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Topic Coverage 

•  Graph terminology 
– Lots of it! 

•  Ways of representing graphs and costs & 
benefits 
– Adjacency matrix 
– Adjacency list 

•  Solving problems with graphs 
– Topological sort 
– Traveling salesperson 



3 

Graph examples 

•  Google Maps, of course 
– Which actually uses MapQuest data 
– But we’ll call it Google Maps data 

•  Others? 
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Airline maps 

From http://www.travelmood.com 
/site/seatsale/QF/images/ 
MR_Domestic-April2005.jpg 
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 Flowcharts 
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Course  
pre-req  
graphs 
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Graphs 

G = (V, E) 
V are the vertices; E are the edges. 
Edges are of the form (v, w), where v, w ∈V. 
•  ordered pair: directed graph or digraph 
•  unordered pair: undirected graph 
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How big are these graphs? 

•  These are educated guesses, by the way 

•  Airport codes 
–  There are probably 3,000 world-wide airports 
–  Assume you can fly to 25 airports from each 
–  That’s 3,000*25 = 75,000 edges  

•  Google maps 
–  There are probably 30 million vertices in the US 
–  Assume each one connects to three others 
–  That’s 3 * 30 million ≈ 100 million edges 
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Terminology 

•  A weight or cost can be associated with 
each edge. 

•  w is adjacent to v iff (v, w) ∈ E. 
•  path: sequence of vertices w1, w2, w3, … , 

wN such that (wi, wi+1) ∈ E for 1 ≤ i < N. 
•  length of a path: number of edges in the 

path. 
•  simple path: all vertices are distinct. 
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How to weight a graph… 

•  For Google maps? 

•  For airline routes? 
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More terminology 

cycle: 
directed graph: path of length ≥ 1 such that w1 

= wN. 
undirected graph: same, except all edges are 

distinct. 

connected: there is a path from every 
vertex to every other vertex. 

loop: (v, v) ∈ E. 
complete graph: there is an edge between 

every pair of vertices. 
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End of lecture on Mon, Nov 16 

•  Also went over the slides 32-47 (end) of 
12-huffman 
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Digraph terminology 

directed acyclic graph: no cycles.  “DAG” 
strongly connected: there is a path from every 

vertex to every other vertex. 
weakly connected: the underlying undirected 

graph is connected. 
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Representation 

•  adjacency matrix: 

    1      2      3      4 
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Representation 

•  adjacency list: 
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Representation in the real world 

•  Two types of representation 
– Adjacency matrix 
– Adjacency graph 

•  How does Google maps probably store it? 
•  How do airline routes probably store it? 



Topological Sort 
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Topological Sort 

•  Given a directed acyclic graph, construct an 
ordering of the vertices such that if there is a 
path from vi to vj, then vj appears after vi in the 
ordering. 
–  The result is a linear list of vertices 

•  indegree of v: # of edges (u, v). 
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Topological Sort 

•  A valid topological sort is: 
–  V1, V6, V8, V3, V2, V7, V4, V5 
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What is the topological sort? 
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What is the topological sort? 
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This is 
already 
topo-
logically 
sorted! 
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void Graph::topsort(){ 

  Vertex v, w; 

  for (int counter=0; counter < NUM_VERTICES; 
       counter++)

{ 

    v = findNewVertexOfDegreeZero(); 

    if (v == NOT_A_VERTEX) 

      throw CycleFound(); 

    v.topologicalNum = counter; 

    for each w adjacent to v 

      w.indegree--; 

  } 

} 

•  What’s the big-Oh running time? 
•  Observation: The only new (eligible) vertices with 

indegree 0 are the ones adjacent to the vertex 
just processed. 

Topological 
sort 
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void Graph::topsort(){ 

  Queue q(NUM_VERTICES); 

  int counter = 0; 

  Vertex v, w; 

  q.makeEmpty(); 

  for each vertex v 

    if (v.indegree == 0) 

      q.enqueue(v); 

  while (!q.isEmpty()){ 

    v = q.dequeue(); 

    v.topologicalNum = ++counter; 

    for each w adjacent to v 

      if (--w.indegree == 0) 

        q.enqueue(w); 

  } 

  if (counter != NUM_VERTICES) 

    throw CycleFound(); 

} 

intialize the 
queue 

get a vertex with 
indegree 0 

insert new 
eligible 
vertices 

Topological 
sort 
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Problem 9.1 from Textbook 

•  Topological sort 



Shortest Path Algorithms 

Unweighted and Weighted Graphs 
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Why do we care about shortest 
paths? 

•  The obvious answers: 
– Map routing (car navigation systems, Google 

Maps, flights) 
– 6 degrees of separation 

•  But what else? 
–  Internet routing 
– Puzzle answers (Rubik’s cube) 



28 

End of lecture on Wed, Nov 18 
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3 types of algorithms 

•  Single pair 
•  Single source 
•  All pairs 

•  And a variant that we’ll see later: 
– Travelling salesperson 
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Shortest Path Algorithms 

•  This version is called the “single-source” shortest 
path 

•  Given a graph G = (V, E) and a single 
distinguished vertex s, find the shortest weighted 
path from s to every other vertex in G. 

weighted path length of v1, v2, … , vN: 

, where ci,j is the cost  of edge (vi, vj) 
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Unweighted Shortest Path 

•  Special case of the weighted problem: all 
weights are 1. 

•  Solution: breadth-first search.  Similar to 
level-order traversal for trees. 
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void Graph::unweighted (Vertex s){ 
  Queue q(NUM_VERTICES); 
  Vertex v, w; 
  q.enqueue(s); 
  s.dist = 0; 

  while (!q.isEmpty()){ 
    v = q.dequeue(); 
    for each w adjacent to v 
      if (w.dist == INFINITY){ 
        w.dist = v.dist + 1; 
        w.path = v; 
        q.enqueue(w); 
      } 
    } 
  } 

each edge examined 
at most once – if adjacency 
lists are used 

each vertex enqueued 
at most once 

total running time: O(         ?         ) 
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Weighted Shortest Path 

•  no negative weight edges. 
•  Dijkstra’s algorithm: uses similar ideas 

as the unweighted case. 
Greedy algorithms: 
 do what seems to be best at every 
decision point. 

      S 
“known” 

s      V - S 
“unknown” 

v 



34 

Dijkstra’s algorithm 

•  Initialize each vertex’s distance as infinity 
•  Start at a given vertex s 

–  Update s’s distance to be 0 

•  Repeat 
–  Pick the next unknown vertex with the shortest distance to 

be the next v 
•  If no more vertices are unknown, terminate loop 

–  Mark v as known 
–  For each edge from v to adjacent unknown vertices w 

•  If the total distance to w is less than the current distance to w 
–  Update w’s distance and the path to w 
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void Graph::dijkstra(Vertex s){ 
  Vertex v,w; 
  s.dist = 0; 

  while (there exist unknown vertices, find the  
     unknown v with the smallest distance) 

    v.known = true; 

    for each w adjacent to v 
      if (!w.known) 
        if (v.dist + Cost_VW < w.dist){ 
       w.dist = v.dist + Cost_VW; 
          w.path = v; 
        } 
  } 
} 
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Unweighted & Weighted Single 
Source Shortest Paths (Weiss 9.5) 
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Analysis 

•  How long does it take to find the smallest 
unknown distance? 
–  simple scan using an array: O(v) 

•  Total running time: 
–  Using a simple scan: O(v2+e) = O(v2) 

•  Optimizations? 
–  Use adjacency graphs and heaps 
–  Assuming that the graph is connected (i.e. e > v-1), 

then the running time decreases to O(e + v log v) 
–  We can simplify this to O(e log v) 

•  although we won’t see how to do that here 
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Negative Cost Edges? 

•  Perhaps the graph weights are the amount 
of fuel expended 
– Positive means fuel was used 
– And passing by a fuel station is a refueling, 

which is a negative cost edge 

•  Dijkstra’s algorithm does not work for 
negative cost edges 
– Others do, but are much less efficient 

•  What about negative cost cycles? 
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Shortest Path Example Problem  
(from the ICPC Mid-Atlantic Regionals, 2009) 



Google Maps 
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More on shortest path 

•  We studied finding the shortest path from 
a single vertex to every vertex 

•  But what about just 1 destination? 

•  Do the same algorithm, but stop when the 
destination enters the set S 

•  Thus, the running time is the same! 
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How would you drive to Seattle? 

•  What constitutes a “highway”? 
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The Eisenhower Interstate System 



45 
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Google Maps’ algorithm 

•  (This is an educated guess, btw) 

1.  Assume you are starting on a “side road” 
2.  Transition to a “main road” 
3.  Transition to a “highway” 
4.  Get as close as you can to your destination via 

the “highway” system 
5.  Transition to a “main road”, and get as close as 

you can to your destination 
6.  Transition to a “side road”, and go to your 

destination 
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End of lecture on Fri, Nov 20 



Travelling Salesman Problem 
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Travelling Salesman Problem (TSP) 

•  Given a number of cities and the costs of 
traveling from any city to any other city, 
what is the least-cost round-trip route that 
visits each city exactly once and then 
returns to the starting city? 

•  Really important problem for: 
– UPS, Federal Express, USPS 
– Any transport delivery system 
– Cost = distance because more fuel is used 
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Easy 
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Hard 

•  From http://www.geocities.com/~harveyh/Image_object/graph-10.gif 
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Really Hard 

•  From http://www.earthday.net/UER/report/images/earthday1_MAPONLY_CITY.gif  
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Analysis 

•  Hamiltonian path: a path in a connected 
graph that visits each vertex exactly once 
– Hamiltonian cycle: a Hamiltonian path that 

ends where it started 

•  The traveling salesman problem is thus to 
find the least weight Hamiltonian path 
(cycle) in a connected, weighted graph 

•  The size of the solution space is ½(n-1)! 
– Which means it’s an O(n!) algorithm 
– That’s exponential 
– For 10 cities: 181,440 
– For 20 cities: 6 * 1016 
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More Analysis 

•  This problem is NP-complete 
– Meaning there is no known efficient solution 

–  Just to try every possible path 

•  But there are ways to get a somewhat 
efficient solution (Heuristic) 
–  It just might not be the most efficient 

•  What’s the (usually) least expensive way 
to get between two US cities? 
– And is that significantly slower than the “best” 

algorithm? 
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The Record 

•  http://en.wikipedia.org/wiki/Traveling_salesman 

•  In April 2006, a computer cluster 
computed a path of 85,900 cities visited in 
136 CPU years 
– About 3-6 months of “wall time” 

•  85,900! = 9.61 * 10386,526  

•  Assume you can compute 1 million paths 
each second 
– That would take 3.04 * 10386,516 years! 
– They used acceleration techniques, obviously… 



Lab 11 
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Lab 11 

•  Pre-lab: implement a topological sort 
•  In-lab: implement a brute-force traveling 

salesman problem 
– Using locations in Tolkien’s Middle Earth 

•  Post-lab: do a report containing analysis 
and a study of acceleration techniques 
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End of lecture on Mon, Nov 23 



Minimum Spanning Trees 
(MST) 



Spanning Tree 

•  Suppose you are going to build a transport 
system: 
– Set of cities 
– Roads, rail lines, air corridors connecting cities 

•  Trains, buses or aircraft between cities 
•  Which links do you actually use? 

– Cannot use a complete graph 
– Passengers can change at connection points 

•  Want to minimize number of links used 
•  Any solution is a tree 
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Spanning Tree 
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Spanning Tree 

•  A spanning tree of a graph G is a 
subgraph of G that contains every vertex 
of G and is a tree 

•  Any connected graph has a spanning tree 
•  Any two spanning trees of a graph have 

the same number of nodes 
•  Construct a spanning tree: 

– Start with the graph 
– Remove an edge from each cycle 
– What remains has the same set of vertices but 

is a tree 
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Minimal Spanning Tree 

•  Spanning trees are simple 
•  But suppose edges have weights! 

–  “Cost” associated with the edge 
– Miles for a transport link, for example 

•  Spanning trees each have a different total 
weight 

•  Minimal-weigh Spanning Tree: 

Spanning tree with the minimal total 
weight 
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Minimum Spanning Trees 

•  Given an undirected graph G=(V,E), find a 
graph G’=(V,E’) such that 
– E’ is a subset of E 
– |E’| = |V| - 1 
– G’ is connected 
–           is minimal 

G’ is a minimal spanning tree. 
Applications: wiring a house, cable TV 

lines, power grids, Internet connections 
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Generic Minimum Spanning Tree 
Algorithm 

KnownVertices ← {} 

while KnownVertices does not form a spanning tree loop 

  find edge (u,v) that is “safe” for KnownVertices 
  KnownVertices ←KnownVertices U {(u,v)} 

end loop 
OK, So How? 
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Prim’s algorithm 

Idea: Grow a tree by adding an edge from 
the “known” vertices to the “unknown” 
vertices.  Pick the edge with the smallest 
weight. 

G 

v 

known 
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Prim’s Algorithm for MST 

•  Pick one node as the root, 
•  Incrementally add edges that connect a 

“new” vertex to the tree. 
•  Pick the edge (u,v) where: 

– u is in the tree, v is not AND  
– where the edge weight is the smallest of all 

edges (where u is in the tree and v is not). 
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Analysis 

Running time: Same as Dijkstra’s: O(e log v) 

Correctness: 
 Suppose we have a partially built tree that we 
know is contained in some minimum spanning 
tree T.  Let (u,v)∈E, where u is “known” and v is 
“unknown” and has minimal cost. 
 Then there is a MST T’ that contains the partially 
built tree and (u,v) that has as low a cost as T. 
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Kruskal’s MST Algorithm 

•  Idea: Grow a forest out of edges that do 
not create a cycle.  Pick an edge with the 
smallest weight. 
G=(V,E) 

v 
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Kruskal code 
void Graph::kruskal(){ 
  int edgesAccepted = 0; 
  DisjSet s(NUM_VERTICES); 

  while (edgesAccepted < NUM_VERTICES – 1){ 
    e = smallest weight edge not deleted yet; 
    // edge e = (u, v) 
    uset = s.find(u); 
    vset = s.find(v); 
    if (uset != vset){ 
      edgesAccepted++; 
      s.unionSets(uset, vset); 
    } 
  } 
} 

2|E| finds 

|V| unions 

|E| heap ops 
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End of lecture on Wed, Nov 30 

•  Also went over the first 7 slides of 14-
memory 


