
Graphs

CS2150: Program and Data Representation
University of Virginia Computer Science

Fall 2009 Aaron Bloomfield

www.cheswick.com/ches/map/index.html

2

Topic Coverage

•  Graph terminology
– Lots of it!

•  Ways of representing graphs and costs &
benefits
– Adjacency matrix
– Adjacency list

•  Solving problems with graphs
– Topological sort
– Traveling salesperson

3

Graph examples

•  Google Maps, of course
– Which actually uses MapQuest data
– But we’ll call it Google Maps data

•  Others?

4

Airline maps

From http://www.travelmood.com
/site/seatsale/QF/images/
MR_Domestic-April2005.jpg

5

 Flowcharts

6

Course
pre-req
graphs

7

Graphs

G = (V, E)
V are the vertices; E are the edges.
Edges are of the form (v, w), where v, w ∈V.
•  ordered pair: directed graph or digraph
•  unordered pair: undirected graph

v9
v8 v10

v3 v6 v7

v4 v5

v1

v2

8

How big are these graphs?

•  These are educated guesses, by the way

•  Airport codes
–  There are probably 3,000 world-wide airports
–  Assume you can fly to 25 airports from each
–  That’s 3,000*25 = 75,000 edges

•  Google maps
–  There are probably 30 million vertices in the US
–  Assume each one connects to three others
–  That’s 3 * 30 million ≈ 100 million edges

9

Terminology

•  A weight or cost can be associated with
each edge.

•  w is adjacent to v iff (v, w) ∈ E.
•  path: sequence of vertices w1, w2, w3, … ,

wN such that (wi, wi+1) ∈ E for 1 ≤ i < N.
•  length of a path: number of edges in the

path.
•  simple path: all vertices are distinct.

10

How to weight a graph…

•  For Google maps?

•  For airline routes?

11

More terminology

cycle:
directed graph: path of length ≥ 1 such that w1

= wN.
undirected graph: same, except all edges are

distinct.

connected: there is a path from every
vertex to every other vertex.

loop: (v, v) ∈ E.
complete graph: there is an edge between

every pair of vertices.

12

End of lecture on Mon, Nov 16

•  Also went over the slides 32-47 (end) of
12-huffman

13

Digraph terminology

directed acyclic graph: no cycles. “DAG”
strongly connected: there is a path from every

vertex to every other vertex.
weakly connected: the underlying undirected

graph is connected.

C

D

A

B

E

F

G

14

Representation

•  adjacency matrix:

 1 2 3 4

1

2

3

4

1

3 4

2

15

Representation

•  adjacency list:

1

2

3

4

2 3 4
3

1 2

1

3 4

2

16

Representation in the real world

•  Two types of representation
– Adjacency matrix
– Adjacency graph

•  How does Google maps probably store it?
•  How do airline routes probably store it?

Topological Sort

18

Topological Sort

•  Given a directed acyclic graph, construct an
ordering of the vertices such that if there is a
path from vi to vj, then vj appears after vi in the
ordering.
–  The result is a linear list of vertices

•  indegree of v: # of edges (u, v).

v3

v6 v1

v2

v4

v7

v5

v8

19

Topological Sort

•  A valid topological sort is:
–  V1, V6, V8, V3, V2, V7, V4, V5

v3

v6 v1

v2

v4

v7

v5

v8

20

What is the topological sort?

1

3

4

2

21

What is the topological sort?

1

3

4

2

22

This is
already
topo-
logically
sorted!

23

void Graph::topsort(){

 Vertex v, w;

 for (int counter=0; counter < NUM_VERTICES;
 counter++)

{

 v = findNewVertexOfDegreeZero();

 if (v == NOT_A_VERTEX)

 throw CycleFound();

 v.topologicalNum = counter;

 for each w adjacent to v

 w.indegree--;

 }

}

•  What’s the big-Oh running time?
•  Observation: The only new (eligible) vertices with

indegree 0 are the ones adjacent to the vertex
just processed.

Topological
sort

24

void Graph::topsort(){

 Queue q(NUM_VERTICES);

 int counter = 0;

 Vertex v, w;

 q.makeEmpty();

 for each vertex v

 if (v.indegree == 0)

 q.enqueue(v);

 while (!q.isEmpty()){

 v = q.dequeue();

 v.topologicalNum = ++counter;

 for each w adjacent to v

 if (--w.indegree == 0)

 q.enqueue(w);

 }

 if (counter != NUM_VERTICES)

 throw CycleFound();

}

intialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

Topological
sort

25

Problem 9.1 from Textbook

•  Topological sort

Shortest Path Algorithms

Unweighted and Weighted Graphs

27

Why do we care about shortest
paths?

•  The obvious answers:
– Map routing (car navigation systems, Google

Maps, flights)
– 6 degrees of separation

•  But what else?
–  Internet routing
– Puzzle answers (Rubik’s cube)

28

End of lecture on Wed, Nov 18

29

3 types of algorithms

•  Single pair
•  Single source
•  All pairs

•  And a variant that we’ll see later:
– Travelling salesperson

30

Shortest Path Algorithms

•  This version is called the “single-source” shortest
path

•  Given a graph G = (V, E) and a single
distinguished vertex s, find the shortest weighted
path from s to every other vertex in G.

weighted path length of v1, v2, … , vN:

, where ci,j is the cost of edge (vi, vj)

31

Unweighted Shortest Path

•  Special case of the weighted problem: all
weights are 1.

•  Solution: breadth-first search. Similar to
level-order traversal for trees.

v3

v6

v1

v2

v4
v7

v5

v0 s

32

void Graph::unweighted (Vertex s){
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()){
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY){
 w.dist = v.dist + 1;
 w.path = v;
 q.enqueue(w);
 }
 }
 }

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

total running time: O(?)

33

Weighted Shortest Path

•  no negative weight edges.
•  Dijkstra’s algorithm: uses similar ideas

as the unweighted case.
Greedy algorithms:
 do what seems to be best at every
decision point.

 S
“known”

s V - S
“unknown”

v

34

Dijkstra’s algorithm

•  Initialize each vertex’s distance as infinity
•  Start at a given vertex s

–  Update s’s distance to be 0

•  Repeat
–  Pick the next unknown vertex with the shortest distance to

be the next v
•  If no more vertices are unknown, terminate loop

–  Mark v as known
–  For each edge from v to adjacent unknown vertices w

•  If the total distance to w is less than the current distance to w
–  Update w’s distance and the path to w

35

v3

v6

v1

v2 v4

v5

v0

1

2

2

2
1

1 1

5 3

5

6

10
V Known Dist path

v0

v1

v2

v3

v4

v5

v6

36

void Graph::dijkstra(Vertex s){
 Vertex v,w;
 s.dist = 0;

 while (there exist unknown vertices, find the
 unknown v with the smallest distance)

 v.known = true;

 for each w adjacent to v
 if (!w.known)
 if (v.dist + Cost_VW < w.dist){
 w.dist = v.dist + Cost_VW;
 w.path = v;
 }
 }
}

37

Unweighted & Weighted Single
Source Shortest Paths (Weiss 9.5)

38

Analysis

•  How long does it take to find the smallest
unknown distance?
–  simple scan using an array: O(v)

•  Total running time:
–  Using a simple scan: O(v2+e) = O(v2)

•  Optimizations?
–  Use adjacency graphs and heaps
–  Assuming that the graph is connected (i.e. e > v-1),

then the running time decreases to O(e + v log v)
–  We can simplify this to O(e log v)

•  although we won’t see how to do that here

39

Negative Cost Edges?

•  Perhaps the graph weights are the amount
of fuel expended
– Positive means fuel was used
– And passing by a fuel station is a refueling,

which is a negative cost edge

•  Dijkstra’s algorithm does not work for
negative cost edges
– Others do, but are much less efficient

•  What about negative cost cycles?

40

Shortest Path Example Problem
(from the ICPC Mid-Atlantic Regionals, 2009)

Google Maps

42

More on shortest path

•  We studied finding the shortest path from
a single vertex to every vertex

•  But what about just 1 destination?

•  Do the same algorithm, but stop when the
destination enters the set S

•  Thus, the running time is the same!

43

How would you drive to Seattle?

•  What constitutes a “highway”?

44

The Eisenhower Interstate System

45

46

Google Maps’ algorithm

•  (This is an educated guess, btw)

1.  Assume you are starting on a “side road”
2.  Transition to a “main road”
3.  Transition to a “highway”
4.  Get as close as you can to your destination via

the “highway” system
5.  Transition to a “main road”, and get as close as

you can to your destination
6.  Transition to a “side road”, and go to your

destination

47

End of lecture on Fri, Nov 20

Travelling Salesman Problem

49

Travelling Salesman Problem (TSP)

•  Given a number of cities and the costs of
traveling from any city to any other city,
what is the least-cost round-trip route that
visits each city exactly once and then
returns to the starting city?

•  Really important problem for:
– UPS, Federal Express, USPS
– Any transport delivery system
– Cost = distance because more fuel is used

50

Easy

51

Hard

•  From http://www.geocities.com/~harveyh/Image_object/graph-10.gif

52

Really Hard

•  From http://www.earthday.net/UER/report/images/earthday1_MAPONLY_CITY.gif

53

Analysis

•  Hamiltonian path: a path in a connected
graph that visits each vertex exactly once
– Hamiltonian cycle: a Hamiltonian path that

ends where it started

•  The traveling salesman problem is thus to
find the least weight Hamiltonian path
(cycle) in a connected, weighted graph

•  The size of the solution space is ½(n-1)!
– Which means it’s an O(n!) algorithm
– That’s exponential
– For 10 cities: 181,440
– For 20 cities: 6 * 1016

54

More Analysis

•  This problem is NP-complete
– Meaning there is no known efficient solution

–  Just to try every possible path

•  But there are ways to get a somewhat
efficient solution (Heuristic)
–  It just might not be the most efficient

•  What’s the (usually) least expensive way
to get between two US cities?
– And is that significantly slower than the “best”

algorithm?

55

The Record

•  http://en.wikipedia.org/wiki/Traveling_salesman

•  In April 2006, a computer cluster
computed a path of 85,900 cities visited in
136 CPU years
– About 3-6 months of “wall time”

•  85,900! = 9.61 * 10386,526

•  Assume you can compute 1 million paths
each second
– That would take 3.04 * 10386,516 years!
– They used acceleration techniques, obviously…

Lab 11

57

Lab 11

•  Pre-lab: implement a topological sort
•  In-lab: implement a brute-force traveling

salesman problem
– Using locations in Tolkien’s Middle Earth

•  Post-lab: do a report containing analysis
and a study of acceleration techniques

58

End of lecture on Mon, Nov 23

Minimum Spanning Trees
(MST)

Spanning Tree

•  Suppose you are going to build a transport
system:
– Set of cities
– Roads, rail lines, air corridors connecting cities

•  Trains, buses or aircraft between cities
•  Which links do you actually use?

– Cannot use a complete graph
– Passengers can change at connection points

•  Want to minimize number of links used
•  Any solution is a tree

61

Spanning Tree

62

Spanning Tree

•  A spanning tree of a graph G is a
subgraph of G that contains every vertex
of G and is a tree

•  Any connected graph has a spanning tree
•  Any two spanning trees of a graph have

the same number of nodes
•  Construct a spanning tree:

– Start with the graph
– Remove an edge from each cycle
– What remains has the same set of vertices but

is a tree

63

Spanning Tree

S
p
an

n
in

g
 T

re
es

 Graph

64

Minimal Spanning Tree

•  Spanning trees are simple
•  But suppose edges have weights!

–  “Cost” associated with the edge
– Miles for a transport link, for example

•  Spanning trees each have a different total
weight

•  Minimal-weigh Spanning Tree:

Spanning tree with the minimal total
weight

65

Minimum Spanning Trees

•  Given an undirected graph G=(V,E), find a
graph G’=(V,E’) such that
– E’ is a subset of E
– |E’| = |V| - 1
– G’ is connected
–  is minimal

G’ is a minimal spanning tree.
Applications: wiring a house, cable TV

lines, power grids, Internet connections

66

Generic Minimum Spanning Tree
Algorithm

KnownVertices ← {}

while KnownVertices does not form a spanning tree loop

 find edge (u,v) that is “safe” for KnownVertices
 KnownVertices ←KnownVertices U {(u,v)}

end loop
OK, So How?

67

Prim’s algorithm

Idea: Grow a tree by adding an edge from
the “known” vertices to the “unknown”
vertices. Pick the edge with the smallest
weight.

G

v

known

68

Prim’s Algorithm for MST

•  Pick one node as the root,
•  Incrementally add edges that connect a

“new” vertex to the tree.
•  Pick the edge (u,v) where:

– u is in the tree, v is not AND
– where the edge weight is the smallest of all

edges (where u is in the tree and v is not).

69

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

v1

{v1, v4}

{v1, v2}

{v4, v3}

{v4, v7}

{v7, v6}

{v7, v5}

v1

v4

v2

v3

v7 v6

v5

70

Analysis

Running time: Same as Dijkstra’s: O(e log v)

Correctness:
 Suppose we have a partially built tree that we
know is contained in some minimum spanning
tree T. Let (u,v)∈E, where u is “known” and v is
“unknown” and has minimal cost.
 Then there is a MST T’ that contains the partially
built tree and (u,v) that has as low a cost as T.

71

Kruskal’s MST Algorithm

•  Idea: Grow a forest out of edges that do
not create a cycle. Pick an edge with the
smallest weight.
G=(V,E)

v

72

MST
v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4 6

3

8

1

V Kwn Distance path

v1

v2

v3

v4

v5

v6

v7

73

Kruskal code
void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES – 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

2|E| finds

|V| unions

|E| heap ops

74

End of lecture on Wed, Nov 30

•  Also went over the first 7 slides of 14-
memory

