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Dynamic Programming Example: 
0/1 Knapsack Problem 
 
 
Note: this is another dynamic programming example to supplement those in given in 
lecture and the readings. This document may only make sense if you’re studied the 
lecture notes and readings on dynamic programming. It is not necessarily intended to be 
“stand-alone.” 
 
The problem: 
 
Input: a set of S = { s1, …, sn } of n items where each si has value vi and weight wi, and a 
knapsack capacity W. 
 
Required solution: choose a subset O of S such that the total weight of the items 
chosen does not exceed W and the sum of items vi in O is maximal with respect to any 
other subset that meets the constraint. 
 
Compare to the continuous knapsack problem: 

• In continuous knapsack, we’re allowed to add a fraction xi of each item to the 
knapsack 

• This one called 0/1 knapsack because same as requiring each xi to be either 0.0 or 
1.0. 

• Recall we found optimal solution for continuous knapsack when our greedy choice 
function picked as much as possible of the next item with the highest value-to-
weight ratio. 

 
Example Instance of this Problem: 
 
 Let W = 4 and 

     
 
 
 
 
 

 
Will the greedy approach used on the continuous knapsack produce the optimal solution 
here? 
Answer: no!   The optimal solution is to choose items 1 and 3, with total value of 9 and 
total weight 4 (which fills the knapsack). 
Self-test Question: What solution will be chosen by the greedy approach? 
 

Item i vi wi Ratio 
vi / wi 

1 3 1 3 
2 5 2 2.5 
3 6 3 2 
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A dynamic programming solution can be designed that produces the optimal answer. To 
do this, we must: 

1. Identify a recursive definition of how a larger solution is built from optimal results 
for smaller subproblems. 

2. Create a table that we can build bottom-up to calculate results for subproblems 
and eventually solve the entire problem. 

 
How can we break an entire problem down into subproblems in a way that uses optimal 
results of subproblems? First we need to make sure we have a clear idea of what a 
subproblem solution might look like. 
 
Recursive Definition of Solution in terms of Subproblem Solutions: 
 
Suppose the optimal solution for S and W is a subset, call it O, in which sk is the “highest 
numbered” item in the sequence of items that makes up O.  For example, the items in O 
might be displayed in bold in S as shown below: 

S = { s1, s2, s3,…, sk-1, sk, …, sn } 
 
Then, O – { sk } is an optimal solution for the subproblem Sk-1 = { s1, …, sk-1 } and 
knapsack capacity W-wk.   The value of the complete problem S would simply be the 
value calculated for this subproblem Sk-1 plus the value vk . 
 
Our approach will calculate values V[k,w] which represent the optimal value of 
subproblems Sk = { s1, …, sk } and any target weight w (where 0 ≤ w ≤ W).  Each value 
V[k,w] represents the optimal solution to this subproblem: 

• What would the value be if our knapsack weight was just w and we were only 
choosing among the first k items? 

 
Assume for some given values of k and w we already had a correct solution to a 
subproblem stored in V[k-1,w].  We want to extend this subproblem, and the question at 
this point is now: 

• Can I add item sk to the knapsack, and if I can will this improve the total?  (I might 
be able to add this item but only if I remove one or more items that reduces the 
overall value. I don’t want that!) 

 
There are really three cases to consider when calculating V[k,w] for some given values of 
k and w: 
 

1. Let’s assume for the moment that I am able to add this item sk to the knapsack that 
has capacity w. In this case, the total value for this subproblem Sk will be vk plus 
the best solution that exists for the k-1 items that came before sk for the smaller 
knapsack weight w-wk.   (If we’re going to add the kth item, we have less room for 
the previous k-1 items.) 
In this case, the value for V[k,w] will thus be vk + V[k-1,w-wk] 

2. But adding this item may not be a good idea. Perhaps the best solution at this point 
does not include this kth item.  In that case, the value V[k,w] would be what we had 
for the previous k-1 items, or simply V[k-1,w]. 
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3. It might not be possible to add this item to the knapsack – there may not be room 
for it!  This would be the case if w-wk < 0 (that is, w < wk).  In this case, we can’t 
add the item, so the value to store would be the best we had for the k-1 items that 
came before it, V[k-1,w] (same as case 2 above). 

 
At this point, we know how to calculate the value for V[k,w] for given values of k and w.  
The pseudo-code looks like this: 
 
 if ( not room for Item k) 
  V[k,w] = V[k-1,w] // best result for k-1 items 
 else if ( best to add Item k ) 
  V[k,w] = vk + V[k-1, w-wk] // Case 1 above 
 else  // not best to add Item k 
  V[k,w] = V[k-1,w] // best result for k-1 items 
 
How do we know if it’s best to add Item k? We simply compare the values that would be 
assigned to V[k,w] in the last two cases of the if/else sequence above.  Thus this code 
fragment would become: 
 
 if (w-wk< 0) // not room for item k 
  V[k,w] = V[k-1,w] // best result for k-1 items 
 else { 
  val_with_kth = vk + V[k-1, w-wk] // Case 1 above 
  val_for_k-1 = V[k-1,w] // best result for k-1 items 
  V[k,w] = max( val_with_kth, val_for_k-1 ) 
 } 
 
Using a Table to Calculate Results: 
 
To use this information to calculate the answer we want, V[n,W], we will create a table 
V[0..n, 0..W]. 

• Note that the columns will represent an increasing value of the target weight w 
from 0 up to the knapsack capacity.  Thus moving along a row to the next larger 
column represents asking “do we get a better answer for k items if we have a little 
more capacity?” 

• Note that the rows represent an increasing number of items. Thus moving down to 
the next row while staying in the same column represents asking “can we add the 
next item with this same capacity w?” 

 
There are some obvious base cases that we can calculate directly: 

• V[0,w] = 0 for 0 ≤ w ≤ W.   The value is zero if you don’t choose an item. 
• V[k,0] = 0 for 0 ≤ k ≤ n.  If you have a knapsack with zero capacity, you can’t add 

an item to it. 
 
We can compute the table in bottom-up fashion by working in row-major fashion, i.e. 
calculating an entire row for increasing values of w, then moving to the next row, etc. 
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V[k,w] w=0 1 2 … W 
k=0 0 0 0 0 0 
1 0     
2 0     
… 0     
n 0     
 
 
Combining this data structure with the algorithm given above for calculating a V[k,w] value 
results in the following pseudo-code for that solves the entire problem: 
 
 
Knapsack(v, w, W) { 
    for (w = 0 to W) V[0,w] = 0 
    for (k = 0 to n) V[k,0] = 0 
    for (k = 1 to n) { 
        for (w = 1 to W) { 
            if (w-wk< 0) // not room for item k 
                V[k,w] = V[k-1,w] // best result for k-1 items 
            else { 
                val_with_kth = vk + V[k-1, w-wk] // Case 1 above 
                val_for_k-1 = V[k-1,w] //best result for k-1 items 
                V[k,w] = max( val_with_kth, val_for_k-1 ) 
            } 
        } 
    } 
    return V[n,W] 
} 
 
Recovering the Items that Produce the Optimal Value: 
 
The value returned by the function, V[n,W], is the value of the optimal solution. But which 
subset of items make up O, the subset of S with the maximal value that fit in the 
knapsack?  We will find this by tracking “backwards” through the values in the able, 
starting at V[n,W].  At each point of our trace, we can tell by the values whether or not the 
current item (corresponding to the current row value, v) was part of the optimal solution. 
 
Note that when we're building the table, the value at V[k,w] will be set to be V[k-1,w] for 
both cases where sk is not added to the partial solution (cases 2 and 3 described above).  
Therefore, in our trace back through the table, if V[k,w] equals V[k-1,w] then sk was not 
part of the optimal solution.  We continue to trace at V[k-1,w]. 
 
But if V[k,w] does not equal V[k-1,w], then item sk was part of the solution.  In this case, 
we continue the trace one row higher at V[k-1,w-wk], to see if the k-1 item was part of the 
solution.  (Note how this corresponds to case 1 described above.) 
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Complexity: 
 
Since the time to calculate each entry in the table V[k,w] is constant, the time complexity 
is Θ(n x W). 
 
This is not an in-place algorithm, since the table requires Θ(n x W) cells and this is not 
linear in n.  But dynamic programming algorithms save time by storing results, so we 
wouldn't expect any dynamic programming solution to be in-place. 
 
Important:  Is the time-complexity of this solution polynomial in terms of its input sizes?  It 
might appear to be so, but technically this is an exponential solution.  Why? 
 
Consider the size of the input values that make up the values and weights. There are two 
values for each of the input items. 
But, consider the value W, the knapsack capacity.  This is one value, and it's always one 
input item no matter what value it takes on.  But if this value changes, the size of the table 
and the time it takes to create it changes.  For example, if the capacity doubles, then the 
execution time and the space used also double. 
 
But is this different than, say, sequential search?  In that problem, if n is the number of 
items in the array, if n doubles then the time of execution also doubles (since sequential 
search has linear time-complexity).  But n is a count of the input items in this problem, 
whereas in the knapsack problem, the capacity W is a value that is processed (not a 
count of input items).  The complexity depends on the size of this single value. 
 
So as noted in the discussion of NP and NP-complete problems, the issue of encoding of 
inputs must be taken into account for the knapsack problem. What is the size of a single 
value W?  How it is encoded? 
 
Most often we think of integer values as being encoded in binary notation.  The size of a 
value is the number of bits required to store it. Thus if the size of an input storing a value 
like W increases by one (i.e., one bit), then that input could represent twice as many 
values. 
 
For this reason, the complexity of the dynamic programming solution for the knapsack 
problem (and many other problems) grows exponentially.  For this problem, if the size of 
W increases by one bit, the amount of work doubles.  Compare this to a problem where 
the amount of work is proportion to 2n: if the input size increases to n+1, then the amount 
of work doubles. 
 
However, as is true for many algorithms with exponential time-complexity, this solution 
will run in a reasonable amount of time for many values of W and n. 


