A4

138 ¥ CrAPTER 5 BEND, OR BREAK

Decoupling and the Law of Demeter

Good fences male good neighbors.
& Robert Frost, “Mending Wall”

In Orthogonality, page 34, and Design by Contract, page 109, we sug-
gested that writing “shy” code is beneficial. But “shy” works two ways:
don't reveal yourself to others, and dor’t interact with toc many people.

Spies, dissidents, revolutionaries, and such are often organized into
small groups of people called cells. Although individuals in each cell
may know each other, they have no knowledge of those in other cells. If
one cell is discovered, no amount of truth serum will reveal the names
of others outside the cell. Eliminating interactions between cells pro-
tects everyone.

We feel that this is a good principle to apply to coding as well. Organize
your code info cells (modudes) and limit the interaction between them.
If one module then gets compromised and has to be replaced, the other
modules should be able to carry on.

Minimize Coupling

What's wrong with having modules that know about each other? Noth-
Ing in principle—we don't need to be as paranoid as spies or dissidents.
However, you do need to be careful about how many other modules you

interact with and, more importantly, how you came to interact with
them.

Suppose you are remodeling your house, or building a house from
scratch. Atypical arrangement involves a “general contractor,” You hire
the contractor to get the work done, but the contractor may or may

T v

The Yo PR iy ?nj o T

by Asdemw Flwdt b Doudd Thowm-s

2000

DECOUPLING AND THE LAw OF DEMETER - 139

not do the construction personally; the work may be offered to various
subconiractors. But as the client, you are not involved in dealing with
the subcontractors directly—the general confractor assumes that set of
headaches on your behalf.

We'd like to follow this same model in software. When we ask an obiject
for a particular service, we'd lke the service to be performed on owr
behalf. We do riot want the object to give us a third-party object that we
have to deal with to get the required service.

For example, suppose you are writing a class that generates a graph
of scientific recorder data. You have data recorders spread around the
world; each recorder object contains a location object giving its position
and time zone. You want to let vour users select a recorder and plot its
data, labeled with the correct time zone. You might write

public void plotDate(Date abate, Selection aSelection) {
TimeZone tz =
aSelection. getRecorder().getlocation{) . .getTineZone();

}

But now the plotting routine is unnecessarily coupled to three classes—
Selection, Recorder, and Location. This style of coding dramat-
ically increases the number of classes on which our class depends.
Why i$ this a bad thing? I increases the risk that an unrelated change
somewhere else in the system. will affect your code. For instance, if Fred
makes a change to Location such that if no longer directly contains a
TimeZone, you have to change your code as well.

Rather than digging though a hierarchy yourself, just ask for what you
need directly:

public void plotDate{Date aDate, Timelone a¥z) {
o

pletbDate(someDate, someSelection.getiimeZone());

We added a method to Selection to get the time zone on our behalf:
the plotting routine doesn’t care whether the time zone comes from
the Recorder directly, from some contained object within Recorder,
or whether Selection makes up a different time zone entirvely. The
selection routine, in turn, should probably just ask the recorder for
its time zone, leaving it up to the recorder to get it from its contained
Location object.

140 ™ CHAPTER 5 BEND, OR BREAK

Traversing relationships between objects directly can quickly lead to
a combinatorial explosion?! of dependency relationships. You can see
symptoms of this phenomenon in a number of ways:

1. Large C or C++ projects where the command to link a unit test is
longer than the test program itself

2. “Simple” changes to one module that propagate through unrelated
meodules in the system i

3. Developers who are afraid to change code because they aren't sure
what might be affected

Systems with many unnecessary dependencies are very hard {and ex-
pensive} to maintain, and tend to be highly unstable. In order to keep
the dependencies to a minimum, we'll use the Law of Demeter to design
our methods and functions.

The Law of Demeter for Functions

The Law of Demeter for functions [LH89] attempts to minimize coupling
between modules in any given program. It tries to prevent you from
reaching into an object to gain access to a third object’s methods. The
law is swmmarized in Figure 5.1 on the next page.

By writing “shy” code that honors the Law of Demeter as much as pos-
sible, we can achieve our objective:

[Minimize Coupling Between Modules :j

Does If Really Make a Difference?

While it sounds goeod in theory, does following the Law of Demeter really
help to create more maintainable code?

Studies have shown [BBMS6] that classes in C++ with larger response
sets are more prone to error than classes with smaller response sets (a

1. If » objects all know about each othey, then a change to just one object can result
in the other » — 1 objects needing changes.

DECOUPLING AND THE LaW OF DEMETER - 141

class Demeter {
private: :
A *a; The Law of Demeter for functions
int func(; states that any method of art
P“b}ic : object should call only methods
void example(B& b); belongingto:
T
void Demeter::example(B& b) {
cy .
int £ - aself
- any paramneters that were
passed in o the method
a = new A{);
fa~>setAc:tive() ; !-<—-- any objects it created
" any directly held componernt
A
.. vy

response set is defined to be the number of functions directly invoked
by methods of the class).

Because following the Law of Demeter reduces the size of the response
set in the calling class, it follows that classes designed in this way
will also tend to have fewer errors (see [URL 56] for more papers and
information on the Demeter project).

Using The Law of Demeter will make your code more adaptable and
robust, but at a cost: as a “general contractor,” your module must dele-
gate and manage any and all subcontractors directly, without involving
clients of your module. In practice, this means that you will be writing
a large number of wrapper methods that simply forward the request on
to a delegate. These wrapper methods will imapose both a runtime cost
and a space overhead, which may be significant—even prohibitive—in
some applcations.

As with any technigue, you must balance the pros and cons for your
particular application. In database schema design it is COTINON Prac-
tice to "denormalize” the schema for a performance immprovement: to

142 B CHAPTER S BEND, OR BREAK

violate the rules of normalization in exchange for speed. A similar trade-
off can be made here as well. In fact, by reversing the Law of Demeter
and tightly coupling several modules, you may realize an important
performance gain, As Jong as it is well known and acceptable for those
madules to be coupled, your design is fine.

Otherwise, you may find yourself on the road to a brittle, inflexible
future. Or no future at all.

Related séctions include:
s Orthogonality, page 34
e Reversibility, page 44
Design by Contract, page 109
How to Balance Resources, page 129
It's Just a View, page 157
Pragmatic Teams, page 224
o Ruthless Testing, page 237

L3

o

& B

Chailenges
« Weve discussed how using delegation malkes it easier to abey the Law of
Demeter and hence reduce coupling. However, writing all of the methods

DECOUPLING AND THE LAW OF DEMETER -4 143

needed to forward calis to delegated classes is boring and error prone.
‘What are the advantages and disadvantages of writing a preprocessor that
generates these calls automatically? Should this preprocessor be run only
oznce, or should it be used as part of the build?

Exercises
24. We discussed the concept of physical decoupling in the box on on the facing
page. Which of the following C++ header files is more tightly coupled to the

rest of the system?
personl.h: person2. b

#include "date.h” class Date;

.class FPersonl { clags Person2 {

private: private:
Date myBirthdate; Date *myBirthdate;

public: public:
Personi{Date &birthDate); Person2(Date &birthDate);
VA Y/

25. For the example below and for those in Exercises 26 and 27, determine if

the method calls shown are allowed according to the Law of Demeter. This
first one is in Java.

public void showBalance(Bankaccount acct) {
Money amt = acct.getBalance();

printToScreen(amt . printformat(});
¥

26. This example is also in Java,

public class Colada {
private Blender myRBlender;
private Vector myStuff;
public Colada{) {
myBlender = new Blender{);
myStuff = new Vector{);
¥
private void doSomething(d {

myBlender.addingredients(nyStuff.elements ()}
¥
¥

27. This exarnpie is in Ce+.

void preocessTransaction(BankAccount acct, int} {
Person *who;
Money amt;
amt.setValue{128.45);
zect.setBalance{amt);
who = acct.getOwner();
markWorkflow(who->name{), SET_BALANCE};

Answer
on p. 283

Answer
on p. 293

Answer
onp. 294

Answer
on p. 294

