 1 2 3 4 5

0

1

2

3

4

i
Xi

A

B

C

Yj B B A C D

0

0

0 0 0 0 0

0

0

0

1 0 0 0 1

1 2 1 1

1 1 2

1

2 2

1 1 2 2 3 B

B C B LCS (reversed order):
LCS (straight order): B C B
(this string turned out to be a palindrome)

45

46

Review: Dynamic programming
  DP is a method for solving certain kind of

problems
  DP can be applied when the solution of a

problem includes solutions to subproblems
  We need to find a recursive formula for the

solution
  We can recursively solve subproblems,

starting from the trivial case, and save their
solutions in memory

  In the end we’ll get the solution of the
whole problem

47

Properties of a problem that can be
solved with dynamic programming
  Simple Subproblems

– We should be able to break the original
problem to smaller subproblems that have the
same structure

  Optimal Substructure of the problems
– The solution to the problem must be a

composition of subproblem solutions
  Subproblem Overlap

– Optimal subproblems to unrelated problems can
contain subproblems in common

48

Review: Longest Common
Subsequence (LCS)

  Problem: how to find the longest pattern of
characters that is common to two text
strings X and Y

  Dynamic programming algorithm: solve
subproblems until we get the final solution

  Subproblem: first find the LCS of prefixes
of X and Y.

  this problem has optimal substructure: LCS
of two prefixes is always a part of LCS of
bigger strings

49

Conclusion
  Dynamic programming is a useful technique

of solving certain kind of problems
  When the solution can be recursively

described in terms of partial solutions, we
can store these partial solutions and re-use
them as necessary

  Running time (Dynamic Programming
algorithm vs. naïve algorithm):
– LCS: O(m*n) vs. O(n * 2m)
–  0-1 Knapsack problem: O(W*n) vs. O(2n)

