CS 4102: Algorithms

NP Completeness Continued: Reductions

Review: P And NP Summary

- P = set of problems that can be solved in polynomial time
- **NP** = set of problems for which a solution can be verified in polynomial time
- $\mathbf{P} \subseteq \mathbf{NP}$
- Open question: Does **P** = **NP**?

Review: Reduction

- A problem A can be *reduced* to another problem B if any instance of A can be rephrased to an instance of B, the solution to which provides a solution to the instance of A
 - This rephrasing is called a *transformation*
- Intuitively: If A reduces in polynomial time to B, A is "no harder to solve" than B
 - I.e. if B is polynomial, A is not exponential

Review: NP-Hard and NP-Complete

- If A is *polynomial-time reducible* to B, we denote this A ≤_p B
- Definition of NP-Hard and NP-Complete:
 - If all problems R ∈ NP are reducible to A , then A is NP-Hard
 - We say A is NP-Complete if A is NP-Hard and A ∈ NP
- If A ≤_p B and A is NP-Complete, B is also NP- Complete

Review: Proving NP-Completeness

- What steps do we have to take to prove a problem Y is NP-Complete?
 - Pick a known NP-Complete problem X

• Assuming there is one! (More later.)

- Reduce X to Y
 - Describe a transformation that maps instances of X to instances of Y, s.t. "yes" for Y = "yes" for X
 - Prove the transformation works
 - Prove it runs in polynomial time
- Oh yeah, prove $Y \in \mathbf{NP}$

Order of the Reduction When Proving NP-Completeness

- To prove Y is **NP-c**, show $X \leq_p Y$ where $X \in$ **NP-c**
 - Why have the known NP-c problem "on the left"? Shouldn't it be the other way around? (No!)
- If $X \in \mathbf{NP-c}$, then: all NP problems $\leq_p X$
- If you show $X \leq_p Y$, then: any-NP-problem $\leq_p X \leq_p Y$
- Thus any problem in NP can be reduced to Y if the two transformations are applied in sequence
 - And both are polynomial

Can a Problem be NP-Hard but not NP-C?

- So, find a reduction and then try to prove Y ∈ NP
 What if you can't?
- Are there any problems Y that are NP-hard but not NP-complete? This means:
 - All problems in NP reduce to Y . (A known NP-c problem can be reduced to Q.)
 - But, Y cannot be proved to be in NP
- Yes! Some examples:
 - Non-decision forms of known NP-Cs (e.g. TSP)
 - The halting problem. (Transform a SAT expression to a Turing machine.)
 - Others.

But You Need One NP-c First...

- If you have one NP-c problem, you can use the technique just described to prove other problems are NP-c
- The definition of NP-complete was created to prove a point
 - There *might be* problems that are at least as hard as "anything" (i.e. all NP problems)
- Are there really NP-complete problems?
 - Stephen Cook, 1971. Cook-Levin Theorem:
 The satisfiability problem is NP-Complete.
 - He proved this "directly", from first principles
 - Proven independently by Leonid Levin (USSR)
 - Showed that any problem that meets the definition of NP can be transformed in polynomial time to a CNF formula.
 - Proof outside the scope of this course (lucky you)

More About The SAT Problem

- One of the first problems to be proved NP-Complete was *satisfiability* (SAT):
 - Given a Boolean expression on *n* variables, can we assign values such that the expression is TRUE?

$$\blacksquare \mathsf{Ex:} ((X_1 \to X_2) \lor \neg ((\neg X_1 \Leftrightarrow X_3) \lor X_4)) \land \neg X_2$$

- You might imagine that lots of decision problems could be expressed as a complex logical expression
 - And Cook and Levin proved you were right!
 - Proved the general result that any NP problem can be expressed

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
 - Literal: an occurrence of a Boolean or its negation
 - A Boolean formula is in *conjunctive normal form*, or *CNF*, if it is an AND of clauses, each of which is an OR of literals

• Ex: $(x_1 \vee \neg x_2) \land (\neg x_1 \vee x_3 \vee x_4) \land (\neg x_5)$

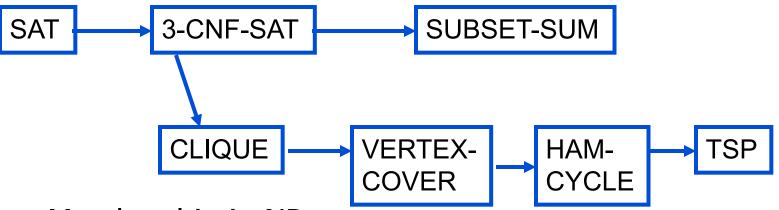
- *3-CNF*: each clause has exactly 3 distinct literals
 - Ex: $(x_1 \vee \neg x_2 \vee \neg x_3) \land (\neg x_1 \vee x_3 \vee x_4) \land (\neg x_5 \vee x_3 \vee x_4)$
 - Notice: true if at least one literal in each clause is true
- Note: Arbitrary expressions can be translated into CNF forms by introducing intermediate variables etc.

The 3-CNF Problem

- Satisfiability of Boolean formulas in 3-CNF form (the *3-CNF Problem*) is NP-Complete
 - Proof: not in this course
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
 - Thus by proving 3-CNF NP-Complete we can prove many seemingly unrelated problems NP-Complete

Joining the Club

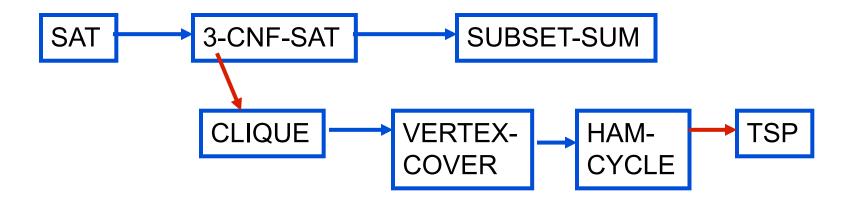
- Given one NP-c problem, others can join the club
 - Prove that SAT reduces to another problem, and so on...



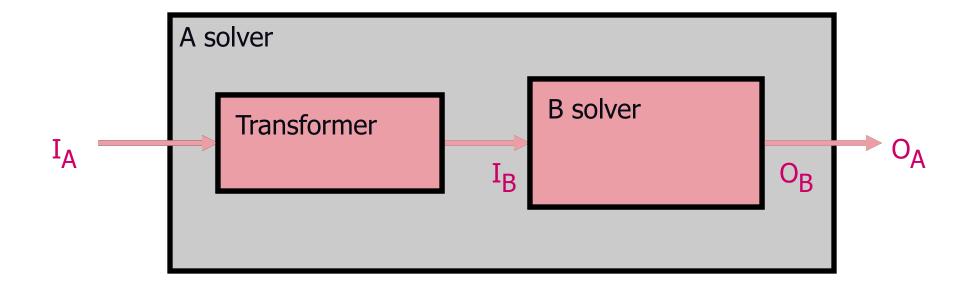
- Membership in NP-c grows...
- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

Examples of Reductions

- Examples covered in class:
 - 3-CNF to k-Clique (in these slides)
 - Directed to Undirected Hamilton Cycle (slides & handout)
 - Hamilton Cycle to Traveling Salesperson (in these slides)
 - 3-COL to CNF-SAT (handout shows direct reduction)



Reminder: A reduces to B



3-CNF → Clique

- What is a clique of a graph G?
- A: a subset of vertices fully connected to each other, i.e. a complete subgraph of G
- The *clique problem*: how large is the maximum-size clique in a graph?
- Can we turn this into a decision problem?
- A: Yes, we call this the *k-clique problem*
- Is the k-clique problem within NP?

$3\text{-CNF} \rightarrow \text{k-Clique}$

- What should the reduction do?
- A: Transform a 3-CNF formula to a graph, for which a *k*-clique will exist (for some *k*) iff the 3-CNF formula is satisfiable
- And do this in polynomial time.

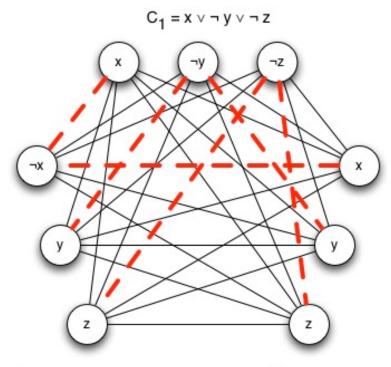
Reduction: 3-CNF \rightarrow k-Clique

- Let $B = C_1 \wedge C_2 \wedge ... \wedge C_k$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals
- For each clause put a triple of vertices in the graph, one for each literal
- Put an edge between two vertices if they are in different triples and their literals are *consistent*, meaning not each other's negation
 - Not consistent: x and $\neg x$, y and $\neg y$, etc.
 - Consistent: x and x, x and y, x and ¬y, etc.
- An example:

$$B = (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor z) \land (x \lor y \lor z)$$

See graphs on next pages

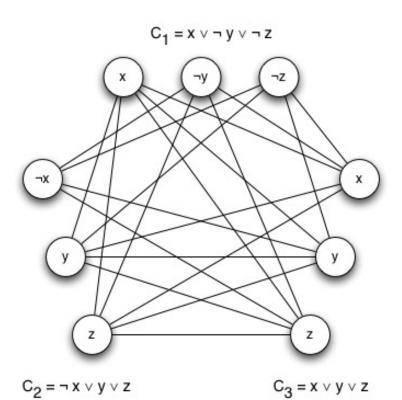
3-CNF transformed to graph



 $C_2 = \neg x \lor y \lor z$

 $C_3 = x \vee y \vee z$

All edges shown, but those in red connect inconsistent pairs



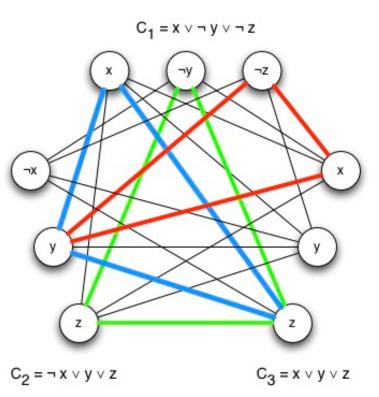
Just connecting consistent pairs

Graph and Cliques

Each 3-clique is a solution to the 3-CNF instance: $(x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor z) \land (x \lor y \lor z)$

- Blue: x true, y true, z true
- Red: z false, y true, x true
- Green: y false, z true, x either
 - Note z=true satisfies both C₂ and C₃
- Many other 3-cliques

Again, note each 3-clique always has only one node in each clause



$3\text{-CNF} \rightarrow \text{k-Clique}$

- Prove the reduction works:
 - If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1
 - Picking one such "true" literal from each clause gives a set V' of k vertices. V' is a clique (Why?)
 - If G has a clique V' of size k, it must contain one vertex in each triple (clause) (*Why?*)
 - We can assign 1 to each literal corresponding with a vertex in V', without fear of contradiction

Directed Hamiltonian Cycle ⇒ Undirected Hamiltonian Cycle

- What was the hamiltonian cycle problem again?
- For my next trick, I will reduce the *directed hamiltonian cycle* problem to the *undirected hamiltonian cycle* problem before your eyes
 - Why would I want to? To prove something in NP-C
 - *Question: Which variant am I proving NP-Complete?*
- Draw a directed example on the board
 - Question: What transformation do I need to effect?

Transformation:

Directed \Rightarrow Undirected Ham. Cycle

- See handout (from page 563 in Baase textbook)
- Transform directed graph G = (V, E) into undirected graph G' = (V', E'):
 - Every vertex v in V transforms into 3 vertices v¹, v², v³ in V' with edges (v¹, v²) and (v², v³) in E'
 - Every directed edge (v, w) in E transforms into the undirected edge (v³, w¹) in E' (draw it)
 - Can this be implemented in polynomial time?
 - Argue that a directed hamiltonian cycle in G implies an undirected hamiltonian cycle in G'
 - Argue that an undirected hamiltonian cycle in G' implies a directed hamiltonian cycle in G

Undirected Hamiltonian Cycle

- Thus we can reduce the directed problem to the undirected problem
- What's left to prove the undirected hamiltonian cycle problem NP-Complete?
- Argue that the problem is in **NP**

Hamiltonian Cycle \Rightarrow TSP

- The well-known *traveling salesman problem*:
 - Optimization variant: a salesman must travel to n cities, visiting each city exactly once and finishing where he begins. How to minimize travel time?
 - Model as complete graph with cost c(*i*,*j*) to go from city *i* to city *j*
- How would we turn this into a decision problem?
 - A: ask if \exists a TSP with cost < k

Hamiltonian Cycle \Rightarrow TSP

- The steps to prove TSP is NP-Complete:
 - Prove that TSP ∈ **NP** (*Argue this*)
 - Reduce the undirected hamiltonian cycle problem to the TSP
 - So if we had a TSP-solver, we could use it to solve the hamilitonian cycle problem in polynomial time
 - How can we transform an instance of the hamiltonian cycle problem to an instance of the TSP?
 - Can we do this in polynomial time?

How to show HamCycle \leq_p TSP?

- Transform input for HamCycle into input for TSP
 - HamCycle: Given unweighted graph G1, does it have a ham. cycle?
 - TSP: Given weighted graph G2 and k, is there a ham. cycle with total cost less than k?
- Must convert unweighted graph to weighted
 - Add edges to G1 to make a complete graph G2
 - Add weights as follows:
 - wt(i,j) is 0 if edge i,j is in G1 (original graph for HamCycle)
 - wt(i,j) is 1 if edge i,j is not in G1
- G1 has ham. cycle iff G2 has TSP with k=0
 - Can you see why? Is this transformation polynomial?

The TSP

- Random asides:
 - TSPs (and variants) have enormous practical importance
 - E.g., for shipping and freighting companies
 - Lots of research into good approximation algorithms
 - Recently made famous as a DNA computing problem
 - "further reading" section of Baase textbook, Ch. 13 (I'll supply copy if you're interested)

General Comments

- Literally hundreds of problems have been shown to be NP-Complete
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

Other NP-Complete Problems

- *Subset-sum*: Given a set of integers, does there exist a subset that adds up to some target *T*?
- *0-1 knapsack*: when weights not just integers
- Hamiltonian path
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

Reminders and Review!

Important: Input Size and P

- Sometimes a problems seems to be in P but really isn't
- Example: finding if value n is a prime
 - Just loop and do a mod: $\Theta(n)$
- Note that here "n" is not the count or number of data items.
 - There's just one input item.
 - But "n" is a value with a <u>size</u> that affects the execution time.
 - The size of is log(n)
 - T(size) = n but size is log(n).
 - $T(\log n) = n = 10^{\log n}$ This is really an exponential!
- Be careful if "n" is not a count of data items but a value
 - Dynamic programming problems, e.g. the 0/1 knapsack

Review (Again)

- A problem B is *NP-complete*
 - if it is in NP and it is NP-hard.
- A problem B is *NP-hard*
 - if *every* problem in NP is reducible to **B**.
- A problem A is *reducible* to a problem B if
 - there exists a polynomial reduction function T such that
 - For every string x,
 - \circ if x is a yes input for A, then T(x) is a yes input for B
 - \circ if x is a no input for A, then T(x) is a no input for B.
 - T can be computed in polynomially bounded time.

NP-Complete Problems

- NP-Complete problems are the "hardest" problems in NP:
 - If any one NP-Complete problem can be solved in polynomial time...
 - ...then every NP-Complete problem can be solved in polynomial time...
 - ...and in fact *every* problem in NP can be solved in polynomial time (which would show P = NP)
 - Thus: solve any NP-Complete problem in O(n¹⁰⁰) time, you've proved that P = NP. Retire rich & famous.

What We Don't Know: Open Questions

- Is it **impossible** to solve an NP-c problem in polynomial time?
 - No one has proved an exponential lower bound for any problem in NP
 - But, computer scientists <u>believe</u> such a L.B. exists for NP-c problems.
- Are all problems in NP tractable or intractable? I.e., does P=NP or not?
 - If someone found a polynomial solution to any NP-c problem, we'd know P = NP.
 - \circ But, computer scientists <u>believe</u> P≠ NP.

Unused slides

Another reduction
 k-CLIQUE to VertexCover

- A vertex cover for a graph G is a set of vertices incident to every edge in G
- The *vertex cover problem*: what is the minimum size vertex cover in G?
- Restated as a decision problem: does a vertex cover of size k exist in G?
- Thm 36.12: vertex cover is NP-Complete

- First, show vertex cover in **NP** (*How?*)
- Next, reduce *k*-clique to vertex cover
 - The complement G_C of a graph G contains exactly those edges not in G
 - Compute G_C in polynomial time
 - G has a clique of size k iff G_C has a vertex cover of size |V| k

- Claim: If G has a clique of size k, G_C has a vertex cover of size |V| - k
 - Let V' be the *k*-clique
 - Then V V' is a vertex cover in G_C
 - Let (u, v) be any edge in G_C
 - Then *u* and *v* cannot both be in V' (*Why?*)
 - Thus at least one of u or v is in V-V' (why?), so edge (u, v) is covered by V-V'
 - \circ Since true for any edge in $G_C,$ V-V' is a vertex cover

- Claim: If G_C has a vertex cover $V' \subseteq V$, with |V'|
 - = |V| k, then G has a clique of size k
 - For all $u, v \in V$, if $(u, v) \in G_C$ then $u \in V'$ or $v \in V'$ or both (*Why?*)
 - Contrapositive: if $u \notin V'$ and $v \notin V'$, then $(u, v) \in E$
 - In other words, all vertices in V-V' are connected by an edge, thus V-V' is a clique
 - Since |V| |V'| = k, the size of the clique is k