CS 4102: Algorithms NP Completeness

Chapter 10 in Johnsonbaugh \& Schaefer
Read and study! (This ain't simple.)
Slide credits: Thanks to David Luebke, Jim Cohoon

NP-Completeness

- Some problems are intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time? Standard working definition: polynomial time
- On an input of size n the worst-case running time is 0 $\left(n^{k}\right)$ for some constant k
- Polynomial time: $O\left(n^{2}\right), O\left(n^{3}\right), O(1), O(n \lg n)$
- Not in polynomial time: $O\left(2^{n}\right), O\left(n^{n}\right), O(n!)$

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
- Of course: many (most?) algorithms we've studied provides polynomial-time solution to some problem
- We define \mathbf{P} to be the class of problems solvable in polynomial time
- Are all problems solvable in polynomial time?

Tractability

- Again, some problems are undecidable: no computer can solve them
- E.g., Turing's "Halting Problem"
- We're not going to talk about such problems here (Take a theory class to learn more!)
- Other problems are decidable, but intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes "reasonable time"?

Flashback: Growth Rates

- Review pages 430-431 for this important point:
- Say s is the size of the largest problem we can solve with algorithm A given time t
- How much larger a problem can we solve if we have 10x as much time (or a computer that's 10x faster)?
- Depends on the complexity of A
- Linear? 10 xs times as large a problem
- Quadratic? sqrt(10) $=3.2 \times \mathrm{s}$ times as large
- Cubic? cuberoot $(10)=2.2 \times$ s times as large
- $2^{\text {n }}$?
$\circ \mathrm{s}+\lg 10$ as large, or s+3.2 as large
- Note additive factor, not mulitplicative

NP-Complete Problems

- The NP-Complete problems are an interesting class of problems whose status is unknown
- No polynomial-time algorithm has been discovered for an NP-Complete problem
- No suprapolynomial lower bound has been proved for any NP-Complete problem, either
- We call this the $P=N P$ question
- The biggest open problem in CS

An NP-Complete Problem: Hamiltonian Cycles

- An example of an NP-Complete problem:
- A hamiltonian cycle of an undirected graph is a simple cycle that contains every vertex
- The hamiltonian-cycle problem: given a graph G , does it have a hamiltonian cycle?
- Describe a naïve algorithm for solving the hamiltonian-cycle problem. Running time?
- Have we studied a search algorithm that can be used to solve this? Running time?

Other Problems to Know

- Hamilton Path/Cycle, TSP
- Graph Coloring
- Vertex cover
- Satisifiability
- Subset Sum
- Bin Packing
- Knapsack

Some Definitions Before We Proceed

- Decision problems
- Simple view: Problem is to answer with a "yes" or "no" answer for a given input
- Definition, page 431:
- A problem is a set of finite-length questions (strings) with associated finite-length answers (strings).
- A decision problem: all questions (instances) map to either yes or no
- Positive instances vs. negative instances
- A correct algorithm accepts all positive instances (says yes) and rejects negative instances (says no)

Decision Problems and Related Problems

- Problem P1: Primality Problem
- Is n a prime number?
- Instances: set of natural numbers
- Positive instances?
- Related Problem P2: Find smallest divisor
- Not a decision problem.
- P2 could be used to solve P1.
- In some sense, P2 is "harder".
- Graph coloring
- P3: k-colorability. Given k, this is a decision problem
- P4: Find chromatic number? not a decision problem
- Could use k-colorability to solve it.

Reminder: Graph Coloring

- A "coloring" is an assignment of "colors" to the set of vertices so that if $v w$ is an edge, then $C(v)<>C(w)$
- Two forms:
- Optimization problem: given G, find the smallest number of colors that can be used to color G
- The smallest k is known as G's chromatic number, $X(\mathrm{G})$ We say G is k-colorable.
- Decision problem: given G and a positive integer k, is it possible to assign a valid k -coloring to G ?
- Note: book uses term function problem
- More general. An optimization is a type of...

Decision vs. Optimization

- Clearly an optimization problem is related to a particular decision problem
- Decision problem: Is there a solution as good or better than some given bound?
- Optimal value: What is the value of the best possible solution?
- Optimal solution: Find a solution with the optimal value!
- E.g. graph coloring
- Decision problem: Can G be colored with k colors?
- Optimal value: What is the chromatic number of G ?
- Optimal solution: Find a coloring of vertices that uses $X(\mathrm{G})$ colors.

Optimization and Decision Problems

- Optimization problems are at least as hard to solve as decision problems
- E.g. if you can solve decision problem canColor(G,k) then call it in a loop (1 to n) to find optimal value, $X(\mathrm{G})$
- Important: theory presented here for P, NP etc. is defined based on decision problems
- But we'll see this isn't a problem...

Encodings, Input Sizes

- Our text takes a formal CS approach to these topics
- Languages, accepting, encodings, etc.
- I choose in CS4102 to be less formal
- So I'll try to "translate" or simplify when I can
- So about pages 433-434 on encodings...

Important: Input Size and P

- Sometimes a problems seems to be in P but really isn't
- Example: finding if value n is a prime
- Just loop and do a mod: $\Theta(n)$, isn't it?
- Note that here " n " is not the count or number of data items.
- There's just one input item.
- But " n " is a value with a size that affects the execution time.
- The size is the number of bits, which is $\log (\mathrm{n})$
- $T($ size $)=n$ but size is $\log (n)$.
- $T(\log n)=n=10^{\log n} \quad$ This is really an exponential!
- Be careful when " n " is not a count of data items but a value
- E.g. Dynamic programming problems (e.g. a table's dimension)

P and NP

- As mentioned, \mathbf{P} is set of decision problems that can be solved in polynomial time
- NP (nondeterministic polynomial time) is the set of decision problems that can be solved in polynomial time by a nondeterministic computer
- What on earth is that?
- Important: "NP" does not mean "not polynomial"!!!

Nondeterminism

- Think of a non-deterministic computer as a computer that magically "guesses" a solution, then has to verify that it is correct
- If a solution exists, computer always guesses it
- One way to imagine it: a parallel computer that can freely spawn an infinite number of processes
- Have one processor work on each possible solution
- All processors attempt to verify that their solution works
- If a processor finds it has a working solution
- So: NP = problems verifiable in polynomial time

Nondeterminism (cont'd)

- Another way to think about it:
- If you could always guess the answer but were required to verify your guess was really right, could you do this in polynomial time?
- an oracle
- Just a second: solutions for decision problems are "yes" or "no"
- How can guessing that help us?
- The idea of verifying a solution in polynomial time is an informal definition of nondeterminism.

Nondeterminism and our Text

- Pages 440-441
- A guess function that makes a choice
- Count it as one step (i.e. constant complexity)
- If run again, could guess something else
- Non-deterministic
- Sequence of guesses is a computation path or run
- If some run leads to a "yes", then that sequence of choices is a witness
- It proves that input is accepted by the algorithm

Nondeterminism More Formally

- Non-deterministic algorithm A has 2 phases:
- Non-deterministic phase: writes a string s (often called a certificate) somewhere
- Deterministic phase: May use s and the input to return "yes" or "no" or nothing
- When run with same input, may produce different certificate s
- Total cost is cost of both steps
- Important: If A is give input x and for some execution it says "yes", then the answer is "yes".

How to Think about Non-Det. Here

- Two ways:
- If we ran a non-deterministic algorithm once and it made the right guess each time (wrote the correct certificate) if that was possible...
- Or, if we ran it so many times over all possibilities, and one of those led to a "yes"...
- If some oracle could write out the "right" certificate, would we recognize it and say "yes"?
- (An aside: If not, then we're not able to check a correct answer. That's not good, is it?)

Definition of Class NP

- Definition:

NP is the class of decision problems for which there is a polynomially bounded nondeterministic algorithm.

- Reminder: formally these are decision problems
- But (for many problems) imagine a certificate that is the optimal solution
- E.g. 3-colorability: s is a coloring
- E.g. ham. path: s is a path
- Can we "verify" these and say "yes" in poly. time?

Proving Problems are in NP

- Self test:
- How do we typically prove a problem $\in \mathbf{N P}$?
- Examples:
. Is sorting in NP? (Not a decision problem! Could redefine it to be.)
- What could the certificate be? Could we verify it in poly. time?
- Is this in NP? Does a weighted graph G have a spanning tree with value $<=\mathrm{k}$?
- Think-Pair-Share activity: prove this belongs to NP
- What's the certificate? What do the two phases do?

Proving Problems are in NP (2)

- Note: The non-deterministic phase might do "nothing". Example:
- Problem: Does a graph G have a MST of total weight less than k ?
- Does this belong to NP? Yes! Outline of proof:
- No need to generate a certificate or guess nondeterministically
- Find MST using Kruskal's or Prim's algorithms
- Compare weight of the MST to k
- Thus we can verify a proposed yes/no answer in polynomial time
- Thus problems in P are easily shown to be in NP

P and NP

- Is $\mathbf{P} \subseteq \mathbf{N P}$? Why or why not?
- Answer: all decision problems in P also belong to NP
- Informally: you can solve them directly and compare the solution to the certificate
- But are they equal or is it a proper subset?
- In other words, is there a problem in NP that cannot be directly solved in polynomial time?
- Is P = NP? Or not? (The big question!)

Summary: P and NP

- Summary so far:
- $\mathbf{P}=$ problems that can be solved in polynomial time
- NP = problems for which a solution can be verified in polynomial time
- Unknown whether $\mathbf{P}=\mathbf{N P}$ (most suspect not)
- We've seen problems that belong to NP that may not belong to P
- Hamiltonian path/cycle, k-COL problems are in NP
- Cannot solve in polynomial time
- Easy to verify solution in polynomial time (How?)

NP-Complete Problems

- We will see that NP-Complete problems are the "hardest" problems in NP:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Thus: solve hamiltonian-cycle in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous.

Reduction

- The crux of NP-Completeness is reducibility
- Informally, a problem A can be reduced to another problem B if any instance of A can be "easily rephrased" as an instance of B, the solution to which provides a solution to the instance of A
- What do you suppose "easily" means?
- This rephrasing is called transformation
- Intuitively: If A reduces to B, A is "no harder to solve" than B
- Total cost: cost of transformation + cost to solve B

Reducibility

- An example:
- A: Given a set of Booleans, is at least one TRUE?
- B: Given a set of integers, is their sum positive?
- Transformation: $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{n}\right)$ where $\mathrm{y}_{i}=1$ if $\mathrm{x}_{i}=$ TRUE, $\mathrm{y}_{i}=0$ if $\mathrm{x}_{i}=$ FALSE
- Another example:
- Solving linear equations is reducible to solving quadratic equations
- How can we easily use a quadratic-equation solver to solve linear equations?

Reduction: A reduces to B

NP-Hard and NP-Complete

- If A is polynomial-time reducible to B, we denote this $A \leq_{p} B$
- Definition of NP-Hard and NP-Complete:
- If all problems $X \in \mathbf{N P}$ are reducible to A, then A is NP-Hard
- We say A is NP-Complete if A is NP-Hard and $A \in \mathbf{N P}$
- If $A \leq_{p} B$ and A is NP-Complete, B is also NP-Complete
- You should be able to argue this is true from the definitions!

Why Prove NP-Completeness?

- Though nobody has proven that $\mathbf{P} \neq \mathbf{N} \mathbf{P}$, if you prove a problem NP-Complete, most people accept that it is probably intractable
- Therefore it can be important to prove that a problem is NP-Complete
- Don't need to come up with an efficient algorithm
- Can instead work on approximation algorithms

Proving NP-Completeness

- What steps do we have to take to prove a problem A is NP-Complete?
- Pick a known NP-Complete problem B
- Reduce B to A
- Describe a transformation that maps instances of B to instances of A, s.t. "yes" for $A=$ "yes" for B
- Prove the transformation works
- Prove it runs in polynomial time
- Oh yeah, prove $\mathrm{A} \in \mathbf{N P}$ (What if you can't?)

Proving NP-Completeness

- (We just said this:) What steps do we have to take to prove a problem A is NP-Complete?
- Pick a known NP-Complete problem B
- Reduce B to A
- Why reduce B to A? Transformations are transitive
- If B is NP-c, then all problems in NP reduce to B.
- Then, if you find a transformation from B to A, the composition of two transformations would reduce any NP problem to A
- The composition of two polynomials is polynomial

Coming Up

- Given one NP-Complete problem, we can prove many interesting problems NP-Complete
- Graph coloring (= register allocation)
- Hamiltonian cycle
- Hamiltonian path
- Knapsack problem
- Traveling salesman
- Job scheduling with penalities
- Many, many more

