CS2150: Program and Data Representation

University of Virginia Computer Science
Fall 2009 Aaron Bloomfield

www.cheswick.com/ches/map/index.html

Topic Coverage

e Graph terminology
- Lots of it!
e Ways of representing graphs and costs &
benefits
— Adjacency matrix
— Adjacency list
e Solving problems with graphs

— Topological sort
— Traveling salesperson

Graph examples

e Google Maps, of course

— Which actually uses MapQuest data
— But we’ll call it Google Maps data

e Others?

M DOMESTIC NETWORK

From httpgsA/www.travelmood.com ABNURA” SEA e
/site/seatsale/QF/images/ \ 5 -

R F ; DARWINQ= 52 o Tiveaal WAool A
MR Domestic-April2005.jpg Y N s ALY

CORAL
SEA

INDIAN
OCEAN

/
/’ . A
/WESTERN B N
// AUSTRALIA "AVERS ROCK/ ge"2 D ey
‘ mum ’ ’ Frase vdand
’

Otana Tt SONTH

-7 AUSTRAWA

" SOUTH
PACIFIC
OCEAN

Sector times and distances may vary according to seasonal weather, flying conditions,
alrcraft type and route variations. Routes shown are indicative only.

TASMAN
E. Location of The Qantas Clubs or associated lounges
Qantas routes

SEA

Australian Airlines routes
o Jetstar routes

=== QuntasLink routes Q) raserutonst Gaseway Pont

~ = = Routes operated by other airlines for Qantas .
Nasonal Capital

@ MAPgraghics, Brisbane 2006

Flowcharts
PREDICTION FLOWCHART FOR GEEK GIFTS.

YOU WILL BE THANKED

IT'LL BE USED WILL IT CREATE —> AND WORSHIFPED
FOR XMAS LIGHTS. ' FEAR IN THE YES FOR YEARS TO COME.

Vo) Mt N~

S~
N YoU BUILD
START > & b i werp?
HERE ELECTRICITY? [No | WITHIT? Ino
lYES YES YOUR NEXT GIFT
YES WILL BE MADE FROM
DOES T LEGO OR PLAY-DOH.
NO 4
GLOW? L | cAN YoU ZAP N
PEOPLE

3 lygs WITH IT? NO VIBRATE?
2
g YES ¥ YES
=
g WHAT |cHERNOBYL
g‘ — DOES IT INCLUDE
E COLOUR? BLUE —> el
3 RED A COMPONENT?
=
: AND/OR
; GREEN YES
E NOW THAT'S A GIFT!
s
R
[
3
3

UVa Computer Science Bachelors of Science Degree:

Course Prerequisites (Updated August 2009
Note: Boxes with bold
C O u rS e (One can place out borders are required Courses not listed:
CS 1110, of CS 1110 viaa courses. All non- CS 1010 cannot be taken
Intro to CS placement exam or bolded boxes are CS for credit by SEAS students.

with AP credit.) electives. All arrows CS 1120, 2220, and 4998
p re - re q l indicate pre-requisites. are in the BA CS program.

ra h S CS 2102, CS 2110, SW CS 2330, Dig
Discr Math Dev Methods

Logic Design

o |
onl ring only
LS S0, CS 2150, Prog CS 3330, CS 2190, CS
Theory of .
c . & Data Repr Comp Arch Seminar
omputation
Spnngl only
CS 4102, CS 3240, Adv. CS 4414,
Algorithms SW Dev Tech Oper Sys
L \
CS 4330, Adv
CS 3205, HCl in CS 4620, ‘ Comp Arch
Software Dev. Compilers
)\ CS 4444, Intro

. CS 4615, Programming Languages
Graphics CS 4630, Defense Against the Dark Arts C°g’£s:;'ng &
l CS 4710, Artificial Intelligence

CS 4750, Database Systems

'/ Y) Parallel Comp
CS 4810, CS 4240, Principles of Software Design \ ECE 4435,
CS 4753, E-commerce ‘
| CS 4830, Image |

Graphs

G = (V, E)

V are the vertices; E are the edges.
Edges are of the form (v, w), where v, w €V,
e ordered pair: directed graph or digraph
e unordered pair: undirected graph

How big are these graphs?

e These are educated guesses, by the way

e Airport codes
— There are probably 3,000 world-wide airports

— Assume you can fly to 25 airports from each
— That’s 3,000*25 = 75,000 edges

e Google maps
— There are probably 30 million vertices in the US
— Assume each one connects to three others
— That’s 3 * 30 million = 100 million edges

Terminology

A weight or cost can be associated with
each edge.

w is adjacent to v iff (v, w) € E.

path: sequence of vertices wy, w5, W3, ...,
wy such that (w;,, w,.;) €Efor1 <i < N.

length of a path: number of edges in the
path.

simple path: all vertices are distinct.

How to weight a graph...

e For Google maps?

e For airline routes?

10

More terminology

cycle:
directed graph: path of length = 1 such that w;
— WN-
undirected graph: same, except all edges are
distinct.

connected: there is a path from every
vertex to every other vertex.

loop: (v, v) € E.

complete graph: there is an edge between
every pair of vertices.

11

Digraph terminology

directed acyclic graph: no cycles. "DAG”

strongly connected: there is a path from every
vertex to every other vertex.

weakly connected: the underlying undirected
graph is connected.

: %
(B

13

Representation

e adjacency matrix:

Alul[v] = {We(i)ght 1t (u, vIEE

1P (u, VYEE

14

Representation

e adjacency list:

A W NN BB
\o—'

15

Representation in the real world

e Two types of representation
— Adjacency matrix
- Adjacency graph

e How does Google maps probably store it?
e How do airline routes probably store it?

16

Topological Sort

Topological Sort

e Given a directed acyclic graph, construct an
ordering of the vertices such that if there is a

path from v; to v;, then v, appears after v; in the
ordering.

— The result is a linear list of vertices
e indegree of v: # of edges (u, v).

Topological Sort

<.

e A valid topological sort is:
- V1, V6, V8, V3, V2, V7, V4, V5

19

What is the topological sort?

o>

20

What is the topological sort?

21

UVa Computer Science Bachelors of Science Degree:

.. Course Prerequisites (Updated August 2009
I h I S I S Note: Boxes with bold
(One can place out borders are required Courses not listed:
CS 1110, of CS 1110 viaa courses. All non- CS 1010 cannot be taken
a I re a d Intro to CS placement exam or bolded boxes are CS for credit by SEAS students.
with AP credit.) electives. All arrows CS 1120, 2220, and 4998
t l indicate pre-requisites. are in the BA CS program.
p CS 2102, CS 2110, SW CS 2330, Dig

I O g i Ca I I y Discr Math Dev Methods Logic Design

Spring
sorted!
' CS 2150, Prog CS 3330, CS 2190, CS
Theory of .
c . & Data Repr Comp Arch Seminar
omputation
Spnngl only
CS 4102, CS 3240, Adv. CS 4414,
Algorithms SW Dev Tech Oper Sys
L \
CS 4330, Adv
CS 3205, HCl in CS 4620, ‘ Comp Arch
Software Dev. Compilers
)\ CS 4444, Intro

. CS 4615, Programming Languages
Graphics CS 4630, Defense Against the Dark Arts C°g’£s:;'ng &
l CS 4710, Artificial Intelligence

CS 4750, Database Systems

'/ Y) Parallel Comp
CS 4810, CS 4240, Principles of Software Design \ ECE 4435,
CS 4753, E-commerce ‘
| CS 4830, Image |

vold Graph::topsort () { .1-C)F)()|()€Ji(:aa|

Vertex v, wy SO rt
for (int counter=0; counter < NUM VERTICES;
Eounter++)
{
v = findNewVertexOfDegreeZero()
if (v == NOT A VERTEX)

throw CycleFound() ;
v.topologicalNum = counter;
for each w adjacent to v

w.1lndegree--;

}
e What's the big-Oh running time?
e Observation: The only new (eligible) vertices with

indegree 0 are the ones adjacent to the vertex »
just processed.

vold Graph::topsort () {
Queue g (NUM VERTICES) ;
int counter = 0;

Vertex v, w;

Topological
Sort

g.makeEmpty () ;

for each vertex v

1f (v.indegree == 0)

intialize the
queue

Jg.enqueue (v) ;
while (!g.isEmpty()) {
v = g.dequeue () ;
v.topologicalNum = ++counter;
for each w adjacent to v
1f (--w.indegree == 0)
g.enqueue (w) ;
}
if (counter != NUM VERTICES)

throw CycleFound() ;

get a vertex with
indegree 0

insert new
eligible
vertices

24

Problem 9.1 from Textbook

e Topological sort

Shortest Path Algorithms

Unweighted and Weighted Graphs

Why do we care about shortest
paths?

e The obvious answers:

— Map routing (car navigation systems, Google
Maps, flights)

— 6 degrees of separation

e But what else?
— Internet routing
— Puzzle answers (Rubik’s cube)

27

3 types of algorithms

e Single pair
e Single source
o All pairs

e And a variant that we’ll see later:
— Travelling salesperson

29

Shortest Path Algorithms

e This version is called the “single-source” shortest
path

e Given a graph G = (V, E) and a single
distinguished vertex s, find the shortest weighted
path from s to every other vertex in G.

weighted path length of v,, v,, ... , Vy:

N-1
E C,iv1 »,where ¢;; 1s the cost of edge (v;, v;)
i=1

30

Unweighted Shortest Path

e Special case of the weighted problem: all
weights are 1.

e Solution: breadth-first search. Similar to
level-order traversal for trees.

31

void Graph: :unweighted (Vertex s) {

Queue q(NUM VERTICES) ;
Vertex v, w;
q.enqueue (s) ;

s.dist = 0;

while ('qg.isEmpty()) {
v = q.dequeue() ;

for each w adjacent to v

each edge examined
at most once — if adjacency
lists are used

if (w.dist == INFINITY) {
w.dist = v.dist + 1;
w.path = v;

g.enqueue (W) ; «—

each vertex enqueued
at most once

} total running time: O(

P)

32

Weighted Shortest Path

e N0 hegative weight edges.

e Dijkstra’s algorithm: uses similar ideas
as the unweighted case.

Greedy algorithms:

do what seems to be best at every
decision point.

A%

V-S
“unknown”

i

|

33

Dijkstra’s algorithm

e Initialize each vertex’s distance as infinity

e Start at a given vertex s
— Update s’s distance to be 0

e Repeat

— Pick the next unknown vertex with the shortest distance to
be the next v
e If no more vertices are unknown, terminate loop
- Mark v as known
— For each edge from v to adjacent unknown vertices w

e If the total distance to w is less than the current distance to w
- Update w’'s distance and the path to w

34

Known

Dist

path

v0

10

v1

v2

v3

v4

VS

v6

35

void Graph: :dijkstra (Vertex s) {
Vertex v,w;
s.dist = 0;

while (there exist unknown vertices, find the
unknown v with the smallest distance)

v.known = true;

for each w adjacent to v
if ('w.known)
if (v.dist + Cost VW < w.dist) {
w.dist = v.dist + Cost VW;
w.path = v;
}

36

Unweighted & Weighted Single
Source Shortest Paths (Weiss 9.5)

Analysis

e How long does it take to find the smallest
unknown distance?
— simple scan using an array: O(v)

e Total running time:
— Using a simple scan: O(v2+e) = O(v?2)

e Optimizations?
— Use adjacency graphs and heaps

— Assuming that the graph is connected (i.e. e > v-1),
then the running time decreases to O(e + v log v)

— We can simplify this to O(e log v)

e although we won’t see how to do that here

38

Negative Cost Edges?

e Perhaps the graph weights are the amount
of fuel expended
— Positive means fuel was used

- And passing by a fuel station is a refueling,
which is a negative cost edge

e Dijkstra’s algorithm does not work for
negative cost edges
— Others do, but are much less efficient

e What about negative cost cycles?

39

Shortest Path Example Problem
(from the ICPC Mid-Atlantic Regionals, 2009)

Problem B: Block Game

Problem B: Block Game

Bud bought this new board game. He is hooked. He has been playing it over and over again
such that he thinks can finish the game with the minimum number of moves, but he is uncertain.
He wants you to help him check whether the moves he has listed are indeed the minimum number

of moves.
[-
T ~1C3d [[3 CI [
y
.| . |A|B . A|B .|A|B . B - - . .
1. AB|. 1 ./AlB _[AlB .[B 1. . .
C|(C/ A B C|C|A|B C|C|A(B (o || B c|C . .
AL .. 1. [a[B]. |AlB
.|DID|E|E]|. .|D|ID|.|E|E DID|.|.|E|E DID|A| . |[E|E DID|A|B|E|E DID|A(B|E E
A AlB|. AlB

You are given a 6x6 board, and a set of 2x1 or 3x1 (vertical) or 1x2 or 1x3 (horizontal) pieces.
You can slide the horizontal pieces horizontally only, and the vertical pieces vertically only. You
are only allowed to slide a piece if there is no other piece, nor a wall, obstructing its path.

There will be one special 1x2 horizontal piece. There will also be a gap in the wall, on the right
side, on the same row as the special piece, that only the special piece can fit through. The goal of
the game is to get that one special horizontal piece out of the gap on the right side.

A “move” in this game is when you take a piece and slide it any number of squares (i.e. if
you slide a piece horizontally one square, that is one move, and sliding it 2 squares at once is also
considered one move).

Input

L S © L Y A PR I Tr™ 1Y 4 4 *TTTYTY w1

Google Maps

More on shortest path

e We studied finding the shortest path from
a single vertex to every vertex

e But what about just 1 destination?

e Do the same algorithm, but stop when the
destination enters the set S

e Thus, the running time is the same!

42

How would you drive to Seattle?

e What constitutes a “highway”?

43

The Eisenhower Interstate System

%
o % wﬂ
=

D WDNBR

Ul

Google Maps’ algorithm
(This is an educated guess, btw)

Assume you are starting on a “side road”
Transition to a "main road”
Transition to a “highway”

Get as close as you can to your destination via
the “highway” system

. Transition to a "main road”, and get as close as

you can to your destination

. Transition to a ‘“side road”, and go to your

destination

46

Travelling Salesman Problem

Travelling Salesman Problem (TSP)

e Given a number of cities and the costs of
traveling from any city to any other city,
what is the least-cost round-trip route that
visits each city exactly once and then
returns to the starting city?

e Really important problem for:
— UPS, Federal Express, USPS
— Any transport delivery system
— Cost = distance because more fuel is used

49

50

e From http://www.geocities.com/~harveyh/Image_object/graph-10.gif

51

Really Hard

From http://www.earthday.net/UER/report/images/earthdayl MAPONLY CITY.qif 52

Analysis

e Hamiltonian path: a path in a connected
graph that visits each vertex exactly once

- Hamiltonian cycle: a Hamiltonian path that
ends where it started

e The traveling salesman problem is thus to
find the least weight Hamiltonian path
(cycle) in a connected, weighted graph

e The size of the solution space is ¥2(n-1)!
— Which means it's an O(n!) algorithm
- That'’s exponential
— For 10 cities: 181,440
— For 20 cities: 6 * 1016

53

More Analysis

e This problem is NP-complete
— Meaning there is no known efficient solution
— Just to try every possible path

e But there are ways to get a somewhat
efficient solution (Heuristic)
— It just might not be the most efficient

e What's the (usually) least expensive way
to get between two US cities?

— And is that significantly slower than the “best”
algorithm?

54

The Record

http://en.wikipedia.org/wiki/Traveling salesman

In

April 2006, a computer cluster

computed a path of 85,900 cities visited in
136 CPU years

- A

bout 3-6 months of “wall time”

85,900! = 9.61 * 10386,526

Ass
eac
-T
-T

ume you can compute 1 million paths
N second
hat would take 3.04 * 10386,516 years!

ney used acceleration techniques, obviously...

55

Lab 11

e Pre-lab: implement a topological sort

e In-lab: implement a brute-force traveling
salesman problem
— Using locations in Tolkien’s Middle Earth

e Post-lab: do a report containing analysis
and a study of acceleration techniques

57

Minimum Spanning Trees
(MST)

Spanning Tree

e Suppose you are going to build a transport
system:
— Set of cities
— Roads, rail lines, air corridors connecting cities

e Trains, buses or aircraft between cities

e Which links do you actually use?

— Cannot use a complete graph
— Passengers can change at connection points

e Want to minimize number of links used
e Any solution is a tree

Spanning Tree

Tube Map

r—-!:‘z.':'.
- — aty

- e
—t— o
-~ — g O e

Mg s st oy o
Beav Y
T

- O e

| P o o
—_ O X AN

[T ——

MAYOR OF LONDON B 5o 020 7222 1234

TransportforLondon

61

Spanning Tree

e A spanning tree of a graph G is a
subgraph of G that contains every vertex
of G and is a tree

e Any connected graph has a spanning tree

e Any two spanning trees of a graph have
the same number of nodes

e Construct a spanning tree:
— Start with the graph
— Remove an edge from each cycle

— What remains has the same set of vertices but
IS a tree

62

63

YA

soa.] buiuueds

Spanning Tree

Graph

Minimal Spanning Tree

Spanning trees are simple

But suppose edges have weights!
— “Cost” associated with the edge
— Miles for a transport link, for example

Spanning trees each have a different total

weight

Minimal-weigh Spanning Tree:

Spanning tree with the minimal total
weight

64

Minimum Spanning Trees

e Given an undirected graph G=(V,E), find a
graph G'=(V,E’) such that

—E" is a subset of E
-|E'| = |V[-1

- G’ is connected

— c,, IS minimal

G’ is a minimal spanning tree.

Applications: wiring a house, cable TV
lines, power grids, Internet connections

65

Generic Minimum Spanning Tree
Algorithm

KnownVertices « {}
while KnownVertices does not form a spanning tree loop

find edge (u,v) that is “safe” for KnownVertices
KnownVertices «—KnownVertices U {(u,v)}

end loop

OK, So How?

Prim’s algorith

m

Idea: Grow a tree by adding an edge from
the “known” vertices to the “unknown”
vertices. Pick the edge with the smallest

weight.

(==&

known

67

Prim’s Algorithm for MST

e Pick one node as the root,

e Incrementally add edges that connect a
“new” vertex to the tree.

e Pick the edge (u,v) where:

— u is in the tree, v is not AND

- where the edge weight is the smallest of all
edges (where u is in the tree and v is not).

68

69

Analysis
Running time: Same as Dijkstra’s: O(e log v)

Correctness:

Suppose we have a partially built tree that we
know is contained in some minimum spanning
tree T. Let (u,v)€E, where u is “known” and v is
“unknown” and has minimal cost.

Then there is a MST T’ that contains the partially
built tree and (u,v) that has as low a cost as T.

70

Kruskal’s MST Algorithm

e Idea: Grow a forest out of edges that do
not create a cycle. Pick an edge with the
smallest weight.

G=(V,E)

™

(=g

/1

MST

({3

Kwn

Distance

path

v1

v2

v3

v4

V5

v6

74

(\)

" Y

72

Kruskal code

void Graph: :kruskal () {
int edgesAccepted = 0;

DisjSet s (NUM VERTICES) ;

|E| heap ops

while (edgesAccepted < NUM VERTICES - 1) { ////
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u) ;

ﬁ

vset = s.find(v); 2|E| finds
if (uset !'= vset){

edgesAccepted++;

s.unionSets (uset, vset);

| } \

| |V| unions

