
CS 4240: Principles of
Software Design

Course Introduction

Tom Horton
horton.uva@gmail.com

Official Course Description:
  This course focuses on techniques for software design in the

development of large and complex software systems.
  Topics will include software architecture, modeling (including

UML), object-oriented design patterns, and processes for
carrying out analysis and design.

  More advanced or recent developments may be included at the
instructor's discretion.

  The course will balance an emphasis on design principles with
an understanding of how to apply techniques and methods to
create successful software systems.

Prerequisite:
  CS 216/2150 with a C- or better. Or:

  at least two semesters experience in OO
programming, in Java,…

  with an understanding of inheritance,
interfaces and polymorphism, plus…

  understanding of basic data structures and
libraries that support them.

Grading: HWs, Project
  Some aspects of this still TBD
  Homeworks (30%): a set of 3 to 6.

  Some possibly done in pairs.
  Project structure may affect number.

  Project (25%): Groups of 3.
  Balance of grade percentage may be

adjusted.

SW Design Portfolio
  HWs and project will require some kind

of report.
  Will be collected together to form a

software design portfolio.
  Might be useful in job interviews.
  The point: I want your class work-

products to be in a form that could
demonstrate you have design skills

Class Participation
  I do expect you to attend class!
  Participation penalty: up to 5%

  Occasional quizzes, exercises, activities
during classes. Record your participation.

  Maybe 10 or so total.
  No penalty for missing a few.
  Email me about reasonable absences.

Grading: Exams
  Exam 1: 20%. Tuesday, Sep 28. (Drop

deadline is Oct. 5.)
  Exam 2: 20%. Tuesday, Nov. 16. (W/D

deadline is Nov. 12.)
  Final Quiz: 5%. Take-home. Issued Tues.,

December 7 (last day of class), due by
Monday, Dec. 13.

  (Possible alternative. 3 exams, the last
during the final exam session, 9am, Dec. 17.)

Readings:
  You don’t have to buy a text book, but…
  Required reading using books and

articles on-line or on-reserve
  Some of these are in Safari on-line library,

accessible with virginia.edu IP address
  VPN or read on grounds

First Reading Assignment
  Chapter 1 of Design Patterns Explained:

A New Perspective on Object-Oriented
Design (2nd edn).

  By Alan Shalloway and James Trott.
  By Tuesday, August 31

Languages, Tools, Etc.
  Documents submitted in PDF
  Mix of Collab and webpages for course-

site
  Collab will be used for submission

  Files bundled with Zip or tar
  Drawing tool or UML tool (more later)
  Programming language(s)….

Java

  We’ll use Java a lot at first. Why?
  We all know it. It’s a solid OO language.
  Rich set of libraries and frameworks.
  A lingua franca in OO writings.
  Widely used (e.g. Android)
  Strong tool support: IDEs, GUI, code generation,

reverse engineering
  Others? C#, C++, Objective C, Python, Ruby

  Project?

Eclipse Etc.
  I’ll encourage you to use Eclipse

  Others possible: Netbeans, IntelliJ

  Explore large applications (hundreds of files, complex
inheritance hierachies)

  Run JUnit tests
  Integrate with version control (svn), build tools (ant)
  Execute refactoring operations
  Debug
  Integrate with servers (e.g. Tomcat)

A Course Emphasis This Term:

  Professional SW Engineering Skills
  SW Construction tools

  Build scripts. Why? ant with Java
  Unit tests. JUnit. Test-first development.
  Use of libraries. E.g. log4j, java.concurrent,

others
  Version control. Subversion, Redmine

Less Emphasis This Term
  Building according to a process

  CS3240 does a lot of that
  We’ll talk about it

  Context for design
  Requirements and design

  But the project will be less about this
than, say, recent offerings of CS3240

  No Unified Process. Maybe a little agile.

Back to the Project
  Will emphasize forming and

documenting a design
  Implementation to demonstrate design’s

success.
  Team-based development
  System as part of larger code-base,

made up of components, etc.
  Not from 100% from scratch

Question:
  What kind of project interests you?

Course Topics (part 1):
  Context for design
  Design principles

  Modularity, etc.
  Functional design
  (Briefly) Non-OO design

  Code Smells, Refactoring
  Object-oriented design

  OO Analysis
  OO modeling: Unified Modeling Language (UML)

Course Topics (part 2):
  Object-oriented Design (cont’d)

  Abstraction, Inheritance, Interfaces
  Packages
  Libraries, Frameworks

  Design Patterns
  Software Architecture

  Higher-level, system level
  Plug-ins (Eclipse, Firefox, etc.)

  Case studies: code examples

Possible Advanced Topics:
  Some flexibility:

  User-interface design?
  Concurrent systems?
  Web-based systems? Ruby on Rails?
  Non-OO design? (C, web languages)

What Is Software Design?
  What would you say?

Class Activity: Groups of 3
  Mod 0 Groups:

  List two things you do when you “do SW design”
  Mod 1 Groups:

  List some things that are part of a SW design

  Mod 2 Groups:
  List who might use design “outputs” and for what

What is Software Design?
  Maybe different ways to think about it?

  Goals
  Activities
  Inputs, Outputs
  Techniques, Skills
  Principles
  Descriptions

Your Answers:

What makes a design “good”?
  Qualities? Principles or rules?

Your Answers:

Someone’s Answers….
  Book: Java Design: Building Better

Apps & Applets (2/e, 1999)
  Peter Coad and Mark Mayfield
  The book proposes that:

Java has features support good OO
design principles

Coad’s book: design activities
  Design activities:

1.  Identify purpose and features
2.  Select classes
3.  Sketch a user-interface (UI)
4.  Work out dynamics with scenarios
5.  Build a class diagram

Coad’s book: design principles
  Design principles

1.  Design with composition rather than
inheritance

2.  Design with interfaces
3.  Design in interfaces
4.  Design with notification

