
 1 4/22/10

CS 4102: Algorithms
NP Completeness

Chapter 10 in Johnsonbaugh & Schaefer
Read and study! (This ain’t simple.)

Slide credits: Thanks to David Luebke, Jim Cohoon

 2 4/22/10

NP-Completeness

●  Some problems are intractable:
as they grow large, we are unable to solve them
in reasonable time

●  What constitutes reasonable time? Standard
working definition: polynomial time
■  On an input of size n the worst-case running time is O

(n k) for some constant k
■  Polynomial time: O(n2), O(n3), O(1), O(n lg n)
■  Not in polynomial time: O(2 n), O(n n), O(n!)

 3 4/22/10

Polynomial-Time Algorithms

●  Are some problems solvable in polynomial
time?
■ Of course: many (most?) algorithms we’ve

studied provides polynomial-time solution to
some problem

■ We define P to be the class of problems
solvable in polynomial time

●  Are all problems solvable in polynomial
time?

 4 4/22/10

Tractability

●  Again, some problems are undecidable: no
computer can solve them
■  E.g., Turing’s “Halting Problem”
■  We’re not going to talk about such problems here

(Take a theory class to learn more!)

●  Other problems are decidable, but intractable:
as they grow large, we are unable to solve them
in reasonable time
■  What constitutes “reasonable time”?

 5 4/22/10

Flashback: Growth Rates

●  Review pages 430-431 for this important point:
■  Say s is the size of the largest problem we can solve

with algorithm A given time t
■  How much larger a problem can we solve if we have

10x as much time (or a computer that’s 10x faster)?
●  Depends on the complexity of A

■  Linear? 10 x s times as large a problem
■  Quadratic? sqrt(10) = 3.2 x s times as large
■  Cubic? cuberoot(10) = 2.2 x s times as large
■  2n?

○ s + lg 10 as large, or s + 3.2 as large
○ Note additive factor, not mulitplicative

 6 4/22/10

NP-Complete Problems

●  The NP-Complete problems are an
interesting class of problems whose status
is unknown
■ No polynomial-time algorithm has been

discovered for an NP-Complete problem
■ No suprapolynomial lower bound has been

proved for any NP-Complete problem, either
● We call this the P = NP question
■ The biggest open problem in CS

 7 4/22/10

An NP-Complete Problem:
Hamiltonian Cycles

●  An example of an NP-Complete problem:
■ A hamiltonian cycle of an undirected graph is

a simple cycle that contains every vertex
■ The hamiltonian-cycle problem: given a graph

G, does it have a hamiltonian cycle?

■ Describe a naïve algorithm for solving the
hamiltonian-cycle problem. Running time?

■ Have we studied a search algorithm that can
be used to solve this? Running time?

 8 4/22/10

Other Problems to Know

●  Hamilton Path/Cycle, TSP
●  Graph Coloring
●  Vertex cover
●  Satisifiability
●  Subset Sum
●  Bin Packing
●  Knapsack

 9 4/22/10

Some Definitions Before We Proceed

●  Decision problems
■  Simple view: Problem is to answer with a “yes” or

“no” answer for a given input

●  Definition, page 431:
■  A problem is a set of finite-length questions (strings)

with associated finite-length answers (strings).
■  A decision problem: all questions (instances) map

to either yes or no
○  Positive instances vs. negative instances

■  A correct algorithm accepts all positive instances
(says yes) and rejects negative instances (says no)

 10 4/22/10

Decision Problems and Related
Problems

●  Problem P1: Primality Problem
■  Is n a prime number?
■  Instances: set of natural numbers

○  Positive instances?

●  Related Problem P2: Find smallest divisor
■  Not a decision problem.
■  P2 could be used to solve P1.
■  In some sense, P2 is “harder”.

●  Graph coloring
■  P3: k-colorability. Given k, this is a decision problem
■  P4: Find chromatic number? not a decision problem

○  Could use k-colorability to solve it.

 11 4/22/10

Reminder: Graph Coloring

●  A “coloring” is an assignment of “colors” to the
set of vertices so that if vw is an edge, then
C(v) <> C(w)

●  Two forms:
■  Optimization problem: given G, find the smallest

number of colors that can be used to color G
○  The smallest k is known as G’s chromatic number, X (G)

We say G is k-colorable.

■  Decision problem: given G and a positive integer k,
is it possible to assign a valid k-coloring to G?

■  Note: book uses term function problem
○  More general. An optimization is a type of…

 12 4/22/10

Decision vs. Optimization

●  Clearly an optimization problem is related to a
particular decision problem
■  Decision problem: Is there a solution as good or

better than some given bound?
■  Optimal value: What is the value of the best possible

solution?
■  Optimal solution: Find a solution with the optimal

value!

●  E.g. graph coloring
■  Decision problem: Can G be colored with k colors?
■  Optimal value: What is the chromatic number of G?
■  Optimal solution: Find a coloring of vertices that uses

X (G) colors.

 13 4/22/10

Optimization and Decision Problems

●  Optimization problems are at least as hard to
solve as decision problems
■  E.g. if you can solve decision problem canColor(G,k)

then call it in a loop (1 to n) to find optimal value,
X (G)

●  Important: theory presented here for P, NP etc.
is defined based on decision problems
■  But we’ll see this isn’t a problem…

 14 4/22/10

 15 4/22/10

Encodings, Input Sizes

● Our text takes a formal CS approach to
these topics
■  Languages, accepting, encodings, etc.

●  I choose in CS4102 to be less formal
■  So I’ll try to “translate” or simplify when I can

●  So about pages 433-434 on encodings…

 16 4/22/10

Important: Input Size and P

●  Sometimes a problems seems to be in P but really isn’t
●  Example: finding if value n is a prime

■  Just loop and do a mod: Θ(n), isn’t it?

●  Note that here “n” is not the count or number of data
items.
■  There’s just one input item.
■  But “n” is a value with a size that affects the execution time.
■  The size is the number of bits, which is log(n)
■  T(size) = n but size is log(n).
■  T(log n) = n = 10log n This is really an exponential!

●  Be careful when “n” is not a count of data items but a
value
■  E.g. Dynamic programming problems (e.g. a table’s dimension)

 17 4/22/10

 18 4/22/10

P and NP

●  As mentioned, P is set of decision
problems that can be solved in polynomial
time

●  NP (nondeterministic polynomial time) is
the set of decision problems that can be
solved in polynomial time by a
nondeterministic computer
■ What on earth is that?
■  Important: “NP” does not mean “not

polynomial”!!!

 19 4/22/10

Nondeterminism

●  Think of a non-deterministic computer as a
computer that magically “guesses” a solution,
then has to verify that it is correct
■  If a solution exists, computer always guesses it
■  One way to imagine it: a parallel computer that can

freely spawn an infinite number of processes
○  Have one processor work on each possible solution
○  All processors attempt to verify that their solution works
○  If a processor finds it has a working solution

■  So: NP = problems verifiable in polynomial time

 20 4/22/10

Nondeterminism (cont’d)

●  Another way to think about it:
■  If you could always guess the answer but were

required to verify your guess was really right, could
you do this in polynomial time?
○  an oracle

●  Just a second: solutions for decision problems
are “yes” or “no”
■  How can guessing that help us?
■  The idea of verifying a solution in polynomial time is

an informal definition of nondeterminism.

 21 4/22/10

Nondeterminism and our Text

●  Pages 440-441
■ A guess function that makes a choice
■ Count it as one step (i.e. constant complexity)
■  If run again, could guess something else

○ Non-deterministic

■  Sequence of guesses is a computation path or
run

■  If some run leads to a “yes”, then that
sequence of choices is a witness
○  It proves that input is accepted by the algorithm

 22 4/22/10

Nondeterminism More Formally

●  Non-deterministic algorithm A has 2 phases:
■  Non-deterministic phase: writes a string s (often

called a certificate) somewhere
■  Deterministic phase: May use s and the input to

return “yes” or “no” or nothing
●  When run with same input, may produce

different certificate s
●  Total cost is cost of both steps
●  Important: If A is give input x and for some

execution it says “yes”, then the answer is “yes”.

 23 4/22/10

How to Think about Non-Det. Here

●  Two ways:
■  If we ran a non-deterministic algorithm once and it

made the right guess each time (wrote the correct
certificate) if that was possible…

■  Or, if we ran it so many times over all possibilities,
and one of those led to a “yes”…

●  If some oracle could write out the “right”
certificate, would we recognize it and say “yes”?

●  (An aside: If not, then we’re not able to check a
correct answer. That’s not good, is it?)

 24 4/22/10

Definition of Class NP

●  Definition:
NP is the class of decision problems for which
there is a polynomially bounded non-
deterministic algorithm.

●  Reminder: formally these are decision problems
■  But (for many problems) imagine a certificate that is

the optimal solution
■  E.g. 3-colorability: s is a coloring
■  E.g. ham. path: s is a path
■  Can we “verify” these and say “yes” in poly. time?

 25 4/22/10

Proving Problems are in NP

●  Self test:
■ How do we typically prove a problem ∈ NP?

●  Examples:
■  Is sorting in NP? (Not a decision problem!

Could redefine it to be.)
○ What could the certificate be? Could we verify it in

poly. time?

■  Is this in NP? Does a weighted graph G have
a spanning tree with value <= k?
○ Think-Pair-Share activity: prove this belongs to NP

 What’s the certificate? What do the two phases do?

 26 4/22/10

Proving Problems are in NP (2)

●  Note: The non-deterministic phase might do
“nothing”. Example:

●  Problem: Does a graph G have a MST of total
weight less than k?
■  Does this belong to NP? Yes! Outline of proof:

○  No need to generate a certificate or guess non-
deterministically

○  Find MST using Kruskal’s or Prim’s algorithms
○  Compare weight of the MST to k
○  Thus we can verify a proposed yes/no answer in polynomial

time

●  Thus problems in P are easily shown to be in NP

 27 4/22/10

P and NP

●  Is P ⊆ NP? Why or why not?
●  Answer: all decision problems in P also belong to

NP
■  Informally: you can solve them directly and compare

the solution to the certificate

●  But are they equal or is it a proper subset?
●  In other words, is there a problem in NP that

cannot be directly solved in polynomial time?
■  Is P = NP? Or not? (The big question!)

 28 4/22/10

Summary: P and NP

●  Summary so far:
■  P = problems that can be solved in polynomial time
■  NP = problems for which a solution can be verified in

polynomial time
■  Unknown whether P = NP (most suspect not)

●  We’ve seen problems that belong to NP that may
not belong to P
■  Hamiltonian path/cycle, k-COL problems are in NP
■  Cannot solve in polynomial time
■  Easy to verify solution in polynomial time (How?)

 29 4/22/10

NP-Complete Problems

●  We will see that NP-Complete problems are the
“hardest” problems in NP:
■  If any one NP-Complete problem can be solved in

polynomial time…
■  …then every NP-Complete problem can be solved in

polynomial time…
■  …and in fact every problem in NP can be solved in

polynomial time (which would show P = NP)
■  Thus: solve hamiltonian-cycle in O(n100) time, you’ve

proved that P = NP. Retire rich & famous.

 30 4/22/10

Reduction

●  The crux of NP-Completeness is reducibility
■  Informally, a problem A can be reduced to

another problem B if any instance of A can be
“easily rephrased” as an instance of B , the
solution to which provides a solution to the
instance of A
○ What do you suppose “easily” means?
○ This rephrasing is called transformation

■  Intuitively: If A reduces to B , A is “no harder to
solve” than B
○ Total cost: cost of transformation + cost to solve B

 31 4/22/10

Reducibility

●  An example:
■  A: Given a set of Booleans, is at least one TRUE?
■  B: Given a set of integers, is their sum positive?
■  Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where

yi = 1 if xi = TRUE, yi = 0 if xi = FALSE

●  Another example:
■  Solving linear equations is reducible to solving

quadratic equations
○  How can we easily use a quadratic-equation solver to solve

linear equations?

 32 4/22/10

Reduction: A reduces to B

IA

A solver

IB OB
OA

Transformer B solver

 33 4/22/10

NP-Hard and NP-Complete

●  If A is polynomial-time reducible to B, we denote
this A ≤p B

●  Definition of NP-Hard and NP-Complete:
■  If all problems X ∈ NP are reducible to A, then A is

NP-Hard
■  We say A is NP-Complete if A is NP-Hard

and A ∈ NP
●  If A ≤p B and A is NP-Complete, B is also

NP-Complete
■  You should be able to argue this is true from the

definitions!

 34 4/22/10

Why Prove NP-Completeness?

●  Though nobody has proven that P ≠ NP, if you
prove a problem NP-Complete, most people
accept that it is probably intractable

●  Therefore it can be important to prove that a
problem is NP-Complete
■  Don’t need to come up with an efficient algorithm
■  Can instead work on approximation algorithms

 35 4/22/10

Proving NP-Completeness

● What steps do we have to take to prove a
problem A is NP-Complete?
■  Pick a known NP-Complete problem B
■ Reduce B to A

○ Describe a transformation that maps instances of B
to instances of A, s.t. “yes” for A = “yes” for B

○ Prove the transformation works
○ Prove it runs in polynomial time

■ Oh yeah, prove A ∈ NP (What if you can’t?)

 36 4/22/10

Proving NP-Completeness

●  (We just said this:) What steps do we have to
take to prove a problem A is NP-Complete?
■  Pick a known NP-Complete problem B
■  Reduce B to A

●  Why reduce B to A? Transformations are
transitive
■  If B is NP-c, then all problems in NP reduce to B.
■  Then, if you find a transformation from B to A, the

composition of two transformations would reduce any
NP problem to A

■  The composition of two polynomials is polynomial

 37 4/22/10

Coming Up

●  Given one NP-Complete problem, we can prove
many interesting problems NP-Complete
■  Graph coloring (= register allocation)
■  Hamiltonian cycle
■  Hamiltonian path
■  Knapsack problem
■  Traveling salesman
■  Job scheduling with penalities
■  Many, many more

