9 Architectural Design

Chapter This is the first of two chapters surveying aschitectural design, This chapter
Objectives introduces the topic and discusses architectuzal design activities and notations.

The place of architectuzal desiga in the software engineering design resolution
process is shown in Figure 9-0-1.

jf\"“i_? . "{_‘3

1. Soidicn

De S éz}m

Figure 9-0-1 Software Engineering Design Resolution

By the end of this chapter you will be able to

® State the role of software architecture in the engineering design process and
explain the architectural design process;

Chosigle Tox

List and explain the contents of a software architecture design template;

Explain what quality attributes are and why they are important in architectural
AN s bhesley COBT? | desiga;
: - H : Specify module interface syntax, semantics, and pragmatics;
* Read and write architectural models using box-and-line diagrarns;

Read and write UML dizgraras that include notes, constraints, properties,
stereotypes, and dependency elations;

Read and write design models using UM package and component diagrams;
and

Readrand write UML deployment diagrams depicting physical architecture.

Chapter 9.1 Introduction to Aschitectural Design
Contents 9.2 Specifying Software Architectures
9.3 UML Package and Compopent Diagrams
9.4 UML Deployment Diagrams

253

54 Aschitectural Design

2.1

The Context of
Architectural
Design

Introduction to Architectural Design

Engineering design resolution has two phases: architectural design 2nd
detailed design. Archirectural design is a problem-solving activity whose
tmput is the product descdption in an SRS and whose output is the abstract
specification of a program realizing the desired product. Architectural
design thus sits between software ?roduct design and detailed design in the
software design process.

But in fact, the architectural design activity is not as cleanly separated from
product design and detailled design as the previous paragraph suggests.
Some architectural design occurs during product design for the following
Teasons:

= Product designers must judge the feasibility of their designs, which may
be difficult without some initial engineering design work.

» Stakeholders must be convinced thas their needs will be met, which may
be difficult without demonstratmg how the engineers plan to build the
product.

» Designers and stakeholders must trade off requirements to create a
feasible product that can be built on schedule and within budget. Trade-
offs may not be clear without exploring alternative software
architectures.

» Project planners must have some idea about what software must be built
te create schedules and allocate resources.

Consequently, engineering design work often begins during product design,
proceeds in parallel with i, and influences product design decisions.

The boundary between architectural and detziled design is even less clear.
In Chapter 8, we noted that a software architecture specifies a program’s
major constituents, their responsibilities and properties, and the
relationships and interactions armong them. Detailed design refines the
architecture by specifying the internal details of the major prograon
constituents and fleshing out the details of their propesties, relationships,
and interactions. This picture is vague, and, in particular, we may wonder:

* What comptises 2 “major” constituent?
= How abstract should architectural specifications be?

There are no definitive answers to either of these questions. Some
architects lean toward quite abstract specifications of 2 few top-level
constituents, while others insist on detailed constituent specifications
through several lfayers of abstraction.

Probiem Context

Organizational
Context

The
Architectural
Design Process

9.1 Introduction to Architectural Design 255

The circumstances of the design problem also dictate different amounts of
detail in a software architecture. In a very stall program consisting of only
a handful of classes ot modules interacting in sizaple ways, the software
architectute is hardly distinguishable from the detailed design, so itis
appropriate for the architecture to be simple and quite abstract. However, 2
very large and complicated systern with hundreds or thousands of classes,
distributed over many machines, interacting with many petipheral devices,
and with demanding non-functional requirernents, demands 2 detailed
high-level specification that is carefully worked out and analyzed.
Experience and engineering judgment must dictate the level of detail
provided in an architectural specification.

- The organization in which architectural design takes place influences the

architectural design process. An organization has investments, such as code
librazies, standazds and guidelines, software tools, and people with
particular skills, that software architects are expected to make the most of
in their designs. Organizations also have structares that may influence
designers. For example, an organizaton ray have groups that specialize in
developing certain kinds of software, such as user interfaces, database
systems, middleware, and nerworks. Architects may have to design
programs whose constituents can be farmed out to existing development
groups. Finally, the skills, experience, and preferences of architects
themselves obviously influence the designs they produce.

Incidentaily, software zzchitectures have 4 reciprocating influence on the
organizations that create and use them. An organization may make
investrments in tools, technologies, methods, and people needed to build 2
program according to a software architecture. Groups may be formed to
mmpiement an architectare’s major parts or sub-systerns. Architects learn
and grow as they solve new problems and learn what works and what does
not.

The architectural design process is a straightforward applicadon of the
generic design process to the problem of architectural design. The activity
diagram in Figure 9-1-1 reproduces and slightly elabozates part of the
engineezing design process activity diagram from Chapter 2.

As indicated in the diagram, the input to this process is 2 software
tequirements specification (SRS}, and its output is a software architecture
docutfient. A software architecture document (SAD) is simply 2
document that specifies the architecture of 2 software system. We consider
the contents of the SAD next. -

36 Architectural Design

SAD Contents

r- N ™
Architectural Design Process
SRE : Probilem
SAL : Solution
[adequate architecturs]
Finalize Architectre SAD

.

Figure 9-1-1 Architectural Design Process

The contents of 2 SAD vary depending on the program being designed and
the needs of the development team. A small system with 2 simple
architecture 2nd a good SRS may need only a few architectural design
models and minimal supporting material, while a complex system may
reguire much rnore. The tempiate shown in Figure 9-1-2 is appropriate for
docurmenting the software architectures of small- to medivm-sized systems.

1. Product Qverview

2. Architectural Models

3. Mapping Between Models

4. Architectural Design Ratiorale

Figure 9-1-2 Software Architecture Document Template

The template has the following sections:

Product Overview—{his section either surnmarizes the product vision,
stakeholders, target market, assumptions, constraints, snd business

Quality
Attributes

9.1 Introduction to Architectural Design 257

requiretnents ot refers readers to the project mission statement. Itis
present because readers would have difficulty understanding the
software architecture without knowing anything about the target
product.

Architeciural Models—This section presents the architecture, using a
vaziety of models to represent different aspects or views. It t;fplcaily uses
the design notations discussed later inr this chapter.

Mapping Between Models—Sometiraes it is difficult to connect different
architectural models. This section uses tables and textual explanations to
help readers see these connections.

Architectural Design Rational—This section explains the main design
decisions made in artiving at the architectare. Archirects have the time
and energy to discuss only 2 few of the many decisions made during
architectural design in the SAD. In deciding which decisions to discuss,
azchitects should select those that took a lot of tme and effort 1o malse,
are crucial for fulfilling important requirements, are puzezling at firse
glance, or will be hard to change later. Architects should explain the
factors affecting each decision, the design alternatives considered,
evaluations of the design alternatves, and the reasoning behmd the final
choice.

The section on architecrural models must contain enough information that
the models can be understood and used as a basis of detailed design and
eventual implementation. In pasticular, it is important w include
appropaate DeSCRIPTR information, as discussed in Chapter 8, A
graphic, table, or short textual description generally does not supply all the
needed information 2nd must be supplemented by other specifications,
usually written in English, Additional information may help readers
understand the design. In particular, & may help to include a design
rationale listing design alternatives and explaining why the architects chose
the alternative they did.

Appendiz B contains the Aqualush SAD. It uses the template shown in
Figure 9:1-2 and fllustrates the infornmadon conmined in each sectdon,

Software architecture is crucial not only for satisfying a products
functional requirements, but also for satisfying its non-functional
requirements. Recall from Chapter 5 that non-functional requirements
specify.properties or characteristics that a software product must have.
These are called quality attributes.

A quality attribute is a charactetstic ot propesty of a
software product independent of its function that is
important in satisfying stakeholder needs and desires.

B3

Architectural Design

Cruality attribures fall into two categosies: deselopment attributes and operational
attribmtes. Development attributes include properties important to
development organization stakeholders, such as the following
characteristics:
Maintainability—A product’s maintainability is the ease with which it
can be corrected, improved, ot ported. Sometimes mote specific kinds
of maintainability attributes are used, such as modifiability or portabilisy.

Reusability—A product’s reusability is the degree to which its parts can
be used in another software product. A product designed for reuse will
have higher reusability.

Operational quality attributes include the following properties:
Performance—A program’s performance is its ability to accomplish its
function within iimits of time or computational resources. Programs
often must zespond to external events within a certain time or must do
their jobs uwsing small amounts of memory or processor time.
Apvailability—A program’s availability is its readiness for use. A Web
server, for example, may need to be available for all but a few minutes a
day. .
Refiability—A progeam’s reliability is its ability to bebave in accord with
its requirements under normal operating conditions. Any program that
handles money or can endanger bumans must have high reliability.

Security—A program’s security is its ability to resist being harmed or
causing harm by bostile acts or influences.

Programs can have 2 wide variety of architectural structures and stll satisfy
2 product’s functional requirernents, but various architectural structures
make it easier or harder to satisfy non-functional requirements.
Furthermore, architectures that increase the ability of a program to satisfy
some non-functional requirements may decrease its ability to sadsfy others.
Software architects must consider alternative structures that enable 2
program o satisfy its functional requirements and select those that allow it
to best satisfy its non-funcronal requirements.

“f'o fllustrate, consider a program. responsible for matching fngerprints read
from scanners against a database to allow people into and out of a secure
facility. Besides its functional requirements, this program has some obvious
non-functional requirements. For example, it must respond quickly, it must
be available the entire time people are entering or leaving the faciity, it
must match Angerprints fairly reliably, and it omast resist attackess.

Many software architectures can meet the functional requirements of such
a program, but some will be better able to noeet the non-functional
requirernents. Higher availability can be achieved by having redundant
program units, such as a backup database, but this is more complicated,
which may decrease reliability. On the other hand, redundant databases
nay speed processing so this architectural alternative may improve
perfomrnance. Fingerprint matching can be made more or less reliable

Architectural
Design
Challenges

Section
Summary

Review
Quiz 9.1

9.1 Introduction to Architectural Design 259

depending on. the algorithm used, but the mote reliable algorithms may
take more titne, which affects perforrnance. The program may be made
mote secure by adding units for data encryption and decryption, but this
makes it more complicated (decreasing reliability} and slower {decreasing
performance).

Softorare architects must record their designs somehow to assist their
thinking, share their ideas with others, evaluate their designs, and
document them. Architectural constituents are large and abstract, and
several kinds of models and notations are needed to represent software
architectures fully. We consider how to specify software architectures in
the next secton of this chapter.

- Architectural design, like all design, makes demands on the creativity of

designers. Where do ideas for architectures come from? How can
architectures be improved? We consider some answers to these questions
in Chapter 10.

Software architects must somehow assess the ability of a software
architecture to meet its requirements, even though the architecture is an
abstract specification and there is no software 1o run. This is one of the
most challenging aspects of azchitectural design, but there are techniques
for evaluating architectures. We survey them in Chapter 10 as well.

A product’s architecture should be validated before moving on to detailed
design. The last section of Chapter 10 discusses how to validate software
archirectures with reviews and inspections.

= Architectural design may begin during product design, and it can provide
information to product designers and stakeholders that is impottant for making
product design decisions.

* There is no clear boundary between architectural and detailed design.

* There are no accepted standards for the level of abstraction of architectural
specifications. g

* A quality attribute is 2 software product propesty independent of a program’s
function that is important for satisfying stakehaolder needs and desires.

* Quality atrcbutes are specified in non-functional requirements.

= Software architects must specify architectural structures that meet both
functional and non-functional requirements, paying special attestion to the way
thatalternative structures affect quality astibutes,

1. How do development organizations affect architectural design, and how do
software architectures affect development organizations?

2. What information should be included in a software architecture document?
3. What is the difference between operational 20d development quality attributes?
4. Name snd describe three quality atiributes.

30 Architectural Design

9.2

Notational
Variety

Specifying Software Architectures

Software architectures are specified using notations that descobe static.
program structure and dynamic program behavior: Both static and dynamic
design models are needed in architectural design.

A wide vatiety of notations can be used to represent sofiware architectures,
including several described elsewhere in this book. In particular

» UML activity diagrams, discussed in Chapter 2, can be used to describe
the processes that units follow 2s they interact.

* TIML use case diagrams and use case descriptions, presented in Chapter
6, can be used to describe the interactions between architectural
constituents. ’

* UML class diagrams can describe the static architectural structure of
small programs. These ace discussed in Chapters 7 and 11.

* UML interaction diagrams can describe the communication between
architectural constituents. These are discussed in Chapter 12.

» UML state diagrams can describe the states and state changes of major
program units. State dizgrams are covered in Chapter 13.

In this section we discuss vatious textual notations for architectural
specifications. We also present boxz-and-line diagrams, 1 design notation
especially useful for describing software architectures. [n the next section
we discuss notations that can be used in any UML diagram, along with
UML package, component, and deployment diagrams, which are useful for
both architectural and detailed design modeling.

Table 9-2-1 catslogs bow the various notations mentioned previously are
used for DeSCRIPTR aspects of architectural specification.

Type of Specification | Useful Notations
Box-and-iine diagrams, ciass diagrams.
Decormposition package diagrams, component diagrams,
deployment diagrams
States State diagrams
Sequence and communication diagrams,
Caoitaborations activity diagrams, box-and-line diagrams, use
case models
Responsibiliies ‘Text, box-and-line diagrams, class diagrams
Interfaces i Text, class diagrams
Preperties Text
Transitions State diagrams .
: ; Box-and-fine diagrams, component diagrams,
Relationships class diagrams, deployment diagrams, text

Table 9-2-1 Notations for Architectural Specifications

Textual
Specifications

Specifying
Responsibilities
and Relationships

Specifying
Interfaces

9.2 Specifying Software Architectures 261

Textis particularly important for specifying responsibilities, interfaces,
properties, and relationships. We consider each in turn.

A unit’s responsibilities are usually indicated in part by its name and in part
by the symbols used to represent it in various diagrams. Sinilazly, unit
rejationships zre often indicated by various connectors and by the narmes
of the relationships. Names and symbols provide only part of the
information about what a unit is supposed to do and how it is related to
other units, though; supplementary information is usually needed.

There is no standard fowmnat for specifying responsibilities or relationships,
As in all technical writing, responsibility and relationship specifications
should be spelled out in sirnple, clear, and precise sentences. Grammar and

* spelling should be correct, and the material should be forrnatted to aid the

reader. The Aqualush SAD in Appendix B contains many examples of
textual responsibility specifications.

As mentioned in Chapter 8, an interface is a communication boundasy
between endties, and an interface specification describes the mechanism
that an entity uses o communicate with its environment, Interface
specifications, as descriptions of a means of communication, include
specification of three characterisdes:

Syntax—-The syntax of a communications medinm specifies the
elements of the mediurn and the ways they may be combined to form
legitmaze messages. For example, the syntax of programming language
describes the lexical elements in the language (keywords, operators, and
50 forth), along with rules dictating how these may be combined to form
legitimate programs.

Semantics—The semantics of 2 communications medium specify the
meanings of messages. For example, the semantics of Java specify that

the meaning of the statement x = x4 is that the vatiable xhas its value
increased by four.

Pragratics—The pragmmatics of a communications medium specify how
messages are used in context to accomplish certain tasks. For example,
Java Collection objects can store only reference values, not values of
primitive types. Thus, for example, int values cannot be stored in an
Arraybist. However, values of primitive types can be wrapped in
objects and then stored in Collections, Fot example, an int value can
be placed in an Integer object that can be stored in an ArrayList. This
is part of the pragmatics of Java Collections.

An interface specification should cover the syntax, semantics, and
pragmatics of the communications. between a module and its environment.
Both the messages that can be sent to the module 2nd the messages that
the module seads need to be specified.

Sometimes the pragmatics of several messages are hest explained together
because the module expects 2 certain protocol—that is, a certain ordering

!

Architectural Design

Aguatush
Interface
Spedfication
Example

or timing of the messages sent to it. Even when 2 r{sgd&la does rot 1;211:3 a
it are helpful additions to an meerfac
rotocol, examples of how to use it are heip _ _
Spec.iﬁca;ion. FiP;mle, an interface specification can include an explanation
of why the interface is designed as it is. ‘
“These considerations lead to the temnplate shown in Figure 9-2-2 for
specifying moduyle interfaces.

1. Services Provided
For each service provided specify its
a} Syntax
b) Semantics
¢} Pragmatics
2. Services Required
Specify each required sewiceA by name,
A service description may be included.
3. Usage Guide
4, Design Rationale

Figure 9-2-2 Interface Specification Template

There are many ways to specify syntax, serantics, 1ind pragm;tllcztssiitzx
nay be specified very abstractly bg simply stating the nax};is;ﬁogs ;;ovéde .
outputs of messages. UML class d;_agram operation sggm deI:ajled
moze detailed notation. Programming languages provide a very
notation for syntactic specification. o
One populas method for specifying semantics and p_xagmaucz::isoio t;zet
preconditions and postconditions. A precondition is an ais‘;l
must be true at the initiation of an activity or opeszlion, Whilc 2 ion
postcondition must be true at the compledon of an acufwty or op::ﬁon .
Together, pre- and posteonditions show how the _stateho a co;zgi’s
changes when an operation execuies, which exp_lzms u ; oper tonts -
semantics. Preconditions also state ttlze context in _v»_r]mc in 31% mation o
be used, which is part of its pragmatics. ?ostcondmo}x::_s sho deostate
what happens when an operation is used even though its preco
violated, This is part of the operation’s semantics.

Let us consider part of the AquaL_usb SAE t:.]o ﬁjiﬁ:?:;:?j,;;ﬁ?;iﬁ:%

i ion. Aqualush has a major constituent cail c
fgrfﬁﬁ;?io:oigmant contains vfrtual devices that implement zz;tet:hf:ce:r:
physical devices (ox simmlations of thery}, s?uch as vgive;, sensci); t,e rfacg e
of the control panel, and so forth. Every virtual device has an meerface o |
which all device drivers of that sort must cenfoy:m._For example, !
valve device has an interface to which all ‘fﬂ‘fe device drivers mgxis i
conform. The advantages of having a device mtertjace laére.r ate sfct;. =
Chagter 10. For now, we focus on one virtual device and its interface:

dock device.

Specifying
Properties

9.2 Specifying Software Architectures 253

The AquaLush virtual ClockDevice must keep track of the day of the week
and the time of the day. A component, such as a master clock, that needs
the current day or tirae of day can query the ClockDevice to obtain this
information. The day of the week and the time of the day can also be set, A
component that wants 1o be notified by the ClockDevice that time has
passed can register itself as the device’s Ticklistener, The ClockDevice sends
[aessages 1o its TickListener every minute to notify it that time has passed.
The ClockDevice needs to be told that time has passed by another endty
that really keeps track of the time: 4 real (or simulated) clock of some sort
A real clock object must notify the ClockDevice that time has passed at Jeast
every minute. [t also needs to be able to determine the current actual day
and time, but we assume that this feature is supported by the programming

.language so we do not include it as an interface reguirernent.

This rather vague English description is made tmore precise in the interface
specification for a ClockDevice shown in Figure 9-2-3 or page 264.

Non-functional requirements specify properties or quality attributes for a
program as 2 whole that ate then propagated to its parts. It is often difficuls
to specify quality attributes precisely, For example, maintainability is very
hard to specify precisely—stating that a program of its parts must be “easy
to change” says altmost nothing, Specifications can be made more precise
by introducing a tatget metric. For exatnple, 2n SRS might specify that new
editor features can be added with no more than one person-month of
effort oo average. This is much better, but how can such a prograrm
property be propagated to individual parts during design?

One way to make property specification more precise and easier to work
with is to characterize them with a collection of scenarios. In Chapter 6, a
scenatio was defined as a specific interaction between a product and
particular individuals that instantiates 2 use case. Use cases are episodes of

" interaction between a program and its actors. Scenarios for quality

attributes are specific interactions between a program and any entity,
mncludinglits developers and maintainers. Collections of scenarios typify the
irteractions relevant te a particular quality actribute, Studying these
scenazios helps specify properties and can be the basis for architectual
evatuation, which is discussed in the next chapter.

Returning to the maintenance example, the requirernents that new editor
features can be added with no more than one persor-month of effort can
be elalickated by creating a set of scenarios (typically theee to five) of
specific editor features that stakeholders belisve are likely to be requested.
Architects can consider how each scenatio would be implemented 1o
generate sets of modification sceparios for architectural constituents. These
sets of scenatios can then be used to specify constituent properties. We will
consider scenarios in greater detail in Chaprer 10,

34

Architectura!l Design

Services Provided

Alt operations with preconditions on parameters throw HlegalArgumentExcaptions
if ihe precondition is viclated.

Sei the ime of | Syntax: | setTime(milTime . int)
the day

Fre: | milTime is a legitimate military time specification.
Post: | The clock device is reset to milTime.
Get the time of | Synfax: | getTime() : int
the day Pre: | None.

Post | The cusrent time is returned, accurate to the
minute, in military time format.

Set the day of Syntax: | setDay(d: Day)

the week Fre: | None.

Post: | The diock device is reset to day d.
Get the day of | Symfax: | gethay(} : Day

the week Pre: § Nene.

Post: | The curent day of the week is returned.
Set the Syntax: | setlistener(!: TickListener)
ClockDevice .
listener Pre: | None.

Post: | TickListener | will start to receive notifications of
the passage of time every minute. Any previous

TickListener is replaced.

Services Required

This layer requiras a Day enumeration type. The ClockDevice requires some sort
of real or simudated device that notifies it when one minute has passed.

Usage Guide

The Clock, not the ClockDevice, is the main fime and time notification service
provider. The Clock uses the ClockDevice for time notification. To use a
CiockDavice:

1, Create a new ClockDevice object. it should be unique.

2. Register the ClockDevice with the simulated hardware or software entity
that supplies i with time notifications.

The day of the week and the time of the day may be adjusted at any time.

Design Rationale

Aqualush requiremants are satisfied by a clock that keeps track of the day of the
week and the time of the day, accurate to one minute. Hence the ClockDevice
has only these features. .

The real clock time increment does not matter-as long as it is no greater than one
minrute. - -

Figure 9-2-3 AquaLusﬁ ClockDevice Interface

Box-and-Line
Diagrams

9.2 Specifying Software Architectures 265

Perhaps the most widely used architectural design notation has no precise
specification and indeed hardly qualifies as a notation at ail. It consists of
various symbols or icons, called boxes, usually connected with vasious sorts

of kngs. Such graphics ate called box-and-line diagrams. Figure 9-2-4 is
an example.

Gate Fingerprint D
Controller Seanner

Controfier

* Guard UL

Access
Controlier

Print Print
Maitcher A Maicher 8

Cecupant
Database A

Qgcupant
Database B

Administrator Ul Security
‘ Manager Ui
Figure 9-2-4 A Box-and-Line Diagram -

This diagram is a static model of the Fingerprint Access System {(FAS), a
program that helps maintain physical security by controlling and ’
monioring access o 4 building using fingerprint scans. The program
compares fingerprint scans to those recorded in 2 database and opens
access gates for people whose fingerprints match. A guard can also control
the gates. Administrators maintain the database, and security managers can
query the database to determine who is in the building. The prograny’s data
store Is replicated to increase availability and performance.

The boxes in this diagram all refer to software or data stose components.
The lines indicate interaction relationships between components. The
asterisks at the ends of some Bnesindicate that several instances of such

6

Architectural Design

avolved in the interaction. For example, several Gate

i classify
e Access Controlier. The box shapes
e rnal components,

components may be i
Confrollers mmay Interact w | .
the components as user interfaces, device controllers, inte

or data stores. - ot the messiogs of
i e o
box-and-tine diagrarns have no convenilons abou o
gre;?)u;iz i?fs 2 very goodg?dea to include a legend with every box-and-line

diagram. A legend for the FAS diagram in Figure 9-2-4 appears in

Figure 3-2-5.
) Internal
Devics ot [e

D User Interface @ Diata Store

Many Interacting
* Components

interacts With

Figure 9-2-5 A Box-and-Line pDiagram Legend

Even if 2 diagram uses 2 standard notation, marking the notation type on
the diagratn in piace of the legend helps avoid confusion. "
i i i eladonships in
i hysical relationships between boxes represent £
i%rgi?a?gfﬁieydiagzm. For example, it is commmon to represenl lilgiered
modules using adjacency. The diagram in Figure 9-2-6 iliustrates this case.

Supervisor

Planner

Data Synihesizer

Data Analyzer

Data Gallector

Sensor

Legend

Is Allowed
E Layer AR 4o se

Figure 9-2-6 A Box-and-Line Diagram Showing Layers

Layers are allowed to interact only with the layers below them, so this
diagram models the program quite cleatly.

Box-and-Line
Diagram Uses

Box-and-Line
Diagram
Heuristics

9.2 Specifying Software Architectures 267

As box-and-line diagrarms are so loosely specified, they can be used for
both static and dynamic modeling, and they can represent any aspect of a
program that the architect desizes. In practice, they tend to be used mostly
for static models that show decomposition itto major constituents or sub-
systems, along with interaction relationships.

We have aiready mentioned the advisability of inchuding a legend
explaining the symbols in 2 box-and-line diagram. In addition, the
following heuristics can help make better box-and-line diagrams:

Maks box-and-line diggrams only when na standard sotation can meet modeling
needs. There is no need to invent notations when good standard
notations already exist. On the other hand, few standard notations aze
intended for architectural modeling, though they can be used for this
purpose. A notation not meant to model architectures but used for that
purpose is often not as good as a box-and-line drawing, For example,
UML packages (discussed later in this chapter) can be used to represent
architectural layers, but this notation rakes longer to draw and is not as
easy to read as the stacked boxes in a diagram such as Figure 9-2-6.
Consequently, architecrural layers are most often, and appropriately,
shown using box-and-line diagrams.

Keep the boxces and lines simphe, People sometimes get carried away with
fancy graphics, but often there is no need to vse many fancy symbols in
box-and-Hine diagram. Keeping things simple usually makes the diagram
easier 1o create, read, change, and reproduce, often with no loss of
descriptive power.

Make symbols for different things ok different. This fundamental rule of
technical communication is especially relevant for box-and-line drawings
because the urchitect is tesponsible for the notation as well as the design.
Diagrams without distinct symbols ate harder to read and more likely to
be misinterprered. For example, suppose two different kinds of
relationships {such as an interaction relationship and a decompositon
relatiofship) are represented by a solid line and a slightly thicker solid
line. Readers might not notice the difference between the lines, and they
might have a hard time recognizing which is which even if they do. It
would be better to use very different line styles {such as a solid line and a
dashed line), to add special symbols at the ends of the lines {such as
arrowheads at the ends of interaction lines only}, or to follow UML
pracfice and put sterectypes on symbols o distinguish them.

Use syambols consistently in different diggrams, Even though each box-and-lne
diagram can have its own legend explaining its symbols, both the
modelers and the model readers will have a hard time keeping symbals
straight in different diagrams if they vary too much. By the same woken,
itis good practice to adopt notational conventions from standard
diagrams for box-and-line disgrams. For example, as architect might
always use solid lines with labels for relationships on static models,
following UMI. practice for associations.

268

Architectural Design

Heuristics
Summary

Section
Sunmimary

Use grammatical conventions o namse elements. Noun phrases name things, and
verb phrases pame actions or activities. Diagram elements that represent
things should be named with noun phrases, and elements that represent
actions, relationships, or interactions should be named with verb
phrases,

Dot mrixc static and dynansic elpsents. A common mistake when moaking
box-and-line diagrams is to add a few dynamic elements (such as data or
cortrol fiows) to a static model. This usually resses vp the model.
Decide before making the model whether it will be a static or dynamic
model, and add only elements in accord with this decision.

Figures 9-2-7 and 9-2-8 summarize the heuristics discussed in this section.

Write good technical prose when specifying architeciures.
Use a template to specify interfaces,
Specify the syntax, semantics, and pragmatics of interfaces.

Use preconditions and posiconditions to specify semantics and
pragmatics.

o Elaborate quality attibutes with scenarios.

a o o o

Figure 9-2-7 Architectural Specification Heuristics

&

Make box-and-line diagrams only when no standard notation can
meet modeling needs.

Keep the boxes and lines simple.

Make symbols for different things ook different.

Use symbols consistently in different diagrams.

Include a legend explaining the symbois in the diagram.
Use grammatical conventions {0 name elements.

Don't mix static and dynamic elemenis.

[N % N 5 N « B]

Figure 9-2-8 Box-and-Line Diagram Heuristics

Several different kinds of notations are used to specify software architectures,
Text is often used to specify responsibifities and relationships, interfaces, and
properties.

Interface specifications should state the syatax, semantics, and pragmatics
of services provided and required by a unit.

Scenarios can be used to help articulate component properties.

Box-and-line diagrams use symbols or icons (boxes) connected by various
kinds of fnes to model software.

Raview
Quiz 9.2

9.2 Specifying Software Architectures 269

1. What diagrams can be used to model collaborations berween program parts?

2. Give an exampile from ordinary English to fllustzate the difference between
syntax, semantics, and pragmatics.

3. Give 2n example from everyday life of a protocsl governing communication
between two people.

4. What are preconditions and postconditions?
3. What sorts of symbols can appear in box-and-line diagrams?

9.3

UML Common ~

Notations

Notes

Extension
Mechanisms

UML Package and Component Diagrams

Several UML notations can be used in any UML diagram. We discuss them
here because they are often found in UML models of softwate
architectures and because some of them are needed to discuss UML
package and component diagrarns,

A note is a dog-eared box connected to any model element by a dashed
line. A note may contain arbitrary text. Notes usually contain comments,
but they may also contain constraints.

UML provides several mechanisms for extending the notation. These
extension mechandstns allow symbols to take on special meanings or give
UML the ability to model things that its basic notation does not suppott.
The main ways the extend UML are the following mechanisms:

Constrainis—A constraint is » statement that must be true of the entities
designated by one or more model elements; in other words, it is a
condition or restriction on the farget of the model, Constraints are
writter: inside curly brackets in a format not specified by UML.
Constraints may appear near a name or model element. Constraints that
apply to two maodel elements may be placed next to a dashed line
connecting the elements; constraints applying to more than two
elements may be placed in a note connected by dashed lines to all the
elements involved.

Properties—A property is a charactedistic of the entty designated by a
model element. Properties are specified in comma-separated lists of
tagged values enclosed in cudy brackets. A fagged zadee is 2 name-value
pair connected by an equals sign. For example, the property {version=2.2,
synchronized=true} associates the value 2.2 with the tag version and the
value true with the tag synchronized. If a rag has the Boolean value true
then the value and the equals sign can be omitted. For example, the
previous property can be abbreviated as {version=2.2, synchronized}.
Properties can appear next to the elements that they describe or be
connected to them with dashed lines.

70

Architectural Design

Dependencies

Srereotypes—A stereotype is a UML model element given more specific
meaning. Special icons, colors, or other graphic features can represent
stereotyped elements, but placing a stereotype keyword before or above
the model element name is the usual way to make one. Stereotype keywords
are words placed between balanced guillemots, which look like double
angle brackets but are distinct symbols. For example, «uses» Is 2
stereotype keyword.

Figure 9-3-1 contains an example of a note, 2 constraing, a property, and a
stereotype.

Lamp
for each bulb MAX_AMPS = 20 { constant }
if bulknisOn(} { -
bulbturnOn() [~ = = peligk))
refurn

{ordered }| 1.5
«physicai device»
Buib

}
for each bulb
buiby.turnOf)

isLit : boolean

isOn{) : boolean
urnOng)
tumOff()

Figure $-3~1 Stercotypes, Notes, Properties, and Constraints

The Bulb class is stereotyped as a «physical device», which means (fet us
suppose) that it is a special kind of class that controls 2 physical device.
The MAX_AMPS attribute in the Lamp class has the property of being 2
constant. The { ordered } constraint specifies that the collection of Bulb
instances held by a Lamp instance must be ordered. The note contains
pseudocode that specifies the click(; operation’s behavior.

A dependency Js a kind of binary relation that holds between two things,
defined as follows.

A dependency relation holds between two entities [and [when a
change in I (the independent entity) rozy affect D (the dependent entity).

For example, suppose class D calls one or mote operations of class L A
change to I may affect D, so I depends on I. There dre many kinds of
ciepenéency refations. The following instances are common examples:

» Module D #rey module I when a correct version of I must be present for
D to work correctly.

Packages

9.3 UML Package and Component Diagrams 271

* Module D depends for compilation on module I (in other words, D cannot
be compiled without Ii.

* Class D imporis elernents from package I

UMY represents dependency relations with 2 dependency arraw. The
dependency arrow points from the dependent to the independent entity,
Dependency arrows may be sterectyped to indicate the precise nature of
the dependency relation. The diagram in Figure 9-3-2 shows several
dependencies between classes.

i java;utih:Date ’ l_java::util::’rimer
[7
. s s
«imports» AN L simports»
!
| «cailsy

ClackDisplay

Figure 9-3-2 Some Class Dependencies

Dependencies represent links between individual model elesneats, not
relations between sets of instances, 5o they do not have assaciation
adornments.

A UML package is simply 2 coliection of model elements, called package
nezabers. ‘The UML paclage symbol is 2 tabbed rectangle, or 2 fle folder
symbol. Figure 9-3-3 illustrates the package symbol.

Electrical Parts |

1

Switches l . Wiring

Toggle

. Switch Two-Wire

Three-Way
Switch

ThreeWire

Dirnmer
Switch

Four-Wire

Figure 9-3-3 A Package Example

Architectural Design

Package
Piagrams

Modeling
“hitectures with
package
Dlagrams

"The members of a package can be shown either inside the rectangle gr
using = special contalnment symbot (& circled plus sl‘.jgn) %t{f:;zf kt:g 2 ;ame
in ith li ing to the members.
containing package, with lines ruaning to e vt s
in the tab if the rectangle is occupied orin
zlr’f;ss??ckage symbols can be connected by dependency arrows to show
that one package INPOTLS OF EXPOILS members to another.

i i i bols are package
TML package diagram is one whose primnary sym
?Exbels.p A pacig{age diagram may show groupings of use case;; clailsizs, -
cimponents, or nodes (discussed later in this chaptet}. A package diags

may also consist of only package symbols.

i king static models of modules,
UML package diagrams ate useful for making
thle_ir pij:ts ag:fd th%?r relationships. UML packages are thus us;:ﬁzl fot:_;: -
architécmr’al nodeling. For example, Figure 9-3-4 shows the ayers

Figute 9-2-6.

«layers

Superviser

| can use?
— N
clayers
Planner

i €GB use»
— ¥

wlayery
Data Synthesyzer

| wéan usey

1 ¥
wlayer»

Data Analyzer

T
| «can use»
)

«layers
Data Cotlector

j aoan use»
—1 Y

«layer»
Sensor

Figure 9-3-4 Layers Represented by Packages

i sage i hitectural
otype emphasizes that each package 1s an archy
il;;«!aﬁen;:;ﬁ gziendeicy relation: indicates that each layeris allowed to

use the services of the layer beneath it.

Software
Components

UML
Components
and Component
Diagrams

UML Interfaces

9.3 UML Package and Component Diagrams 273

UML. packages are not a3 geod as box-and-line diagrams for simply
showing architectural layers, but they are very handy when the contents of
the layer are shown as well,

Reusable parts that can be bought from suppliers and included in software
products are an important software development resource. For example,
the Java class libraries are collections of such reusable parts, and database
management systems, XML, parsers, and transaction managers are
examples of larger reusable parts. Another advantage of using such, parts is
that they can be replaced by comparable parts with different properties as
product needs change. Developers may design programs with replaceable
patts to increase the changeability of their designs.

‘Such reusable and replaceable parts are called software components.
Products can be designed with them in mind and bullt in whole or in part
with commercially available or custom-built software components, an
approach called component-based development. UML reflects the

importance of software components by including symbols and diagrams
for modeling them.

A UML component is a modular, replaceable unit with well-defined
interfaces. Components, like packages, may include classes, but unlike
packages they hide their internals to make them as replaceable and reusable
as possible.

Components are represented by component symbols that resemble class
symbeols, except that they must either be stereotyped «compenents or have a
special compotent icon in their upper tight-hand corners. Component
names appeat inside the component symbol. Figure 9-3-5 ilustrates
component symbols. '

8]

«companents

ImageRendarer CompressionEngine

Figure 9-3-5 Component Symbols

A UML component diagram shows components, their relationships o
their environment, and possibly their internal structure.

Interfaces are very important in component diagrams because they define
the relationship between a component and its environment. Tn UML an
interface is 2 named collection of public attributes and abstract operations.
An absttact operation is an unimplemented operation. An abstract
operation has a signature indicating its name, parameters, and return

values, but no specification: of the computation that it cardes out when
called.

74

Architectural Design

Interfaces are like classes in that they have operations and attributes, but
they are unlike classes in that they cannot be instantiated; instead, they
must be realized by classes or components. A class or component realizes
an interface when it includes the interface’s attrbutes and implements its
operations.

UML has two kinds of symbols for representing interfaces: One uses a
rectangle with compartments for specifying interface details, and the other
is an abbrevizted form that shows only the interface name. We present the
abbreviated form here and cover the other forma in Chapter 11.

UML distinguishes two kinds of interfaces depending on an interface’s
relationship to a class or component:
Provided Tnterfaces—Interfaces realized by a class or component are
provided interfaces.

Reguired Interfaces—Interfaces on which a class or component depends
are required interfaces,

Each kind of interface is indicated by its own symbol in UML. Provided
interfaces are represented by an unfilled cirdle connected to the class or
component providing the interface by 2 solid line. This is a ba// or lodiipep
symbel. Required interfaces are represented by half circles connected to the
requiring class or component by a solid line. This is the socker symbol.
Interface names are written beside the cizcle or half-circle. To iHustrate,
consider Figure 9-3-6.

Compression \r Compression (f \r BitString

ccomponeni» «components
imageRenderer CompressicnEngine

Figure 9-3-6 Provided and Required Interfaces

in this example, the ImageRenderer component displays images on a screen.
The CompressionEngine converts between bit strings and vanous
compression formats, such as ZIP, GEF,‘ or JPG. ’I"he CompressionEngine
provides a Compression interface containing operations such as)
compressToJPG() and decompressdPG(. The ImageRenderer requires this
interface to handle compressed images. Furthermore, the
CompressionEngine requires a BitString intetface with operations for
manipulating bit stzings. :

The CompressionEngine provides an interface the lmageRenderer rgqtlzires. A
designer can “wize” these components togetherin a design, specifying that
one component uses the services of another, by combining the ball and

Component
Internal Structure

5.3 UML Package and Companent Diagrams 275

socket symbols to form an assembiy conmector. This is lusteated in

Fipure 9-3-7.
\r BitString
Compression
«compaonents e «Compaonents
lmageRenderer (CompressionEngine

Figure 9-3-7 An Assembly Connector

It should now be clear why the interface symbols are called bail and socket

" symbols,

Component required and provided interfaces can also be listed inside the
component symbol in 2 compartment below the component name. The
interfaces can be listed under the stereotypes «required interfaces» and
«provided interfacess. Other compastrnents can be added as well to
document additional information about a component.

So far, we have concentrated on the UML notation for representing
components and their relationships to their environment. However,
components typically encapsulate classes and perhaps other components,
and this structure may need to be designed as well. UML provides the
means for modeling the constituents of components and their relationships
to one another.

Besides the component name, the mait compartment of 3 component
symbol can contain class and component diagram symbols. In addition,
special symboals aze provided to conaect the nested symbols with the
interfaces that the component uses to interact with ifs environment,

A delegation sonnestor ties 2 component interface o one or more internal
classes or components that realize or use the interface. Delegation
connectors are solid arzows stereotyped «delegater. A delegation connector
may extend from an external interface lollipop to an internal class,
component, or lollipop to indicate the constituent that realizes the
provided interface. A delegation connector may also extend from an
internal class, comnponent, or interface socket to 2n external interface
socket.For example, the component diagram shown in Figure 9-3-8 on
page 276 shows the internal structure of the CompressionEingine component.

This diagram shows that the CompressionEngine has three internal parts
handling different kinds of compression. Services provided by the
Compression interface are actually performed by the ZIPcompression
component or one of the compression classes. The GIF and JPG
compression classes require the BitString interface.

Madeling
Architectures with
Companents

Heuristics
Summary

«components
CompressionEngine

«eompanent»
ZiPcompression
. BitString
Compression «delegaten ' «delegatey ~
O GiFcomprassion S
JPGeompression

Figure 9-3-8 Component Internals

External interface and delegation connectors may meet at 2 pert, which is
an interaction point between a component and its environment. Ports are
drawn 2s rectangles on component borders. Their use is optional, however,
so we have left them out of the component diagram in Figure 9-3-8,

Atrchitects may decide that certain portions of a program should be
reusable and replaceable sub-systems that are either purchased from
software component vendors, obtained from previcus projects, or
developed as part of the product. In any case, such reusable and
replaceable architectural constituents can be modeled i UML as
components. It may be that an entire progtam is composed of
components; in this case, architects can use UML component diagrams to
show decompesition and component assembly relationships.

When designers must create a new component, they can use component
diagramos to model the static internal structure of the component. The
internal structares of components may be at too low a level of abstraction
to be of interest during architectural design. 1f so, these diagratns can be
used for component detailed design.

Figure 9-3-9 summarizes the heuristics discussed in this section,

o Use noles, constraints, properties, and stereciypes to add
information to UML models.

o Use stereotypes to name dependencies.
Use packages to group elements in static models.

Use package diagrams to model architectural modules, their parts,
and their relaionships.

o Use compenents to modet reusable and repiaceable program parts.

o Use component diagrams to represent the assembly relationships
between components and their internal static structure.

Figure 9-3-8 UML Diagramming Heuristics

Section
Simmary

Review
Quiz 9.3

[

= Comments can be added to UML diagrams 2s notes,
* UML can be extended using constraints, properties, and stereotypes.

* A dependency relation can be shown between UML elements using a
dependency arrow.

= UML packages are collections of items,
= UML package diagrams have packages a5 their primary symbols.

* In UML, a component is a modular, replaceable unit with well-defined
interfaces.

* A UML component diagram shows components, their relationships to their
eavirontment, and possibly their internal structures.

" A UML interface is 2 named collection of public fearures and obligations.

= UML distinguishes between provided interfaces realized by 2 component or
class and required interfaces used by a component ot class,

* Components are defined by their provided and required mnterfaces.

- What can notes be attached to in UML?

. Give two examples, different from those in the text, of dependency relations.
- How aze the contents of packages represented in UML?

Can UML components be nested?

- How ate requized and provided interfaces represented?

[T NN

- What are assembly and delegation connectors?

9.4

Logical and
Physical
Architecture

Artifacts and
Nodes

UML Depioyment Diagrams

So far we have been concerned with notations for modeling what might be
called a product’s logical architecture, which is the configuration of a
product’s major constituents and their relationships to one another in
abstraction from the product’s implementation as code and jts execution

, onactual machines. Also important, especially for products deployed on
" several computers, is physical architecture, which is the realization of a

product as code and data Eles residing and executing on computational
resources.,

Physical aschitecture can be modeled with boz-and-line cﬁagrams. UndL
also provides a notation for physical architecture modeling, called
deployment dizgrams.

A UML, artifact is any physical representation of data used or produced
duting software development or software product operation. Examples of
artifacts are files, docurments, messages, database tables, program code, and
diagrams.

Architectural Besign

Attifacts have types and instances. For example, the source code file
prog java may exist in multiple copies on various storage media. Each of
these copies is an instance of the single abstract file type progjava.

Artifacts are represented in UML by rectangles containing the artifacts’
names and marked with either the stereotype «artifact or a special artifact
icon in the upper right-hand corners. Artifact types have nop-undertined
narmes, while artifact instances have undedined names, The diagram it
Figure 9.4-1 illustrates aztifact symbols.

wartifact» ; «artifacty
prog.java Brog.ava Ej canfiquration

Figure 9-4-1 Artifact Symbols

The symbol on the left represents the artifact type prog.java, while the
symbol in the middie represents an instance of this type. The dog-eazed
page is the artifact icon. The symbol on the right is 2o instance of an
artifact called configuration,

Artifacts are the physical manifestations of the abstract software entities in
our models. UMI. uses 2 dependency azrow stereotyped «manifests to
indicate the relationship between an abstract model element and the
artifacts that realize it 45 a physical object.

A node is 2 computational resource. There are two kinds of nodes:

Devize—:» device is a physical processing unit, such as a computer,
telephone, refdgerator controller, and so forth.

Eixecution Environment—An execution environment is a software system
that implements a virtual machine. For example, an operating system, a
dutabase system, and the Java Virral Machine are all execution
environments.
A node is a real or virtual machine. Nodes are represented in UML by box
or slab icons. Devices are stereotyped with «devices and execution
environments either with the stereotype «execution environment» or, more
often, with 2 stereotype describing the virtual machine, such as «OS» or
«dVivy.
Like artifacts, nodes have types and instances. For example, WebServer 1oay
be a type of machine, and servert, server2, and server3 may be istances of
that type. Node types are labeled with their names, Node instances are
labeled with undetlined identifiers of the form aame : fype. The name may be
feft off, indicating an unoamed mstance of the type, or the ; fype may be left
off, indicating & named instance with an unspecified type.

The diagram in Figute 9-4-2 dlustrates node sytabols.

Deployment
Diagrams

9.4 UMI. Deployment Diagrams 279
«device» £
Tl
«devices || An instance named H
MazPC 1M37 of node type PC

«dz_egice» _______ An anonymous
BC instance of type PC

«csfevéce» _______ An instance of an
senver unspecified type
«devices
PG A PC runining UNIX
—————— as an executicn
«OS» environment
LUhiEx

Figure 9-4-2 Node Symbols

Nodes may be nested, as indicated by the last example. Usually, the outer

r}oci_e 1s 2 device and the inner nodes are various kinds of execution
environments.

A depio;_rmgnt diagram models computational resources the
communication paths between them, and the artifacts that reside and
execute on thern. Deployment diagrams represent compurational resources
with node type or instance symbols, Communication connections between
nodes are shown with wzmanication paths, which ate sofid lines. Like an
association line, 2 communication path can be labeled with the name of the

c:o?mumgcauon link, and it can have multiplicities and role names at jrs
ends.

Artifacts aze deployed to nodes where they reside and may execute. The
deployment relationships berween artifacts and nodes can be shown in
three ways: artifact symbols can be placed inside node symbols, artifacts
names can be Iisted inside node symbols, or artifact symbols can be
connefizd to node symbols with dependency arrows stereotyped «depioys.

The deployment dia in Fi 9-4-3 i
Lhe deployr graln gure . on page 280 iHustrates these

'ﬂ;s diagram depicts the physical architectuze of 2 system for playing
games over the Internet. A game player runs a GameClient program omn a
ClientPC that communicates with 2 ServerPC using TCP/TP. The ServereC
runs 2 GameServer program that dizects play and mediates communication
among the players. The GameServer consults 2 GameData database to

Architectural Design

Depioyment
jagram Uses

Section
Suramary

Review
Quiz 9.4

«device»
- GameDataServer
adevicer
ServerPC
RMi «DB»
wartifact» GammeData
GameServer Rules
Boardimage
1 Tokenirmage
TCP/P
Tov < «deploy» «artifacts
gevicen | g e == e GameClient
ClientPG

Figure 9-4-3 A Deployment Diagram

obtain the information it needs to oversee a game. The GameData database
contains Rules, Boardimage, and Tokenimage artifacts. The database s an
execution environment that runs on its own GameDataServer computer,
The ServerPC and GameDataServer communicate via Remote Method
Invocaton (RME).

Deployment diagrams show the real and virtual machines used in a system,
the paths over which they communicate, the program and data files
realizing the system, and where programs fun agd data :gsxde. Dgploymem
diagrarns thus provide a rich notation for modeling physical architecture.

Deployrment diagrams are usefol dutng architectural design, particularly for

distributed systems. They can also be belpful in modeling physical
deployment during detailed design.

= Artifacts axe physical representations—mainly files of some sort-—of data used
or produced in softwate development ox operation.
= A pode is 2 computational resource,

» UML deployment diagrams show nodes, communication paths between
thern, and the actifacts that reside and execute on them.
i i ical architecture, which
= Deployment diagrams are useful for representing physical e,
is rge fealizaﬁozg;f a product as code and data files residing and executiog on
computational resources.

. What is the difference between attifact types and instances?

How does the UML notation for representing artifact instances differ from the
notation for representing node instances?

3. How can the deployment of an artifact to 2 node be shown in UML
deployment diagrams?

RSy

Chapter @ Exercises 281

Chapter 9

Saction 9.1

Section 9.2

Section 9.3-4

Chapter 9
Section 9.1

Further Reading

Different views about the amount of deail appropriate for architecrural design are
evident in varjous software architectuze texts, such as [Bass et al 2003, [Bosch
2000, {Clements et al. 2003, and [Shaw and Garlan 1996]. Bass et al. 2003}
discuss extensively the reciprocal influences hetween architecture and
organizations. Bass et al. [2003] and Bosch [2000] discuss the architectural design
process in detail. Clements et al. [2003] provide 2 much more complete SAD
ternplate appropriate for larger systems.

The best book on architectural design notations and documentation is fClements
et al. 2003}, which goes far beyond our brief survey in this section. Box-and-live
diagrams are discussed in [Shaw and Garlan 1996).

UML extension mechanisms, dependency relations, aad package, component, and

deployment diagrams aze discussed in most UML books, including [Rennett et al.
2001}, [Booch 2005], [OMG 2003), [OMG 2004], and [Rumbaugh 2004].

Exercises

1. Fill in the blanks: Architectural design must take account of both
and requirements. Any namber of
architectural structures may allow a program to satisfy its functional
requirernents, but only of these will allow it to also satisfy its
non-functional requirements. Software architects rust consider

to find those specifying 2 program that can satisfy
both its functional and noa-functonal requirements.

2. Suppose you are writing software for a radio station that manages 1ts

playlists. The program will generate candidate playlists ftom a record
library automatically and station personnel can then check and meodify

“them. Disc jockeys must also be able o change playlists when they ate
used because what is actually played is often different from what is
planned. The playlists are then used to generate reports for paying
royalties. You must decide what sort of data structure to use to store
playlists. Make 2 choice and write a design rationale. Your rationale
should explain the factors that went into your decision, the design
alternatives you considered, your evaluation of design decisions, and
the reasoning for your final choice.

3. Classifythe following specifications by quality attribute. Choose from

the attributes maintainability, reusability, performance, availability,

zelizbility, and security.

(a) The program must never lose data that has been saved to persistent
store.

{b) Developess trust be able to incorporate at least 60% of the
StereoColor product code in the StereoColor Deluxe product.

{c) The program must be able to respond to queries between the hours
of 16 AM. and 7 P.M. Eastern Standard Time.

282

Architectural Dasign

Section 9.2

Section 9.3

4,

10.

11.

{d) The program must be able to execute 9,000 transactions per minute
and two milion transacdons per day.

(&) The progratn must require passwords from all users.

{f) When a transcript is requested, the program must scan the student
record to detect tampeting before producing the wanscript.

Classify the following specifications as syatactic, semantc, or

pragmade: .

(&) A Java interface may contain only static Ainal variable declarations
and public method header declaradons.

{b} A Java synchronized method can execute only when it has 2 lock on
the object in which it resides.

{c} Only one class name can follow the extends keyword,

() In Java, a static method cannot access non-static attributes.

{e) Null values can be added to a Java vector.

(f) The 1ength () method of an array should be used to control loops
that process each element of the array.

(g) Java has no pointers, so linked structures tmust be implemented
using references.

(k) In Java, all RuntimeExceptions are unchecked.

Write an interface for a stack module using the interface specification
template in Figure 9-2-2.

Write zn interface for a hash table module using the interface
specification template in Figure 9-2-2.

Compilers have a standard architecture consisting of a Tokenizer that
convetts incomitig program text to tokens (or meaningful language
units), a Parser that analyzes the syntzx of the program and produces a
syatax tree, a Code Gensrator that examnines the syntax tree and
produces object code, and an Optimizer that processes the object code
to malke it more efficient. Make 2 box-and-line diagram modeling this
architecture.

A common way to design many applications that manipulate a database
Is to have 2 module for the user interface, a module for data processing,
and 2 module to access the database. This is called a shres-sier architecture.

Draw a box-and-line diagram of a three-tier architecture.

Malke a UML package diagram showing a three-tier architecture {see
the last exercise).

Make & UML class diagram with package symbois to model the
java.utiltegex package. You need only show class name compartments.
Draw a2 UML class diagram in which you have an atiribute with a
{constant} property, an operation with a {synchronized} property, and two
associations with an {xer} {exclusive o) constraint.)

Section 9.4

i2.

13.

14.

15.

16.

17,

18,

Chapter 9 Exercises 283

Compare annd contrast module interfaces, UML intecfaces, and Java
interfaces.

A softwate component vendor seils a product that provides text
indexing and searching, The product provides a Beolean search
interface and an SQL interface, and it requires file operations to store
its index, Draw a component diagram showing this product and its
provided and required interfaces.

Find the errors: Find at least four errors in the component diagram in

Figure 9-E-1.
(? CardValidation ?

CreditCardValidator
«delegaten

l Validator BankProxy i

A

intemetPaymentGateway

Figure 9-E-1 An Erroneous Component Diagram for Exercise 14

An egg tirner progratm is implemented in EggTimer. java and
Pulse.java files. These files are compiled into class files. A manifest
file is used by the jar program to create an executable EggTimer. jar
file. Make 2 diagram ro illustrate the artifacts involved in this process.

Make a deployment diagzan showing the computers {as nodes} and
progzams (as artifacts) involved when you use your computer to access
hup://javasun.com. You may assume that an instance of the Apache
program is running on a Sun Web server computer.

Consider two architectures for an instant messaging system. Both
architectures have a messaging server running somewhere on a
TCPYIP nerwork, and both have messaging clients running on
computers somewhere on the network. In one architecture, the clients
obtain connections to other clients through the server and also send all
messages through the server. In the other architecture, the clients
obtainy connections through the server, but all messages are sent
directly between the clients. Draw deployment diagrams depicting
these alternative architectures.

Find the ervors: Find at least four errors in the deployment diagram in
Figure 9-E-2. .

284 Architectural Design

Research
Project

Chapter 9

Review
Quiz 9.1

Review
Quiz 9.2

wdevice»
server :

client

«devicen TCPAP
n:NameServer

«artifacts
customerService.jar

«ariifact»
g:DataServer

Figure 9-E-2 An Erraneous Deployment Diagram for Exercise 18

15. Consult software engineering and software architecture texts to write a

glossazry of quality attributes. Each entry should include a definitdon of
the attribute and an example llustrating it.

Review Quiz Answers

1.

1.

Development organizations influence architectural design in the following
ways: the structure of the organization may be reflected in the structure of the
architecture; strengths and expertise of the organization may be reflecied in the
architecture; the assets, standards, and practices of the organization may
influence the architectuze; and the experence, knowledge, and skills of the
ozganization’s architects influence the architecture.

A program’s architecture may influence 2 development organization because
groups may be formed to implement and support architectaral constituents;
people may be hired or trained o implement and maintain the architecture;
assets may be created, practices altered, and standards created or modified to
accommodate the architecture; and architects learn and change based on their
design expediences.

. A software architectuze document should have {or zefer to) 2 product overview,

present architectural models, provide mappings between the reodels, explain
the design radonale, and include a glossary.

. Development quality attributes are program properties of interest to

development stakeholders (developers and their managers), such as
maintamability and portability. Operational quality attrtbutes are program
properties of interest to non-development stakeholders (clients, purchasers,
users, and so forth), such as performance, reliability, and secusty.

. Availability is the readiness of a program for use. Maintainability is the ease

with which 2 preduct can be changed. Performance is the #bility of 2 program
to do its job within resource limits. Reliability is the ability of 2 program to
function according to its specification when used nommally. Reusability is the
degree to which artifacts created during product development can be used in
developing other products. Security is the ability of a program to resist attack.

Collzborations between program patts can be modeled using UML sequence,
commupication, and activity diagrams; use case models; data flow diagrams;
and box-and-line diagrams.

Review
Quiz 9.3

1543

1.
. Dependency relations that often show up in UML models inciude the ca/

wn

Chapter 9 Review Quiz Answers 285

. English syntax specifies that words must appear in a certain order. For

example, “Snake a Peter is” is not synzactically correct, but “Peter is a snake™ is
correct. Semantics specify the meanings of syntactically correct expressions, so
the sentence “Peter is a snake” means what it does by virtue of the semantics
of English. Pragatics specify how expressions can be used to accomplish
tasks. For example, saying that Peter is 2 snake when discussiog someone’s pet
conveys the species of the pet. Saying that Peter is a snake when discussing
someone’s personality states a metaphor.

. A simple example of 2 protocol is the exchange that occurs at the stast and end

of a phone call. When people answer the phone, they say something to indicate
that they are present, often giving their name or organization as well. The caller
then proceeds with business. At the end of the conversation, one person says
goodbye, the other person acknowledges with another goodbye, and both
patties hang up.

. A precondition is an assertion that must be true before an activity or operation

begins. A postcondition is an assertion that must be tue after an actvity or
operaton finishes.

. Box-and-line diagrams are composed of bozes (icons or symbols) and lines of

various sosts.
In UML, notes can be attached to any model element.

rehation {(when one entity invokes an operation of another), the iestantiale
refation {when an object is an instance of a dlass), the manifss zeladon (when
code realizes a model element), the dgpioy relation (when a file is stored or
executed on a computational resource), and the extend relation (when one entity
augments the behavior of anothex).

. UML package contents are represented in two ways: Either the contents are

placed within the main rectangle of the package symbol, or they aze connected

-by a line to a special symbol (a circled cross) attached to the package symbel.
. UML components can be nested. Component symbols can contain

components, classes, interfaces, and associations between them, as well
assembly connectors.

. Requfred intezfaces aze represented by socket symbols, which are half circles

connected to the requiting coraponent ot dass by a solid line. Provided
interfaces ate represented by ball or lollipop symbols, which are unfilled circles
attached to the providing class or component by a solid line.

. An assernbly connector is formed when an interface ball symbol is fitted into

an interface socket symbol This connector shows how the interface needs of
onié component or class, expressed by 2 required interface, are met by another
component or class that provides the needed interface. A delegation connector
is used inside component symbols to attach an external provided inrecface
symbol to a2 internal entty that supplies 1t foz the component, or to attach dn
internal component or class requiting an interface to an external required
interface symbol. This connectos shows how a component’s provided ot
requited interfaces are related to the components or classes it encapsulates,

286 Architectural Design

/

/
7

10 Architectural Design Resolution

Review 1. An artifact instance is a physical entity with a unique spatioterporal location;

Quiz 9.4 for example, the copy of the Linux operating systen preseatly residing on the
disk drive of my computer. There is anothes copy of this Operating systerm
residing iz the main memory (and the swap space) thatis actually being
executed. These two instances of Lioux are not identical because they are in
different places, but they are the same in some sense because they are both
instances of the same artifact type. An astifact type is thus a kind of physical
entity.

Chapter \This chapter continues our survey of architectural degign, focusing specifically on
Objectives i€ steps in the architecturat design resolution procgks, as illustrated in
Figure 10-O-1.
N,

[

- Axtifact instances and types have the same names, but artifact instance names
are underlined and artifact type names are not. For example, Keyjava is an
artifact type and Key.jaya is an artifact instance (of that type). Node type and
instance names are different Node types are labeled with the type name, with

o undeclining. Node instances are labeled with an identifier of the form A "
nazye,; e, where pape may be omitted (indicating an nnnamed instance of the A Chtton

type) or ; fybe roay be omitted (indicating a named instance of an unspecified
type}. For example, junior ; SparcStation is 2 node called junior that is 2n instance
of 2 SparcStation, magillz is the name of 2 node of enspecified type, and
“InfetPC is an unnamed instance of type IntelPC.

3. The deployment of an artifact on a node can be shown in three ways in a
deployment diagram: the artifact syrbol can be placed within the node symbol,
the artifact symbol can appear outside the node symbol but be artached to it by
a dependency arrow from the artifact to the node stereotyped «deploy», and the
artifact name can be Iisted inside the node symbol,

Gene{zféﬁmprove
Candida} Architectures

5 I
Finalize Archi\tecture 1 SAD |
i..._;_:,..,,..,)

The p:eces/s is tustrated using the Aqualush ar
By tbe;e? of this chapter you will be able 1o

* Lisgahd exphin several techniques for generating and inproving a software
arcl’}ftecture;
. * Geherate architectuzal alternatives by detenmining

ite: ctional components or
determining compogents based on quality attributes;

= Amprove architecrural designs by combining aspects ofidifferent design
/ alternatives;

Evaluate architectural design alternatives using scenaros ‘aié ‘prototypes;

"\ 287

