CS 4102: Algorithms

NP Completeness Continued: Reductions

Review: P And NP Summary

- $\mathbf{P}=$ set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
- $\mathbf{P} \subseteq \mathbf{N} \mathbf{P}$
- Open question: Does $\mathbf{P}=\mathbf{N P}$?

Review: Reduction

- A problem A can be reduced to another problem B if any instance of A can be rephrased to an instance of B, the solution to which provides a solution to the instance of A
- This rephrasing is called a transformation
- Intuitively: If A reduces in polynomial time to B, A is "no harder to solve" than B
- I.e. if B is polynomial, A is not exponential

Review: NP-Hard and NP-Complete

- If A is polynomial-time reducible to B , we denote this $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$
- Definition of NP-Hard and NP-Complete:
- If all problems $R \in \mathbf{N P}$ are reducible to A, then A is $N P$-Hard
- We say A is NP-Complete if A is NP-Hard and $A \in \mathbf{N P}$
- If $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ and A is NP-Complete, B is also NP- Complete

Review: Proving NP-Completeness

- What steps do we have to take to prove a problem Y is NP-Complete?
- Pick a known NP-Complete problem X
\circ Assuming there is one! (More later.)
- Reduce X to Y
- Describe a transformation that maps instances of X to instances of Y, s.t. "yes" for $Y=$ "yes" for X
- Prove the transformation works
- Prove it runs in polynomial time
- Oh yeah, prove $Y \in \mathbf{N P}$

Order of the Reduction When Proving NP-Completeness

- To prove Y is NP-c, show $X \leq_{p} Y$ where $X \in \mathbf{N P}-\mathbf{c}$
- Why have the known NP-c problem "on the left"? Shouldn't it be the other way around? (No!)
- If $X \in$ NP-c, then: all NP problems $\leq_{p} X$
- If you show $X \leq_{p} Y$, then: any-NP-problem $\leq_{p} X \leq_{p} Y$
- Thus any problem in NP can be reduced to Y if the two transformations are applied in sequence
- And both are polynomial

Can a Problem be NP-Hard but not NP-C?

- So, find a reduction and then try to prove $\mathrm{Y} \in \mathbf{N} \mathbf{P}$
- What if you can't?
- Are there any problems Y that are NP-hard but not NP-complete? This means:
- All problems in NP reduce to Y. (A known NP-c problem can be reduced to Q.)
- But, Y cannot be proved to be in NP
- Yes! Some examples:
- Non-decision forms of known NP-Cs (e.g. TSP)
- The halting problem. (Transform a SAT expression to a Turing machine.)
- Others.

But You Need One NP-c First...

- If you have one NP-c problem, you can use the technique just described to prove other problems are NP-c
- The definition of NP-complete was created to prove a point
- There might be problems that are at least as hard as "anything" (i.e. all NP problems)
- Are there really NP-complete problems?
- Stephen Cook, 1971. Cook-Levin Theorem: The satisfiability problem is NP-Complete.
- He proved this "directly", from first principles
- Proven independently by Leonid Levin (USSR)
- Showed that any problem that meets the definition of NP can be transformed in polynomial time to a CNF formula.
- Proof outside the scope of this course (lucky you)

More About The SAT Problem

- One of the first problems to be proved NPComplete was satisfiability (SAT):
- Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
- Ex: $\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$
- You might imagine that lots of decision problems could be expressed as a complex logical expression
- And Cook and Levin proved you were right!
- Proved the general result that any NP problem can be expressed

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
- Literal: an occurrence of a Boolean or its negation
- A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
- Ex: $\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{5}\right)$
- 3-CNF: each clause has exactly 3 distinct literals
- Ex: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee x_{3} \vee x_{4}\right)$
- Notice: true if at least one literal in each clause is true
- Note: Arbitrary expressions can be translated into CNF forms by introducing intermediate variables etc.

The 3-CNF Problem

- Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Complete
- Proof: not in this course
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
- Thus by proving 3-CNF NP-Complete we can prove many seemingly unrelated problems NP-Complete

Joining the Club

- Given one NP-c problem, others can join the club
- Prove that SAT reduces to another problem, and so on...

■ Membership in NP-c grows...

- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

Examples of Reductions

- Examples covered in class:
- 3-CNF to k-Clique (in these slides)
- Directed to Undirected Hamilton Cycle (slides \& handout)
- Hamilton Cycle to Traveling Salesperson (in these slides)
- 3-COL to CNF-SAT (handout shows direct reduction)

Reminder: A reduces to B

3-CNF \rightarrow Clique

- What is a clique of a graph G?
- A: a subset of vertices fully connected to each other, i.e. a complete subgraph of G
- The clique problem: how large is the maximum-size clique in a graph?
- Can we turn this into a decision problem?
- A: Yes, we call this the k-clique problem
- Is the k-clique problem within NP?

3-CNF \rightarrow k-Clique

- What should the reduction do?
- A: Transform a 3-CNF formula to a graph, for which a k-clique will exist (for some k) iff the 3 -CNF formula is satisfiable
- And do this in polynomial time.

Reduction: 3-CNF \rightarrow k-Clique

- Let $\mathrm{B}=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots \wedge \mathrm{C}_{k}$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals
- For each clause put a triple of vertices in the graph, one for each literal
- Put an edge between two vertices if they are in different triples and their literals are consistent, meaning not each other's negation
- Not consistent: x and $\neg x, y$ and $\neg y$, etc.
- Consistent: x and x, x and y, x and $\neg y$, etc.
- An example:

$$
B=(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge(x \vee y \vee z)
$$

- See graphs on next pages

3-CNF transformed to graph

All edges shown, but those in red connect inconsistent pairs

Just connecting consistent pairs

Graph and Cliques

Each 3-clique is a solution to the 3-CNF instance:

$$
(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge(x \vee y \vee z)
$$

- Blue: x true, y true, z true
- Red: z false, y true, x true
- Green: y false, z true, x either
- Note $z=t r u e ~ s a t i s f i e s ~ b o t h ~$ C_{2} and C_{3}
- Many other 3-cliques

Again, note each 3-clique always has only one node in each clause

3-CNF \rightarrow k-Clique

- Prove the reduction works:
- If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1
- Picking one such "true" literal from each clause gives a set V^{\prime} of k vertices. V^{\prime} is a clique (Why?)
- If G has a clique V^{\prime} of size k, it must contain one vertex in each triple (clause) (Why?)
- We can assign 1 to each literal corresponding with a vertex in V^{\prime}, without fear of contradiction

Directed Hamiltonian Cycle \Rightarrow Undirected Hamiltonian Cycle

- What was the hamiltonian cycle problem again?
- For my next trick, I will reduce the directed hamiltonian cycle problem to the undirected hamiltonian cycle problem before your eyes
- Why would I want to? To prove something in NP-C
- Question: Which variant am I proving NP-Complete?
- Draw a directed example on the board
- Question: What transformation do I need to effect?

Transformation:
 Directed \Rightarrow Undirected Ham. Cycle

- See handout (from page 563 in Baase textbook)
- Transform directed graph $G=(V, E)$ into undirected graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$:
- Every vertex v in V transforms into 3 vertices v^{1}, v^{2}, v^{3} in V^{\prime} with edges $\left(v^{1}, v^{2}\right)$ and $\left(v^{2}, v^{3}\right)$ in E^{\prime}
- Every directed edge (v, w) in E transforms into the undirected edge ($\mathrm{v}^{3}, \mathrm{w}^{1}$) in E^{\prime} (draw it)
- Can this be implemented in polynomial time?
- Argue that a directed hamiltonian cycle in G implies an undirected hamiltonian cycle in G^{\prime}
- Argue that an undirected hamiltonian cycle in G^{\prime} implies a directed hamiltonian cycle in G

Undirected Hamiltonian Cycle

- Thus we can reduce the directed problem to the undirected problem
- What's left to prove the undirected hamiltonian cycle problem NP-Complete?
- Argue that the problem is in NP

Hamiltonian Cycle \Rightarrow TSP

- The well-known traveling salesman problem:
- Optimization variant: a salesman must travel to n cities, visiting each city exactly once and finishing where he begins. How to minimize travel time?
- Model as complete graph with cost $c(i, j)$ to go from city i to city j
- How would we turn this into a decision problem?
- A: ask if \exists a TSP with cost $<k$

Hamiltonian Cycle \Rightarrow TSP

- The steps to prove TSP is NP-Complete:
- Prove that TSP $\in \mathbf{N P}$ (Argue this)
- Reduce the undirected hamiltonian cycle problem to the TSP
- So if we had a TSP-solver, we could use it to solve the hamilitonian cycle problem in polynomial time
- How can we transform an instance of the hamiltonian cycle problem to an instance of the TSP?
- Can we do this in polynomial time?

How to show HamCycle \leq_{p} TSP?

- Transform input for HamCycle into input for TSP
- HamCycle: Given unweighted graph G1, does it have a ham. cycle?
- TSP: Given weighted graph G2 and k, is there a ham. cycle with total cost less than k ?
- Must convert unweighted graph to weighted
- Add edges to G1 to make a complete graph G2
- Add weights as follows:
- wt($\mathrm{i}, \mathrm{j})$ is 0 if edge i, j is in G 1 (original graph for HamCycle)
- $w t(i, j)$ is 1 if edge i, j is not in G1
- G1 has ham. cycle iff G2 has TSP with $\mathrm{k}=0$
- Can you see why? Is this transformation polynomial?

The TSP

- Random asides:
- TSPs (and variants) have enormous practical importance
- E.g., for shipping and freighting companies
- Lots of research into good approximation algorithms
- Recently made famous as a DNA computing problem
- "further reading" section of Baase textbook, Ch. 13
(I'll supply copy if you're interested)

General Comments

- Literally hundreds of problems have been shown to be NP-Complete
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

Other NP-Complete Problems

- Subset-sum: Given a set of integers, does there exist a subset that adds up to some target T ?
- 0-1 knapsack: when weights not just integers
- Hamiltonian path
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

Reminders and Review!

Important: Input Size and P

- Sometimes a problems seems to be in P but really isn't
- Example: finding if value n is a prime
- Just loop and do a mod: $\Theta(n)$
- Note that here " n " is not the count or number of data items.
- There's just one input item.
- But " n " is a value with a size that affects the execution time.
- The size of is $\log (\mathrm{n})$
- $T($ size $)=n$ but size is $\log (n)$.
- $T(\log n)=n=10^{\log n} \quad$ This is really an exponential!
- Be careful if " n " is not a count of data items but a value
- Dynamic programming problems, e.g. the 0/1 knapsack

Review (Again)

- A problem B is NP-complete
- if it is in NP and it is NP-hard.
- A problem B is NP-hard
- if every problem in NP is reducible to \mathbf{B}.
- A problem A is reducible to a problem B if
- there exists a polynomial reduction function T such that
- For every string x,
- if x is a yes input for A, then $T(x)$ is a yes input for B
- if x is a no input for A, then $T(x)$ is a no input for B.
- T can be computed in polynomially bounded time.

NP-Complete Problems

- NP-Complete problems are the "hardest" problems in NP:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Thus: solve any NP-Complete problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous.

What We Don't Know: Open Questions

- Is it impossible to solve an NP-c problem in polynomial time?
- No one has proved an exponential lower bound for any problem in NP
- But, computer scientists believe such a L.B. exists for NP-c problems.
- Are all problems in NP tractable or intractable? I.e., does $\mathrm{P}=\mathrm{NP}$ or not?
- If someone found a polynomial solution to any NP-c problem, we'd know $P=N P$.
- But, computer scientists believe $\mathrm{P} \neq \mathrm{NP}$.

Unused slides

- Another reduction
- k-CLIQUE to VertexCover

Clique \rightarrow Vertex Cover

- A vertex cover for a graph G is a set of vertices incident to every edge in G
- The vertex cover problem: what is the minimum size vertex cover in G ?
- Restated as a decision problem: does a vertex cover of size k exist in G ?
- Thm 36.12: vertex cover is NP-Complete

Clique \rightarrow Vertex Cover

- First, show vertex cover in NP (How?)
- Next, reduce k-clique to vertex cover
- The complement G_{C} of a graph G contains exactly those edges not in G
- Compute G_{c} in polynomial time
- G has a clique of size k iff G_{C} has a vertex cover of size $|\mathrm{V}|-k$

Clique \rightarrow Vertex Cover

- Claim: If G has a clique of size $k, \mathrm{G}_{\mathrm{C}}$ has a vertex cover of size |V| - k
- Let V^{\prime} be the k-clique
- Then V - V^{\prime} is a vertex cover in G_{C}
- Let (u, v) be any edge in G_{C}
- Then u and v cannot both be in V^{\prime} (Why?)
- Thus at least one of u or v is in $\mathrm{V}-\mathrm{V}^{\prime}$ (why?), so edge (u, v) is covered by $V-V^{\prime}$
- Since true for any edge in $\mathrm{G}_{\mathrm{C}}, \mathrm{V}-\mathrm{V}^{\prime}$ is a vertex cover

Clique \rightarrow Vertex Cover

- Claim: If G_{c} has a vertex cover $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, with $\left|\mathrm{V}^{\prime}\right|$ $=|\mathrm{V}|-k$, then G has a clique of size k
- For all $u, v \in \mathrm{~V}$, if $(u, v) \in \mathrm{G}_{\mathrm{c}}$ then $u \in \mathrm{~V}^{\prime}$ or $v \in \mathrm{~V}^{\prime}$ or both (Why?)
- Contrapositive: if $u \notin \mathrm{~V}^{\prime}$ and $v \notin \mathrm{~V}^{\prime}$, then $(u, v) \in \mathrm{E}$
- In other words, all vertices in V - V^{\prime} are connected by an edge, thus V - V^{\prime} is a clique
- Since $|\mathrm{V}|-\left|\mathrm{V}^{\prime}\right|=k$, the size of the clique is k

