
CS 4102: Algorithms 

NP Completeness Continued: 
Reductions 



Review: P And NP Summary 

●  P = set of problems that can be solved in 
polynomial time 

●  NP = set of problems for which a solution 
can be verified in polynomial time 

●  P ⊆ NP 
● Open question: Does P = NP? 



Review: Reduction 

●  A problem A can be reduced to another 
problem B if any instance of A can be 
rephrased to an instance of B, the solution 
to which provides a solution to the instance 
of A 
■ This rephrasing is called a transformation 

●  Intuitively: If A reduces in polynomial time 
to B, A is “no harder to solve” than B 
■  I.e. if B is polynomial, A is not exponential 



Review:  
NP-Hard and NP-Complete 

●  If A is polynomial-time reducible to B, we 
denote this A ≤p B 

●  Definition of NP-Hard and NP-Complete:  
■  If all problems R ∈ NP are reducible to A , 

then A is NP-Hard 
■ We say A is NP-Complete if A is NP-Hard  

and A ∈ NP 
●  If A ≤p B and A is NP-Complete, B is also 

NP- Complete 



Review: Proving NP-Completeness 

● What steps do we have to take to prove a 
problem Y is NP-Complete? 
■  Pick a known NP-Complete problem X 

○ Assuming there is one!  (More later.) 

■ Reduce X to Y 
○ Describe a transformation that maps instances of X 

to instances of Y, s.t. “yes” for Y = “yes” for X 
○ Prove the transformation works 
○ Prove it runs in polynomial time 

■ Oh yeah, prove Y ∈ NP 



Order of the Reduction When 
Proving NP-Completeness 

●  To prove Y is NP-c, show X ≤p Y where X ∈ NP-c 
■  Why have the known NP-c problem “on the left”?  

Shouldn’t it be the other way around? (No!) 

●  If X ∈ NP-c, then:    all NP problems ≤p X 
●  If you show X ≤p Y, then: 

         any-NP-problem ≤p X ≤p Y 

●  Thus any problem in NP can be reduced to Y if 
the two transformations are applied in sequence 
■  And both are polynomial 



Can a Problem be NP-Hard but not NP-C? 

●  So, find a reduction and then try to prove Y ∈ NP 
■  What if you can’t? 

●  Are there any problems Y that are NP-hard but 
not NP-complete?  This means: 
■  All problems in NP reduce to Y .  (A known NP-c 

problem can be reduced to Q.) 
■  But, Y cannot be proved to be in NP 

●  Yes!  Some examples: 
■  Non-decision forms of known NP-Cs (e.g. TSP) 
■  The halting problem. (Transform a SAT expression to a 

Turing machine.) 
■  Others. 



But You Need One NP-c First… 

●  If you have one NP-c problem, you can use the technique 
just described to prove other problems are NP-c 

●  The definition of NP-complete was created to prove a 
point 
■  There might be problems that are at least as hard as 

“anything” (i.e. all NP problems) 

●  Are there really NP-complete problems? 
■  Stephen Cook, 1971. Cook-Levin Theorem: 

The satisfiability problem is NP-Complete. 
○  He proved this “directly”, from first principles 
○  Proven independently by Leonid Levin (USSR) 
○  Showed that any problem that meets the definition of NP can be 

transformed in polynomial time to a CNF formula. 
○  Proof outside the scope of this course (lucky you) 



More About The SAT Problem 

●  One of the first problems to be proved NP-
Complete was satisfiability (SAT): 
■  Given a Boolean expression on n variables, can we 

assign values such that the expression is TRUE? 
■  Ex: ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2 

●  You might imagine that lots of decision problems 
could be expressed as a complex logical 
expression 
■  And Cook and Levin proved you were right! 
■  Proved the general result that any NP problem can be 

expressed 



Conjunctive Normal Form 

●  Even if the form of the Boolean expression is 
simplified, the problem may be NP-Complete 
■  Literal: an occurrence of a Boolean or its negation 
■  A Boolean formula is in conjunctive normal form, or 

CNF, if it is an AND of clauses, each of which is an OR 
of literals 
○  Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5) 

■  3-CNF: each clause has exactly 3 distinct literals 
○  Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 ∨ x3 ∨ x4) 
○  Notice: true if at least one literal in each clause is true 

■  Note: Arbitrary expressions can be translated into CNF 
forms by introducing intermediate variables etc. 



The 3-CNF Problem 

●  Satisfiability of Boolean formulas in 3-CNF 
form (the 3-CNF Problem) is NP-Complete 
■  Proof: not in this course 

●  The reason we care about the 3-CNF 
problem is that it is relatively easy to 
reduce to others  
■ Thus by proving 3-CNF NP-Complete we can 

prove many seemingly unrelated problems  
NP-Complete 



Joining the Club 

●  Given one NP-c problem, others can join the club 
■  Prove that SAT reduces to another problem, and so 

on… 

■  Membership in NP-c grows… 
■  Classic textbook: Garey, M. and D. Johnson, 

Computers and Intractability: A Guide to the Theory of 
NP-Completeness, 1979. 

SAT 3-CNF-SAT 

CLIQUE 

SUBSET-SUM 

VERTEX- 
COVER 

HAM- 
CYCLE 

TSP 



Examples of Reductions 

●  Examples covered in class: 
■  3-CNF to k-Clique (in these slides) 
■  Directed to Undirected Hamilton Cycle (slides & handout) 
■  Hamilton Cycle to Traveling Salesperson (in these slides) 
■  3-COL to CNF-SAT (handout shows direct reduction) 

SAT 3-CNF-SAT 

CLIQUE 

SUBSET-SUM 

VERTEX- 
COVER 

HAM- 
CYCLE 

TSP 





Reminder: A reduces to B 

IA 

A solver 

IB OB 
OA 

Transformer B solver 



3-CNF → Clique 

● What is a clique of a graph G? 
●  A: a subset of vertices fully connected to 

each other, i.e. a complete subgraph of G 
●  The clique problem: how large is the 

maximum-size clique in a graph? 
●  Can we turn this into a decision problem? 
●  A: Yes, we call this the k-clique problem 
●  Is the k-clique problem within NP? 



3-CNF → k-Clique 

● What should the reduction do? 
●  A: Transform a 3-CNF formula to a graph, 

for which a k-clique will exist (for some k) 
iff the 3-CNF formula is satisfiable 

●  And do this in polynomial time. 



Reduction: 3-CNF → k-Clique 

●  Let B = C1 ∧ C2 ∧ … ∧ Ck be a 3-CNF formula with k 
clauses, each of which has 3 distinct literals 

●  For each clause put a triple of vertices in the graph, one 
for each literal 

●  Put an edge between two vertices if they are in different 
triples and their literals are consistent, meaning not each 
other’s negation 
■  Not consistent: x and ¬x, y and ¬y, etc. 
■  Consistent: x and x, x and y, x and ¬y, etc. 

●  An example:  
  B = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z ) ∧ (x ∨ y ∨ z ) 
■  See graphs on next pages 



3-CNF transformed to graph 

All edges shown, but those in 
red connect inconsistent pairs 

Just connecting consistent pairs 



Graph and Cliques 

Each 3-clique is a solution to the 3-CNF instance: 
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z ) ∧ (x ∨ y ∨ z ) 

●  Blue: x true, y true, z true 
●  Red: z false, y true, x true 
●  Green: y false, z true, x either 

●  Note z=true satisfies both 
C2 and C3 

●  Many other 3-cliques 

 Again, note each 3-clique 
always has only one node in 
each clause 



3-CNF → k-Clique 

●  Prove the reduction works: 
■  If B has a satisfying assignment, then each clause has 

at least one literal (vertex) that evaluates to 1 
■  Picking one such “true” literal from each clause gives 

a set V’ of k vertices.  V’ is a clique (Why?) 
■  If G has a clique V’ of size k, it must contain one 

vertex in each triple (clause) (Why?) 
■  We can assign 1 to each literal corresponding with a 

vertex in V’, without fear of contradiction 



Directed Hamiltonian Cycle ⇒ 
Undirected Hamiltonian Cycle 

●  What was the hamiltonian cycle problem again? 
●  For my next trick, I will reduce the directed 

hamiltonian cycle problem to the undirected 
hamiltonian cycle problem before your eyes 
■  Why would I want to? To prove something in NP-C 
■  Question: Which variant am I proving NP-Complete? 

●  Draw a directed example on the board 
■  Question: What transformation do I need to effect? 



Transformation: 
Directed ⇒ Undirected Ham. Cycle  
●  See handout (from page 563 in Baase textbook) 
●  Transform directed graph G = (V, E) into 

undirected graph G’ = (V’, E’): 
■  Every vertex v in V transforms into 3 vertices  

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’ 
■  Every directed edge (v, w) in E transforms into the 

undirected edge (v3, w1) in E’ (draw it) 
■  Can this be implemented in polynomial time? 
■  Argue that a directed hamiltonian cycle in G implies 

an undirected hamiltonian cycle in G’ 
■  Argue that an undirected hamiltonian cycle in G’ 

implies a directed hamiltonian cycle in G  



Undirected Hamiltonian Cycle  

●  Thus we can reduce the directed problem 
to the undirected problem 

● What’s left to prove the undirected 
hamiltonian cycle problem NP-Complete? 

●  Argue that the problem is in NP  



Hamiltonian Cycle ⇒ TSP 

●  The well-known traveling salesman problem: 
■  Optimization variant: a salesman must travel to n 

cities, visiting each city exactly once and finishing 
where he begins.  How to minimize travel time? 

■  Model as complete graph with cost c(i,j) to go from 
city i to city j 

●  How would we turn this into a decision problem? 
■  A: ask if  ∃  a TSP with cost < k  



Hamiltonian Cycle ⇒ TSP 

●  The steps to prove TSP is NP-Complete: 
■  Prove that TSP ∈ NP (Argue this) 
■ Reduce the undirected hamiltonian cycle 

problem to the TSP 
○ So if we had a TSP-solver, we could use it to solve 

the hamilitonian cycle problem in polynomial time 
○ How can we transform an instance of the 

hamiltonian cycle problem to an instance of the 
TSP? 

○ Can we do this in polynomial time? 



How to show HamCycle ≤p TSP? 

●  Transform input for HamCycle into input for TSP 
■  HamCycle: Given unweighted graph G1, does it have 

a ham. cycle? 
■  TSP: Given weighted graph G2 and k, is there a ham. 

cycle with total cost less than k? 
●  Must convert unweighted graph to weighted 

■  Add edges to G1 to make a complete graph G2 
■  Add weights as follows: 

○  wt(i,j) is 0 if edge i,j is in G1 (original graph for HamCycle) 
○  wt(i,j) is 1 if edge i,j is not in G1 

●  G1 has ham. cycle iff G2 has TSP with k=0 
■  Can you see why? Is this transformation polynomial? 



The TSP 

●  Random asides:  
■ TSPs (and variants) have enormous practical 

importance 
○ E.g., for shipping and freighting companies 
○ Lots of research into good approximation 

algorithms 

■ Recently made famous as a DNA computing 
problem 
○ “further reading” section of Baase textbook, Ch. 13 

(I’ll supply copy if you’re interested) 



General Comments 

●  Literally hundreds of problems have been 
shown to be NP-Complete 

●  Some reductions are profound, some are 
comparatively easy, many are easy once 
the key insight is given 



Other NP-Complete Problems 

●  Subset-sum: Given a set of integers, does there 
exist a subset that adds up to some target T ? 

●  0-1 knapsack: when weights not just integers 
●  Hamiltonian path 
●  Graph coloring: can a given graph be colored 

with k colors such that no adjacent vertices are 
the same color? 

●  Etc…  



Reminders and Review! 



Important: Input Size and P 

●  Sometimes a problems seems to be in P but really isn’t 
●  Example: finding if value n is a prime 

■  Just loop and do a mod: Θ(n) 
●  Note that here “n” is not the count or number of data 

items. 
■  There’s just one input item. 
■  But “n” is a value with a size that affects the execution time. 
■  The size of is log(n) 
■  T(size) = n but size is log(n). 
■  T(log n) = n = 10log n    This is really an exponential! 

●  Be careful if “n” is not a count of data items but a value 
■  Dynamic programming problems, e.g. the 0/1 knapsack 



Review (Again) 

●  A problem B is NP-complete  
■  if it is in NP and it is NP-hard. 

●  A problem B is NP-hard  
■  if every problem in NP is reducible to B. 

●  A problem A is reducible to a problem B if  
■  there exists a polynomial reduction function T such 

that 
○  For every string x,  
○  if x is a yes input for A, then T(x) is a yes input for B 
○  if x is a no input for A, then T(x) is a no input for B.  
○  T can be computed in polynomially bounded time.  



NP-Complete Problems 

●  NP-Complete problems are the “hardest” 
problems in NP: 
■  If any one NP-Complete problem can be solved in 

polynomial time… 
■  …then every NP-Complete problem can be solved in 

polynomial time… 
■  …and in fact every problem in NP can be solved in 

polynomial time (which would show P = NP) 
■  Thus: solve any NP-Complete problem in O(n100) 

time, you’ve proved that P = NP.  Retire rich & 
famous. 



What We Don’t Know: Open Questions 

■  Is it impossible to solve an NP-c problem in 
polynomial time? 
○ No one has proved an exponential lower bound for 

any problem in NP 
○ But, computer scientists believe such a L.B. exists 

for NP-c problems. 

■ Are all problems in NP tractable or 
intractable?  I.e., does P=NP or not? 
○  If someone found a polynomial solution to any 

NP-c problem, we’d know P = NP. 
○ But, computer scientists believe P≠ NP. 



Unused slides 

●  Another reduction 
■  k-CLIQUE to VertexCover 



Clique → Vertex Cover 

●  A vertex cover for a graph G is a set of 
vertices incident to every edge in G 

●  The vertex cover problem: what is the 
minimum size vertex cover in G? 

●  Restated as a decision problem: does a 
vertex cover of size k exist in G? 

●  Thm 36.12: vertex cover is NP-Complete 



Clique → Vertex Cover 

●  First, show vertex cover in NP (How?) 
●  Next, reduce k-clique to vertex cover 
■ The complement GC of a graph G contains 

exactly those edges not in G 
■ Compute GC in polynomial time 
■ G has a clique of size k iff GC has a vertex 

cover of size |V| - k  



Clique → Vertex Cover 

●  Claim: If G has a clique of size k, GC has a 
vertex cover of size |V| - k  
■  Let V’ be the k-clique 
■ Then V - V’ is a vertex cover in GC 

○ Let (u,v) be any edge in GC 
○ Then u and v cannot both be in V’ (Why?) 
○ Thus at least one of u or v is in V-V’ (why?), so  

edge (u, v) is covered by V-V’ 
○ Since true for any edge in GC, V-V’ is a vertex 

cover 



Clique → Vertex Cover 

●  Claim: If GC has a vertex cover V’ ⊆ V, with |V’| 
= |V| - k, then G has a clique of size k 
■  For all u,v ∈ V, if (u,v) ∈ GC then u ∈ V’ or  

v ∈ V’ or both (Why?) 
■  Contrapositive: if u ∉ V’ and v ∉ V’, then  

(u,v) ∈ E 
■  In other words, all vertices in V-V’ are connected by 

an edge, thus V-V’ is a clique 
■  Since |V| - |V’| = k, the size of the clique is k 


