
CS 4240: Principles of
Software Design

Course Introduction

Tom Horton
horton.uva@gmail.com

Official Course Description:
  This course focuses on techniques for software design in the

development of large and complex software systems.
  Topics will include software architecture, modeling (including

UML), object-oriented design patterns, and processes for
carrying out analysis and design.

  More advanced or recent developments may be included at the
instructor's discretion.

  The course will balance an emphasis on design principles with
an understanding of how to apply techniques and methods to
create successful software systems.

Prerequisite:
  CS 216/2150 with a C- or better. Or:

  at least two semesters experience in OO
programming, in Java,…

  with an understanding of inheritance,
interfaces and polymorphism, plus…

  understanding of basic data structures and
libraries that support them.

Grading: HWs, Project
  Some aspects of this still TBD
  Homeworks (30%): a set of 3 to 6.

  Some possibly done in pairs.
  Project structure may affect number.

  Project (25%): Groups of 3.
  Balance of grade percentage may be

adjusted.

SW Design Portfolio
  HWs and project will require some kind

of report.
  Will be collected together to form a

software design portfolio.
  Might be useful in job interviews.
  The point: I want your class work-

products to be in a form that could
demonstrate you have design skills

Class Participation
  I do expect you to attend class!
  Participation penalty: up to 5%

  Occasional quizzes, exercises, activities
during classes. Record your participation.

  Maybe 10 or so total.
  No penalty for missing a few.
  Email me about reasonable absences.

Grading: Exams
  Exam 1: 20%. Tuesday, Sep 28. (Drop

deadline is Oct. 5.)
  Exam 2: 20%. Tuesday, Nov. 16. (W/D

deadline is Nov. 12.)
  Final Quiz: 5%. Take-home. Issued Tues.,

December 7 (last day of class), due by
Monday, Dec. 13.

  (Possible alternative. 3 exams, the last
during the final exam session, 9am, Dec. 17.)

Readings:
  You don’t have to buy a text book, but…
  Required reading using books and

articles on-line or on-reserve
  Some of these are in Safari on-line library,

accessible with virginia.edu IP address
  VPN or read on grounds

First Reading Assignment
  Chapter 1 of Design Patterns Explained:

A New Perspective on Object-Oriented
Design (2nd edn).

  By Alan Shalloway and James Trott.
  By Tuesday, August 31

Languages, Tools, Etc.
  Documents submitted in PDF
  Mix of Collab and webpages for course-

site
  Collab will be used for submission

  Files bundled with Zip or tar
  Drawing tool or UML tool (more later)
  Programming language(s)….

Java

  We’ll use Java a lot at first. Why?
  We all know it. It’s a solid OO language.
  Rich set of libraries and frameworks.
  A lingua franca in OO writings.
  Widely used (e.g. Android)
  Strong tool support: IDEs, GUI, code generation,

reverse engineering
  Others? C#, C++, Objective C, Python, Ruby

  Project?

Eclipse Etc.
  I’ll encourage you to use Eclipse

  Others possible: Netbeans, IntelliJ

  Explore large applications (hundreds of files, complex
inheritance hierachies)

  Run JUnit tests
  Integrate with version control (svn), build tools (ant)
  Execute refactoring operations
  Debug
  Integrate with servers (e.g. Tomcat)

A Course Emphasis This Term:

  Professional SW Engineering Skills
  SW Construction tools

  Build scripts. Why? ant with Java
  Unit tests. JUnit. Test-first development.
  Use of libraries. E.g. log4j, java.concurrent,

others
  Version control. Subversion, Redmine

Less Emphasis This Term
  Building according to a process

  CS3240 does a lot of that
  We’ll talk about it

  Context for design
  Requirements and design

  But the project will be less about this
than, say, recent offerings of CS3240

  No Unified Process. Maybe a little agile.

Back to the Project
  Will emphasize forming and

documenting a design
  Implementation to demonstrate design’s

success.
  Team-based development
  System as part of larger code-base,

made up of components, etc.
  Not from 100% from scratch

Question:
  What kind of project interests you?

Course Topics (part 1):
  Context for design
  Design principles

  Modularity, etc.
  Functional design
  (Briefly) Non-OO design

  Code Smells, Refactoring
  Object-oriented design

  OO Analysis
  OO modeling: Unified Modeling Language (UML)

Course Topics (part 2):
  Object-oriented Design (cont’d)

  Abstraction, Inheritance, Interfaces
  Packages
  Libraries, Frameworks

  Design Patterns
  Software Architecture

  Higher-level, system level
  Plug-ins (Eclipse, Firefox, etc.)

  Case studies: code examples

Possible Advanced Topics:
  Some flexibility:

  User-interface design?
  Concurrent systems?
  Web-based systems? Ruby on Rails?
  Non-OO design? (C, web languages)

What Is Software Design?
  What would you say?

Class Activity: Groups of 3
  Mod 0 Groups:

  List two things you do when you “do SW design”
  Mod 1 Groups:

  List some things that are part of a SW design

  Mod 2 Groups:
  List who might use design “outputs” and for what

What is Software Design?
  Maybe different ways to think about it?

  Goals
  Activities
  Inputs, Outputs
  Techniques, Skills
  Principles
  Descriptions

Your Answers:

What makes a design “good”?
  Qualities? Principles or rules?

Your Answers:

Someone’s Answers….
  Book: Java Design: Building Better

Apps & Applets (2/e, 1999)
  Peter Coad and Mark Mayfield
  The book proposes that:

Java has features support good OO
design principles

Coad’s book: design activities
  Design activities:

1.  Identify purpose and features
2.  Select classes
3.  Sketch a user-interface (UI)
4.  Work out dynamics with scenarios
5.  Build a class diagram

Coad’s book: design principles
  Design principles

1.  Design with composition rather than
inheritance

2.  Design with interfaces
3.  Design in interfaces
4.  Design with notification

