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CS 4102: Algorithms 
NP Completeness 

Chapter 10 in Johnsonbaugh & Schaefer 
Read and study! (This ain’t simple.) 

Slide credits: Thanks to David Luebke, Jim Cohoon 
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NP-Completeness 

●  Some problems are intractable:  
as they grow large, we are unable to solve them 
in reasonable time 

●  What constitutes reasonable time? Standard 
working definition: polynomial time 
■  On an input of size n the worst-case running time is O

(n k) for some constant k 
■  Polynomial time: O(n2), O(n3), O(1), O(n lg n)  
■  Not in polynomial time: O(2 n), O(n n), O(n!) 
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Polynomial-Time Algorithms 

●  Are some problems solvable in polynomial 
time? 
■ Of course: many (most?) algorithms we’ve 

studied provides polynomial-time solution to 
some problem 

■ We define P to be the class of problems 
solvable in polynomial time 

●  Are all problems solvable in polynomial 
time? 
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Tractability 

●  Again, some problems are undecidable: no 
computer can solve them 
■  E.g., Turing’s “Halting Problem” 
■  We’re not going to talk about such problems here 

(Take a theory class to learn more!) 

●  Other problems are decidable, but intractable:  
as they grow large, we are unable to solve them 
in reasonable time 
■  What constitutes “reasonable time”? 
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Flashback: Growth Rates 

●  Review pages 430-431 for this important point: 
■  Say s is the size of the largest problem we can solve 

with algorithm A given time t 
■  How much larger a problem can we solve if we have 

10x as much time (or a computer that’s 10x faster)? 
●  Depends on the complexity of A 

■  Linear?  10 x s  times as large a problem 
■  Quadratic?  sqrt(10) = 3.2 x s   times as large 
■  Cubic?   cuberoot(10) = 2.2 x s  times as large 
■  2n? 

○ s + lg 10 as large, or s + 3.2 as large 
○ Note additive factor, not mulitplicative 
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NP-Complete Problems 

●  The NP-Complete problems are an 
interesting class of problems whose status 
is unknown  
■ No polynomial-time algorithm has been 

discovered for an NP-Complete problem 
■ No suprapolynomial lower bound has been 

proved for any NP-Complete problem, either 
● We call this the P = NP question 
■ The biggest open problem in CS 
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An NP-Complete Problem: 
Hamiltonian Cycles 

●  An example of an NP-Complete problem: 
■ A hamiltonian cycle of an undirected graph is 

a simple cycle that contains every vertex 
■ The hamiltonian-cycle problem: given a graph 

G, does it have a hamiltonian cycle? 

■ Describe a naïve algorithm for solving the 
hamiltonian-cycle problem.  Running time? 

■ Have we studied a search algorithm that can 
be used to solve this?  Running time? 
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Other Problems to Know 

●  Hamilton Path/Cycle, TSP 
●  Graph Coloring 
●  Vertex cover 
●  Satisifiability 
●  Subset Sum 
●  Bin Packing 
●  Knapsack 
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Some Definitions Before We Proceed 

●  Decision problems 
■  Simple view: Problem is to answer with a “yes” or 

“no” answer for a given input 

●  Definition, page 431: 
■  A problem is a set of finite-length questions (strings) 

with associated finite-length answers (strings). 
■  A decision problem: all questions (instances) map 

to either yes or no 
○  Positive instances vs. negative instances 

■  A correct algorithm accepts all positive instances 
(says yes) and rejects negative instances (says no) 
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Decision Problems and Related 
Problems 

●  Problem P1: Primality Problem 
■  Is n a prime number? 
■  Instances: set of natural numbers 

○  Positive instances? 

●  Related Problem P2: Find smallest divisor 
■  Not a decision problem. 
■  P2 could be used to solve P1. 
■  In some sense, P2 is “harder”. 

●  Graph coloring 
■  P3: k-colorability. Given k, this is a decision problem 
■  P4: Find chromatic number?  not a decision problem 

○  Could use k-colorability to solve it. 
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Reminder: Graph Coloring 

●  A “coloring” is an assignment of “colors” to the 
set of vertices so that if vw is an edge, then 
C(v) <> C(w) 

●  Two forms: 
■  Optimization problem:  given G, find the smallest 

number of colors that can be used to color G  
○  The smallest k is known as G’s chromatic number, X (G) 

We say G is k-colorable. 

■  Decision problem:  given G  and a positive integer k, 
is it possible to assign a valid k-coloring to G? 

■  Note: book uses term function problem 
○  More general. An optimization is a type of… 
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Decision vs. Optimization 

●  Clearly an optimization problem is related to a 
particular decision problem 
■  Decision problem: Is there a solution as good or 

better than some given bound? 
■  Optimal value: What is the value of the best possible 

solution? 
■  Optimal solution: Find a solution with the optimal 

value! 

●  E.g. graph coloring 
■  Decision problem: Can G be colored with k colors? 
■  Optimal value: What is the chromatic number of G? 
■  Optimal solution: Find a coloring of vertices that uses 

X (G) colors. 
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Optimization and Decision Problems 

●  Optimization problems are at least as hard to 
solve as decision problems 
■  E.g.  if you can solve decision problem canColor(G,k) 

then call it in a loop (1 to n) to find optimal value, 
X (G) 

●  Important: theory presented here for P, NP etc. 
is defined based on decision problems 
■  But we’ll see this isn’t a problem… 
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Encodings, Input Sizes 

● Our text takes a formal CS approach to 
these topics 
■  Languages, accepting, encodings, etc. 

●  I choose in CS4102 to be less formal 
■  So I’ll try to “translate” or simplify when I can 

●  So about pages 433-434 on encodings… 



             16                 4/22/10 

Important: Input Size and P 

●  Sometimes a problems seems to be in P but really isn’t 
●  Example: finding if value n is a prime 

■  Just loop and do a mod: Θ(n), isn’t it? 

●  Note that here “n” is not the count or number of data 
items. 
■  There’s just one input item. 
■  But “n” is a value with a size that affects the execution time. 
■  The size is the number of bits, which is log(n) 
■  T(size) = n but size is log(n). 
■  T(log n) = n = 10log n    This is really an exponential! 

●  Be careful when “n” is not a count of data items but a 
value 
■  E.g. Dynamic programming problems (e.g. a table’s dimension) 
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P and NP 

●  As mentioned, P is set of decision 
problems that can be solved in polynomial 
time 

●  NP (nondeterministic polynomial time) is 
the set of decision problems that can be 
solved in polynomial time by a 
nondeterministic computer 
■ What on earth is that? 
■  Important:  “NP” does not mean “not 

polynomial”!!! 
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Nondeterminism 

●  Think of a non-deterministic computer as a 
computer that magically “guesses” a solution, 
then has to verify that it is correct 
■  If a solution exists, computer always guesses it 
■  One way to imagine it: a parallel computer that can 

freely spawn an infinite number of processes 
○  Have one processor work on each possible solution 
○  All processors attempt to verify that their solution works 
○  If a processor finds it has a working solution 

■  So: NP = problems verifiable in polynomial time 



             20                 4/22/10 

Nondeterminism (cont’d) 

●  Another way to think about it: 
■  If you could always guess the answer but were 

required to verify your guess was really right, could 
you do this in polynomial time? 
○  an oracle 

●  Just a second: solutions for decision problems 
are “yes” or “no” 
■  How can guessing that help us? 
■  The idea of verifying a solution in polynomial time is 

an informal definition of nondeterminism. 
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Nondeterminism and our Text 

●  Pages 440-441 
■ A guess function that makes a choice 
■ Count it as one step (i.e. constant complexity) 
■  If run again, could guess something else 

○ Non-deterministic 

■  Sequence of guesses is a computation path or 
run 

■  If some run leads to a “yes”, then that 
sequence of choices is a witness 
○  It proves that input is accepted by the algorithm 
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Nondeterminism More Formally 

●  Non-deterministic algorithm A has 2 phases: 
■  Non-deterministic phase: writes a string s (often 

called a certificate) somewhere 
■  Deterministic phase: May use s and the input to 

return “yes” or “no” or nothing 
●  When run with same input, may produce 

different certificate s  
●  Total cost is cost of both steps 
●  Important: If A is give input x and for some  

execution it says “yes”, then the answer is “yes”. 
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How to Think about Non-Det. Here 

●  Two ways: 
■  If we ran a non-deterministic algorithm once and it 

made the right guess each time (wrote the correct 
certificate) if that was possible… 

■  Or, if we ran it so many times over all possibilities, 
and one of those led to a “yes”… 

●  If some oracle could write out the “right” 
certificate, would we recognize it and say “yes”? 

●  (An aside: If not, then we’re not able to check a 
correct answer. That’s not good, is it?) 
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Definition of Class NP 

●  Definition: 
NP is the class of decision problems for which 
there is a polynomially bounded non-
deterministic algorithm. 

●  Reminder: formally these are decision problems 
■  But (for many problems) imagine a certificate that is 

the optimal solution 
■  E.g. 3-colorability: s  is a coloring 
■  E.g. ham. path:  s  is a path 
■  Can we “verify” these and say “yes” in poly. time? 
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Proving Problems are in NP 

●  Self test: 
■ How do we typically prove a problem ∈ NP? 

●  Examples: 
■  Is sorting in NP?  (Not a decision problem! 

Could redefine it to be.) 
○ What could the certificate be? Could we verify it in 

poly. time? 

■  Is this in NP? Does a weighted graph G have 
a spanning tree with value <= k? 
○ Think-Pair-Share activity:  prove this belongs to NP 

 What’s the certificate? What do the two phases do? 
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Proving Problems are in NP (2) 

●  Note:  The non-deterministic phase might do 
“nothing”.  Example: 

●  Problem: Does a graph G have a MST of total 
weight less than k? 
■  Does this belong to NP?  Yes!  Outline of proof: 

○  No need to generate a certificate or guess non-
deterministically 

○  Find MST using Kruskal’s or Prim’s algorithms 
○  Compare weight of the MST to k 
○  Thus we can verify a proposed yes/no answer in polynomial 

time 

●  Thus problems in P are easily shown to be in NP 
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P and NP 

●  Is P ⊆  NP?  Why or why not? 
●  Answer: all decision problems in P also belong to 

NP 
■  Informally: you can solve them directly and compare 

the solution to the certificate 

●  But are they equal or is it a proper subset? 
●  In other words, is there a problem in NP that 

cannot be directly solved in polynomial time? 
■  Is P = NP?  Or not?  (The big question!) 
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Summary: P and NP 

●  Summary so far: 
■  P = problems that can be solved in polynomial time 
■  NP = problems for which a solution can be verified in 

polynomial time 
■  Unknown whether P = NP (most suspect not) 

●  We’ve seen problems that belong to NP that may 
not belong to P 
■  Hamiltonian path/cycle, k-COL problems are in NP  
■  Cannot solve in polynomial time 
■  Easy to verify solution in polynomial time (How?) 
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NP-Complete Problems 

●  We will see that NP-Complete problems are the 
“hardest” problems in NP: 
■  If any one  NP-Complete problem can be solved in 

polynomial time… 
■  …then every NP-Complete problem can be solved in 

polynomial time… 
■  …and in fact every problem in NP can be solved in 

polynomial time (which would show P = NP) 
■  Thus: solve hamiltonian-cycle in O(n100) time, you’ve 

proved that P = NP.  Retire rich & famous. 
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Reduction 

●  The crux of NP-Completeness is reducibility 
■  Informally, a problem A can be reduced to 

another problem B if any instance of A can be 
“easily rephrased” as an instance of B , the 
solution to which provides a solution to the 
instance of A  
○ What do you suppose “easily” means? 
○ This rephrasing is called transformation 

■  Intuitively: If A reduces to B , A is “no harder to 
solve” than B  
○ Total cost: cost of transformation + cost to solve B 
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Reducibility 

●  An example: 
■  A: Given a set of Booleans, is at least one TRUE? 
■  B: Given a set of integers, is their sum positive? 
■  Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where 

yi = 1 if xi = TRUE, yi = 0 if xi = FALSE 

●  Another example:  
■  Solving linear equations is reducible to solving 

quadratic equations 
○  How can we easily use a quadratic-equation solver to solve 

linear equations? 
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Reduction: A reduces to B 

IA 

A solver 

IB OB 
OA 

Transformer B solver 
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NP-Hard and NP-Complete 

●  If A is polynomial-time reducible to B, we denote 
this A ≤p B 

●  Definition of NP-Hard and NP-Complete:  
■  If all problems X ∈ NP are reducible to A, then A is 

NP-Hard 
■  We say A is NP-Complete if A is NP-Hard  

and A ∈ NP 
●  If A ≤p B and A is NP-Complete, B is also 

NP-Complete 
■  You should be able to argue this is true from the 

definitions! 
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Why Prove NP-Completeness? 

●  Though nobody has proven that P ≠ NP, if you 
prove a problem NP-Complete, most people 
accept that it is probably intractable 

●  Therefore it can be important to prove that a 
problem is NP-Complete 
■  Don’t need to come up with an efficient algorithm 
■  Can instead work on approximation algorithms 
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Proving NP-Completeness 

● What steps do we have to take to prove a 
problem A is NP-Complete? 
■  Pick a known NP-Complete problem B 
■ Reduce B to A 

○ Describe a transformation that maps instances of B 
to instances of A, s.t. “yes” for A = “yes” for B 

○ Prove the transformation works 
○ Prove it runs in polynomial time 

■ Oh yeah, prove A ∈ NP (What if you can’t?) 
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Proving NP-Completeness 

●  (We just said this:) What steps do we have to 
take to prove a problem A is NP-Complete? 
■  Pick a known NP-Complete problem B 
■  Reduce B to A 

●  Why reduce B to A?  Transformations are 
transitive 
■  If B is NP-c, then all problems in NP reduce to B. 
■  Then, if you find a transformation from B to A, the 

composition of two transformations would reduce any 
NP problem to A 

■  The composition of two polynomials is polynomial 
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Coming Up 

●  Given one NP-Complete problem, we can prove 
many interesting problems NP-Complete 
■  Graph coloring (= register allocation) 
■  Hamiltonian cycle 
■  Hamiltonian path 
■  Knapsack problem 
■  Traveling salesman 
■  Job scheduling with penalities 
■  Many, many more 


