
CS 4102: Algorithms

NP Completeness Continued:
Reductions

Review: P And NP Summary

●  P = set of problems that can be solved in
polynomial time

●  NP = set of problems for which a solution
can be verified in polynomial time

●  P ⊆ NP
● Open question: Does P = NP?

Review: Reduction

●  A problem A can be reduced to another
problem B if any instance of A can be
rephrased to an instance of B, the solution
to which provides a solution to the instance
of A
■ This rephrasing is called a transformation

●  Intuitively: If A reduces in polynomial time
to B, A is “no harder to solve” than B
■  I.e. if B is polynomial, A is not exponential

Review:
NP-Hard and NP-Complete

●  If A is polynomial-time reducible to B, we
denote this A ≤p B

●  Definition of NP-Hard and NP-Complete:
■  If all problems R ∈ NP are reducible to A ,

then A is NP-Hard
■ We say A is NP-Complete if A is NP-Hard

and A ∈ NP
●  If A ≤p B and A is NP-Complete, B is also

NP- Complete

Review: Proving NP-Completeness

● What steps do we have to take to prove a
problem Y is NP-Complete?
■  Pick a known NP-Complete problem X

○ Assuming there is one! (More later.)

■ Reduce X to Y
○ Describe a transformation that maps instances of X

to instances of Y, s.t. “yes” for Y = “yes” for X
○ Prove the transformation works
○ Prove it runs in polynomial time

■ Oh yeah, prove Y ∈ NP

Order of the Reduction When
Proving NP-Completeness

●  To prove Y is NP-c, show X ≤p Y where X ∈ NP-c
■  Why have the known NP-c problem “on the left”?

Shouldn’t it be the other way around? (No!)

●  If X ∈ NP-c, then: all NP problems ≤p X
●  If you show X ≤p Y, then:

 any-NP-problem ≤p X ≤p Y

●  Thus any problem in NP can be reduced to Y if
the two transformations are applied in sequence
■  And both are polynomial

Can a Problem be NP-Hard but not NP-C?

●  So, find a reduction and then try to prove Y ∈ NP
■  What if you can’t?

●  Are there any problems Y that are NP-hard but
not NP-complete? This means:
■  All problems in NP reduce to Y . (A known NP-c

problem can be reduced to Q.)
■  But, Y cannot be proved to be in NP

●  Yes! Some examples:
■  Non-decision forms of known NP-Cs (e.g. TSP)
■  The halting problem. (Transform a SAT expression to a

Turing machine.)
■  Others.

But You Need One NP-c First…

●  If you have one NP-c problem, you can use the technique
just described to prove other problems are NP-c

●  The definition of NP-complete was created to prove a
point
■  There might be problems that are at least as hard as

“anything” (i.e. all NP problems)

●  Are there really NP-complete problems?
■  Stephen Cook, 1971. Cook-Levin Theorem:

The satisfiability problem is NP-Complete.
○  He proved this “directly”, from first principles
○  Proven independently by Leonid Levin (USSR)
○  Showed that any problem that meets the definition of NP can be

transformed in polynomial time to a CNF formula.
○  Proof outside the scope of this course (lucky you)

More About The SAT Problem

●  One of the first problems to be proved NP-
Complete was satisfiability (SAT):
■  Given a Boolean expression on n variables, can we

assign values such that the expression is TRUE?
■  Ex: ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

●  You might imagine that lots of decision problems
could be expressed as a complex logical
expression
■  And Cook and Levin proved you were right!
■  Proved the general result that any NP problem can be

expressed

Conjunctive Normal Form

●  Even if the form of the Boolean expression is
simplified, the problem may be NP-Complete
■  Literal: an occurrence of a Boolean or its negation
■  A Boolean formula is in conjunctive normal form, or

CNF, if it is an AND of clauses, each of which is an OR
of literals
○  Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5)

■  3-CNF: each clause has exactly 3 distinct literals
○  Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 ∨ x3 ∨ x4)
○  Notice: true if at least one literal in each clause is true

■  Note: Arbitrary expressions can be translated into CNF
forms by introducing intermediate variables etc.

The 3-CNF Problem

●  Satisfiability of Boolean formulas in 3-CNF
form (the 3-CNF Problem) is NP-Complete
■  Proof: not in this course

●  The reason we care about the 3-CNF
problem is that it is relatively easy to
reduce to others
■ Thus by proving 3-CNF NP-Complete we can

prove many seemingly unrelated problems
NP-Complete

Joining the Club

●  Given one NP-c problem, others can join the club
■  Prove that SAT reduces to another problem, and so

on…

■  Membership in NP-c grows…
■  Classic textbook: Garey, M. and D. Johnson,

Computers and Intractability: A Guide to the Theory of
NP-Completeness, 1979.

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-
COVER

HAM-
CYCLE

TSP

Examples of Reductions

●  Examples covered in class:
■  3-CNF to k-Clique (in these slides)
■  Directed to Undirected Hamilton Cycle (slides & handout)
■  Hamilton Cycle to Traveling Salesperson (in these slides)
■  3-COL to CNF-SAT (handout shows direct reduction)

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-
COVER

HAM-
CYCLE

TSP

Reminder: A reduces to B

IA

A solver

IB OB
OA

Transformer B solver

3-CNF → Clique

● What is a clique of a graph G?
●  A: a subset of vertices fully connected to

each other, i.e. a complete subgraph of G
●  The clique problem: how large is the

maximum-size clique in a graph?
●  Can we turn this into a decision problem?
●  A: Yes, we call this the k-clique problem
●  Is the k-clique problem within NP?

3-CNF → k-Clique

● What should the reduction do?
●  A: Transform a 3-CNF formula to a graph,

for which a k-clique will exist (for some k)
iff the 3-CNF formula is satisfiable

●  And do this in polynomial time.

Reduction: 3-CNF → k-Clique

●  Let B = C1 ∧ C2 ∧ … ∧ Ck be a 3-CNF formula with k
clauses, each of which has 3 distinct literals

●  For each clause put a triple of vertices in the graph, one
for each literal

●  Put an edge between two vertices if they are in different
triples and their literals are consistent, meaning not each
other’s negation
■  Not consistent: x and ¬x, y and ¬y, etc.
■  Consistent: x and x, x and y, x and ¬y, etc.

●  An example:
 B = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ y ∨ z)
■  See graphs on next pages

3-CNF transformed to graph

All edges shown, but those in
red connect inconsistent pairs

Just connecting consistent pairs

Graph and Cliques

Each 3-clique is a solution to the 3-CNF instance:
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

●  Blue: x true, y true, z true
●  Red: z false, y true, x true
●  Green: y false, z true, x either

●  Note z=true satisfies both
C2 and C3

●  Many other 3-cliques

 Again, note each 3-clique
always has only one node in
each clause

3-CNF → k-Clique

●  Prove the reduction works:
■  If B has a satisfying assignment, then each clause has

at least one literal (vertex) that evaluates to 1
■  Picking one such “true” literal from each clause gives

a set V’ of k vertices. V’ is a clique (Why?)
■  If G has a clique V’ of size k, it must contain one

vertex in each triple (clause) (Why?)
■  We can assign 1 to each literal corresponding with a

vertex in V’, without fear of contradiction

Directed Hamiltonian Cycle ⇒
Undirected Hamiltonian Cycle

●  What was the hamiltonian cycle problem again?
●  For my next trick, I will reduce the directed

hamiltonian cycle problem to the undirected
hamiltonian cycle problem before your eyes
■  Why would I want to? To prove something in NP-C
■  Question: Which variant am I proving NP-Complete?

●  Draw a directed example on the board
■  Question: What transformation do I need to effect?

Transformation:
Directed ⇒ Undirected Ham. Cycle
●  See handout (from page 563 in Baase textbook)
●  Transform directed graph G = (V, E) into

undirected graph G’ = (V’, E’):
■  Every vertex v in V transforms into 3 vertices

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’
■  Every directed edge (v, w) in E transforms into the

undirected edge (v3, w1) in E’ (draw it)
■  Can this be implemented in polynomial time?
■  Argue that a directed hamiltonian cycle in G implies

an undirected hamiltonian cycle in G’
■  Argue that an undirected hamiltonian cycle in G’

implies a directed hamiltonian cycle in G

Undirected Hamiltonian Cycle

●  Thus we can reduce the directed problem
to the undirected problem

● What’s left to prove the undirected
hamiltonian cycle problem NP-Complete?

●  Argue that the problem is in NP

Hamiltonian Cycle ⇒ TSP

●  The well-known traveling salesman problem:
■  Optimization variant: a salesman must travel to n

cities, visiting each city exactly once and finishing
where he begins. How to minimize travel time?

■  Model as complete graph with cost c(i,j) to go from
city i to city j

●  How would we turn this into a decision problem?
■  A: ask if ∃ a TSP with cost < k

Hamiltonian Cycle ⇒ TSP

●  The steps to prove TSP is NP-Complete:
■  Prove that TSP ∈ NP (Argue this)
■ Reduce the undirected hamiltonian cycle

problem to the TSP
○ So if we had a TSP-solver, we could use it to solve

the hamilitonian cycle problem in polynomial time
○ How can we transform an instance of the

hamiltonian cycle problem to an instance of the
TSP?

○ Can we do this in polynomial time?

How to show HamCycle ≤p TSP?

●  Transform input for HamCycle into input for TSP
■  HamCycle: Given unweighted graph G1, does it have

a ham. cycle?
■  TSP: Given weighted graph G2 and k, is there a ham.

cycle with total cost less than k?
●  Must convert unweighted graph to weighted

■  Add edges to G1 to make a complete graph G2
■  Add weights as follows:

○  wt(i,j) is 0 if edge i,j is in G1 (original graph for HamCycle)
○  wt(i,j) is 1 if edge i,j is not in G1

●  G1 has ham. cycle iff G2 has TSP with k=0
■  Can you see why? Is this transformation polynomial?

The TSP

●  Random asides:
■ TSPs (and variants) have enormous practical

importance
○ E.g., for shipping and freighting companies
○ Lots of research into good approximation

algorithms

■ Recently made famous as a DNA computing
problem
○ “further reading” section of Baase textbook, Ch. 13

(I’ll supply copy if you’re interested)

General Comments

●  Literally hundreds of problems have been
shown to be NP-Complete

●  Some reductions are profound, some are
comparatively easy, many are easy once
the key insight is given

Other NP-Complete Problems

●  Subset-sum: Given a set of integers, does there
exist a subset that adds up to some target T ?

●  0-1 knapsack: when weights not just integers
●  Hamiltonian path
●  Graph coloring: can a given graph be colored

with k colors such that no adjacent vertices are
the same color?

●  Etc…

Reminders and Review!

Important: Input Size and P

●  Sometimes a problems seems to be in P but really isn’t
●  Example: finding if value n is a prime

■  Just loop and do a mod: Θ(n)
●  Note that here “n” is not the count or number of data

items.
■  There’s just one input item.
■  But “n” is a value with a size that affects the execution time.
■  The size of is log(n)
■  T(size) = n but size is log(n).
■  T(log n) = n = 10log n This is really an exponential!

●  Be careful if “n” is not a count of data items but a value
■  Dynamic programming problems, e.g. the 0/1 knapsack

Review (Again)

●  A problem B is NP-complete
■  if it is in NP and it is NP-hard.

●  A problem B is NP-hard
■  if every problem in NP is reducible to B.

●  A problem A is reducible to a problem B if
■  there exists a polynomial reduction function T such

that
○  For every string x,
○  if x is a yes input for A, then T(x) is a yes input for B
○  if x is a no input for A, then T(x) is a no input for B.
○  T can be computed in polynomially bounded time.

NP-Complete Problems

●  NP-Complete problems are the “hardest”
problems in NP:
■  If any one NP-Complete problem can be solved in

polynomial time…
■  …then every NP-Complete problem can be solved in

polynomial time…
■  …and in fact every problem in NP can be solved in

polynomial time (which would show P = NP)
■  Thus: solve any NP-Complete problem in O(n100)

time, you’ve proved that P = NP. Retire rich &
famous.

What We Don’t Know: Open Questions

■  Is it impossible to solve an NP-c problem in
polynomial time?
○ No one has proved an exponential lower bound for

any problem in NP
○ But, computer scientists believe such a L.B. exists

for NP-c problems.

■ Are all problems in NP tractable or
intractable? I.e., does P=NP or not?
○  If someone found a polynomial solution to any

NP-c problem, we’d know P = NP.
○ But, computer scientists believe P≠ NP.

Unused slides

●  Another reduction
■  k-CLIQUE to VertexCover

Clique → Vertex Cover

●  A vertex cover for a graph G is a set of
vertices incident to every edge in G

●  The vertex cover problem: what is the
minimum size vertex cover in G?

●  Restated as a decision problem: does a
vertex cover of size k exist in G?

●  Thm 36.12: vertex cover is NP-Complete

Clique → Vertex Cover

●  First, show vertex cover in NP (How?)
●  Next, reduce k-clique to vertex cover
■ The complement GC of a graph G contains

exactly those edges not in G
■ Compute GC in polynomial time
■ G has a clique of size k iff GC has a vertex

cover of size |V| - k

Clique → Vertex Cover

●  Claim: If G has a clique of size k, GC has a
vertex cover of size |V| - k
■  Let V’ be the k-clique
■ Then V - V’ is a vertex cover in GC

○ Let (u,v) be any edge in GC
○ Then u and v cannot both be in V’ (Why?)
○ Thus at least one of u or v is in V-V’ (why?), so

edge (u, v) is covered by V-V’
○ Since true for any edge in GC, V-V’ is a vertex

cover

Clique → Vertex Cover

●  Claim: If GC has a vertex cover V’ ⊆ V, with |V’|
= |V| - k, then G has a clique of size k
■  For all u,v ∈ V, if (u,v) ∈ GC then u ∈ V’ or

v ∈ V’ or both (Why?)
■  Contrapositive: if u ∉ V’ and v ∉ V’, then

(u,v) ∈ E
■  In other words, all vertices in V-V’ are connected by

an edge, thus V-V’ is a clique
■  Since |V| - |V’| = k, the size of the clique is k

