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CS 4102 – Algorithms 

– Dynamic programming 
• Also, memoization 

– Examples: 
• Longest Common Subsequence 

– Readings: 8.1, pp. 334-335, 8.4, p. 361 
• Also, handout on 0/1 knapsack 
• Wikipedia articles 
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Dynamic programming 
  Old “bad” name (see Wikipedia or Notes, p. 361) 

  It is used, when the solution can be recursively 
described in terms of solutions to subproblems 
(optimal substructure) 

  Algorithm finds solutions to subproblems and 
stores them in memory for later use 

  More efficient than “brute-force methods”, 
which solve the same subproblems over and over 
again 
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Optimal Substructure Property 

  Definition on p. 334 
–  If S is an optimal solution to a problem, then the 

components of S are optimal solutions to 
subproblems 

  Examples: 
–  True for knapsack 
–  True for coin-changing (p. 334) 
–  True for single-source shortest path 
–  Not true for longest-simple-path (p. 335) 
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Dynamic Programming 

  Works “bottom-up” 
– Finds solutions to small sub-problems first 
– Stores them 
– Combines them somehow to find a solution 

to a slightly larger subproblem 
  Compare to greedy approach 

– Also requires optimal substructure 
– But greedy makes choice first, then solves 
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Problems Solved with Dyn. Prog. 
  Coin changing (Section 8.2, we won’t do) 
  Multiplying a sequence of matrices (8.3, we 

might do if we have time) 
–  Can do in various orders: (AB)C vs. A(BC) 
–  Pick order that does fewest number of scalar 

multiplications 
  Longest common subsequence (8.4, we’ll do) 
  All-pairs shortest paths (Floyd’s algorithm) 

–  Remember from CS216? 
  Constructing optimal binary search trees 
  Knapsack problems (we’ll do 0/1) 
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Remember Fibonacci numbers? 
  Recursive code: 

   long fib(int n) { 
       assert(n >= 0); 
       if ( n == 0 ) return 0; 
       if ( n == 1 ) return 1; 
       return fib(n-1) + fib(n-2); 
   } 

  What’s the problem? 
– Repeatedly solves the same subproblems 
–  “Obscenely” exponential (p. 326) 
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Memoization 

 Before talking about dynamic 
programming, another general 
technique:  Memoization 
– AKA using a memory function 

 Simple idea: 
– Calculate and store solutions to 

subproblems 
– Before solving it (again), look to see if 

you’ve remembered it 
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Memoization 
  Use a Table abstract data type 

– Lookup key: whatever identifies a 
subproblem 

– Value stored: the solution 
  Could be an array/vector 

– E.g. for Fibonacci, store fib(n) using 
index n 

– Need to initialize the array 
  Could use a map / hash-table 
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Memoization and Fibonacci 
  Before recursive code below called, must 

initialize results[] so all values are -1 

   long fib_mem(int n, long results[]) { 
       if ( results[n] != -1 ) 
           return results[n];  // return stored value 
       long val; 
       if ( n == 0 || n ==1 ) val = n; // odd but right 
       else 
           val = fib_mem(n-1, results) 
                 + fib_mem(n-2, results); 
       results[n] = val; // store calculated value  
       return val; 
   } 
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Observations on fib_mem() 

 Same elegant top-down, recursive 
approach based on definition 
– Without repeated subproblems 

 Memory function: a function that 
remembers 
– Save time by using extra space 

 Can show this runs in Θ(n) 



12 

Memoization and Functional 
Languages 

  Languages like Lisp and Scheme are 
functional languages 

  How could memoization help? 
  What could go wrong? Would this 

always work? 
– Side effects 
– Haskell does this (call-by-need) 
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General Strategy of Dyn. Prog. 
1.  Structure: What’s the structure of an optimal 

solution in terms of solutions to its 
subproblems? 

2.  Give a recursive definition of an optimal 
solution in terms of optimal solutions to 
smaller problems 
–  Usually using min or max 

3.  Use a data structure (often a table) to store 
smaller solutions in a bottom-up fashion 
–  Optimal value found in the table 

4.  (If needed) Reconstruct the optimal solution 
–  I.e. what produced the optimal value 
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Dyn. Prog. vs. Divide and Conquer 

  Remember D & C? 
– Divide into subproblems.  Solve each. 

Combine. 
  Good when subproblems do not 

overlap, when they’re independent 
– No need to repeat them 

  Divide and conquer: top-down 
  Dynamic programming: bottom-up 
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LCS: Section 8.4 

  A “significant” example 
  Lots of detail 

– Look at example here and the one in the 
book 
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Longest Common Subsequence 
(LCS) 

Application: comparison of two DNA strings 
Ex: X= {A B C B D A B }, Y= {B D C A B A}  
Longest Common Subsequence:  
X =  A B     C     B D A B 
Y =      B D C A B     A 
Brute force algorithm would compare each 

subsequence of X with the symbols in Y 
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LCS Algorithm 
  if |X| = m, |Y| = n, then there are 2m 

subsequences of X; we must compare each 
with Y (n comparisons) 

  So the running time of the brute-force 
algorithm is O(n 2m) 

  Notice that the LCS problem has optimal 
substructure: solutions of subproblems are 
parts of the final solution. 

  Subproblems: “find LCS of pairs of prefixes 
of X and Y” 
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LCS Algorithm 
  First we’ll find the length of LCS. Later we’ll 

modify the algorithm to find LCS itself. 
  Define Xi, Yj to be the prefixes of X and Y of 

length i and j respectively 
  Define c[i,j] to be the length of LCS of Xi and 

Yj 
  Then the length of LCS of X and Y will be 

c[m,n] 
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LCS recursive solution 

  We start with i = j = 0 (empty substrings of x 
and y) 

  Since X0 and Y0 are empty strings, their LCS 
is always empty (i.e. c[0,0] = 0) 

  LCS of empty string and any other string is 
empty, so for every i and j: c[0, j] = c[i,0] = 0 
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LCS recursive solution 

  When we calculate c[i,j], we consider two 
cases: 

  First case: x[i]=y[j]: one more symbol in 
strings X and Y matches, so the length of LCS 
Xi and Yj equals to the length of LCS of 
smaller strings Xi-1 and Yi-1 , plus 1 
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LCS recursive solution 

  Second case: x[i] != y[j] 

  As symbols don’t match, our solution is not 
improved, and the length of LCS(Xi , Yj) is 
the same as before (i.e. maximum of  
LCS(Xi, Yj-1) and LCS(Xi-1,Yj) 

Why not just take the length of LCS(Xi-1, Yj-1) ? 
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LCS Length Algorithm 
LCS-Length(X, Y) 
1. m = length(X)  // get the # of symbols in X 
2. n  = length(Y) // get the # of symbols in Y 
3. for i = 1 to m  c[i,0] = 0  // special case: Y0 
4. for j = 1 to n   c[0,j] = 0  // special case: X0 
5. for i = 1 to m    // for all Xi  
6.  for j = 1 to n     // for all Yj 
7.   if ( Xi == Yj )    
8.    c[i,j] = c[i-1,j-1] + 1 
9.   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 
10. return c[m,n]   // return LCS length for X and Y 
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LCS Example 
We’ll see how LCS algorithm works on the 

following example: 
  X = ABCB 
  Y = BDCAB 

LCS(X, Y) = BCB 
X = A B     C     B 
Y =     B D C A B 

What is the Longest Common Subsequence  
of X and Y? 
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LCS Example (0) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

X = ABCB;   m = |X| = 4 
Y = BDCAB; n = |Y| = 5 
Allocate array c[5,4]   

ABCB 
BDCAB 
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LCS Example (1) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

for i = 1 to m  c[i,0] = 0   
for j = 1 to n   c[0,j] = 0   

ABCB 
BDCAB 
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LCS Example (2) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 

ABCB 
BDCAB 
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LCS Example (3) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 

ABCB 
BDCAB 
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LCS Example (4) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 1 

ABCB 
BDCAB 



29 

LCS Example (5) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 0 1 1 

ABCB 
BDCAB 
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LCS Example (6) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

0 0 1 0 1 

1 

ABCB 
BDCAB 
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LCS Example (7) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 1 1 1 

ABCB 
BDCAB 
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LCS Example (8) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 1 1 1 2 

ABCB 
BDCAB 
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LCS Example (10) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

2 1 1 1 1 

1 1 

ABCB 
BDCAB 
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LCS Example (11) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 1 

1 1 2 

ABCB 
BDCAB 
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LCS Example (12) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

ABCB 
BDCAB 
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LCS Example (13) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 

ABCB 
BDCAB 
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LCS Example (14) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

  if ( Xi == Yj )    
   c[i,j] = c[i-1,j-1] + 1 
  else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 

ABCB 
BDCAB 



38 

LCS Example (15) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

B 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

   if ( Xi == Yj )    
    c[i,j] = c[i-1,j-1] + 1 
   else c[i,j] = max( c[i-1,j], c[i,j-1] ) 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 

ABCB 
BDCAB 
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LCS Algorithm Running Time 

  LCS algorithm calculates the values of each 
entry of the array c[m,n] 

  So what is the running time? 

O(m*n) 

since each c[i,j] is calculated in 
constant time, and there are m*n 
elements in the array 
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How to find actual LCS 
  So far, we have just found the length of LCS, but 

not LCS itself. 
  We want to modify this algorithm to make it output 

Longest Common Subsequence of X and Y 
Each c[i,j] depends on c[i-1,j] and c[i,j-1]  
or c[i-1, j-1] 
For each c[i,j] we can say how it was acquired: 

2 

2 3 

2 For example, here  
c[i,j] = c[i-1,j-1] +1 = 2+1=3 
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How to find actual LCS - continued 
  Remember that 

  So we can start from c[m,n] and go backwards 
  Look first to see if 2nd case above was true 
  If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i]   

(because x[i] is a part  of LCS) 
  When i=0 or j=0 (i.e. we reached the beginning), 

output remembered letters in reverse order 
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Algorithm to find actual LCS 
  Here’s a recursive algorithm to do this: 

LCS_print(x, m, n, c) { 
   if (c[m][n] == c[m-1][n]) // go up? 
      LCS_print(x, m-1, n, c); 
   else if (c[m][n] == c[m][n-1] // go left? 
      LCS_print(x, m, n-1, c); 
   else { // it was a match! 
      LCS_print(x, m-1, n-1, c); 
      print(x[m]); // print after recursive call 
    } 
} 
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Finding LCS 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 B 
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Finding LCS (2) 
j       0        1          2         3        4         5  

0 

1 

2 

3 

4 

i 
Xi 

A 

B 

C 

Yj B B A C D 

0 

0 

0 0 0 0 0 

0 

0 

0 

1 0 0 0 1 

1 2 1 1 

1 1 2 

1 

2 2 

1 1 2 2 3 B 

B C B LCS (reversed order): 
LCS (straight order): B  C  B  
(this string turned out to be a palindrome) 
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Review: Dynamic programming 
  DP is a method for solving certain kind of 

problems 
  DP can be applied when the solution of a 

problem includes solutions to subproblems 
  We need to find a recursive formula for the 

solution 
  We can recursively solve subproblems, 

starting from the trivial case, and save their 
solutions in memory 

  In the end we’ll get the solution of the 
whole problem 
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Properties of a problem that can be 
solved with dynamic programming 
  Simple Subproblems 

– We should be able to break the original 
problem to smaller subproblems that have the 
same structure 

  Optimal Substructure of the problems 
– The solution to the problem must be a 

composition of subproblem solutions 
  Subproblem Overlap 

– Optimal subproblems to unrelated problems can 
contain subproblems in common 
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Review:  Longest Common 
Subsequence (LCS) 

  Problem: how to find the longest pattern of 
characters that is common to two text 
strings X and Y 

  Dynamic programming algorithm: solve 
subproblems until we get the final solution 

  Subproblem: first find the LCS of prefixes 
of X and Y. 

  this problem has optimal substructure: LCS 
of two prefixes is always a part of LCS of 
bigger strings 
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Conclusion 
  Dynamic programming is a useful technique 

of solving certain kind of problems 
  When the solution can be recursively 

described in terms of partial solutions, we 
can store these partial solutions and re-use 
them as necessary 

  Running time (Dynamic Programming 
algorithm vs. naïve algorithm): 
– LCS: O(m*n) vs. O(n * 2m) 
–  0-1 Knapsack problem: O(W*n) vs. O(2n) 


