I~ o

T e Essence @

', b \e_c,'?'e- Oy et

o~d

1

U

[T rr_r..‘r-\, ?

oM

x-..._‘éj(" !\:___~ \/‘U"‘""}“"""

e Lk

-
7

/ﬁg‘a{ci;‘;a’n -\t h'f

\ CHAPTER 8
Refactoring

Up to this point, we’ve focused on using object orientation to'design aad develop
new programs. Understanding objects and using object-oriented techniques is
one of the best ways to develop programs that age easy to understand, easy to
write, and perhaps most imporrant, easy to modify and maintain. .
The fact is, most programming involves maintaining and modifying existing
code. If the existing code is not written in an 0O language, then using object ori-
entation probably won't help much with changing it. If the existing code is writ-
ten in an OO language, there is hope. Unfortunately, as we've noted before, just
because a program uses Java or G+ doesn’t mean it uses QO technigues. And
even if the program started out with 2 decent OO design, if it has been main-
tained and modified over time, it is likely to have lost some of its jnitial elegance.
So what are you going to do? One of the most recent object-oriented tech-
niques to be formalized and developed into an essential programming tool is
called refactoring. While programmers have always spent some time cleaning up
their code, refactoring takes this a bit further Refactoring is 2 disciplined
approach 1o improving the design of existing code. With it, the overall design ard
structure of an existing program is improved while its observable functionality
remains unchanged. Once its design has been improved, it is easier to maintain.
Software maintenance usually has one of two goals. The first js to fix bugs;
the second is to add features, While the goal of refactoring is neither of these, it
can greatly improve how easy it is to do either. At first, it may seem a waste
to refactor code without adding new functionality. Howeves, trying to modify
a poorly comstructed program can take far more time and effort than first

' 203

CHAPTER 8 Refactoring

sefactoring and then modifying. Refactoring can reveal flaws in the structure of
the existing code that are the underlying causes of bugs or incorrect behavior,

Ward Cunningham and Kent Beck were two of the first software experts to
recognize the importance of refactoring and to help develop it into a formal tech-
nique. The principal refactoring resource is Refactoring: Improving the Design of
Existing Code, by Martin Fowler. Although refactoring can be useful for almost
any kind of object-oriented programming, it is an essential part of the Extreme
Programming (XP) methodology {see Chapter 9).

What Is Refactoring?

Refactoring should be considered a basic principle of programming and does not
require any special methodology. Over time, as code is changed, it tends to dete-
riorate. Changes are often made on the fly, under time pressure, without regard

for the overall structure of the code. This can lead 10 code entropy. Refactoring

helps to undo code entropy.

The Basic Refactoring Process

While the basic refactoring process is not that complicated, experience with
programming helps {especially object-oriented programming). The main goal of

refactoring is to improve the overall design and structure of an existing program,
without changing its observable behavicr. This means that you don’t refactor and
add fanctionality at the same time. Once the refactoring has been done, it is then
easter to add functionality.

The first step in refactoring is to undezstand the existing code. As part of th

process of reading the code, you will almost certainly find problems with it ;

Refactoring isn’t just about finding problems and mzking small improvemenss. It
is'a well-defined and structured technique for improving the code. Each individ

ual refactoring may make only a small difference, bur the cumulative effect of
applying many refactorings can result in greatly improved overall quality, read

ability, and design of the code.

Refactorings o
The developers of refactoring have identified = list and descriptions of know

refactorings that can help improve code. Many of these refactorings are liste

and described in Fowler’s book, and more can be found on the refactoring We

site, waw. refactoring.com. As you become more experienced, many specifi

refactorings will become familiar, and you will start 1o recognize cases in code.
that can benefit from the technigue.

Wit s Refactaring? ' 205

Reduce Risk of Change

Any time you change code, it is risky. You can introduce new bugs. You can
change the behavior of the program. You can break things. By using disciplined
refactoring, you can reduce the risks involved in making changes. This is 2 major
difference between a simple code cleanup and the formal refactoting process. By
carefully following the refacroring process, you reduce the risk of making
changes and, at the same time, improve its design and make it easier to change in
the future.

Don’t Change Functionality

One of the first rules of refactoring is: Yo not change the functionality of the
existing code. By functionality, in this context, we mean the outside observed
behavior of the code. The program should behave exactly the same before and
after the refactoring. If the behavior changes, it will be impossible to know for
sure that the refactoring hasn’t broken other things as well. If you need to change
the behavior, do that as a separate step. Improve the code with refactoring, then
make the change.

One Thing at a Time .

To be sure you don’t change behavior, it is imporrant to apply only one refactor-
ing at a time. While going over the code, you may often: find several things that
¢an benefit from refactoring. But to reduce the risk of making changes, refactor-
ing requires that you make only one change at a time.

Test Each Seep

Perhaps the most important principle of refacroring is o thoroughly test the
program sfter each refacroring. This is how you reduce the risk of change—by
ensuring that you haver’t changed functiona%ity or broken other parts of the pro-
gram. Besides the idendification of a large set of known refactorings, the combi-
nation of preserving functionality, of making only one change at a time, and of
testing after each step is one of the most imporeans dontributions of refactoring.

Summary

The following list summarizes the refactoring process.
1. Review code to identify refactorings.
2. Apply only one refactoring at a time, withour changing functionality,
3. Test the refactoring.

4, Repeat to find more refactorings.

o CHAPTER 8 Refoctoring

When Do You Refactor?

To use refactoring effectively,
don’t always need to refactor working code.

ing when to refactor,
First, when you plan to add some functionality to a program, be prepared to

refactor. As we've noted before, one important benefit of object-oriented pro-
gram design is that the code is easier to maintain and modify. So when it comes
time to add new functionality to a program, it is important that code be as well-
designed as possible. This is precisely the goal of refactoring. Refacroring should
-be applied to the code antil its design has improved enough @ make it easy to-
modify. Then, after the refactoring, new functionality should be much easier 10

add.
Refactoring is also useful when you need to find bugs. Part of finding bug is

understanding a program. The fact that a program has bugs often means that the
code isn’t clear enough to spot thern in the first place. Refactoring while you are
going over code t© hunt for bugs improves the quality of the code and even
reduces the number of bugs. '
One impertant parz of almost every project is the code review. For code
reviews with just two or three programmers {probably the most productive
kind}, refactorings can be suggesfed and applied as the group goes over the code:’
and gets better at understarding its design. In fact, the pair programming of
Extreme Programming can be considered pait code reviews, and refactoring is an..

important part of XP.

it is important to know just when to refactos. You
There are some guidelines for decid-

Code Smelis

Kent Beck and Martin Fowler have also developed a list of what they call “code
smells” to help determine when to refactos, If you sniff these out in existing code,:
cefactoring is in order, Here’s a brief list of some of the smells they've identified

» Duplicate code Duplicate code means you need o extract serﬁ.e methods.
* Long method Too long is hard to understand. Exeract methods.

+ Large class A class that does too much needs to be split. 7

. -Long parameter list A long fist makes it hard to read. Consider passing
objects.

» Divergent change This is code degradation as a result of to many chaotics

changes to a class.

When Do You Refacter?
207

* Shotgun surgery Shotgun sur; isci
gery means too many undiscipli
classes and attributes. y undiscplined chages to

. . .
Feature enmnvy One class is interested in too many details of another class.

* Data clumps Data that is used together everywhere should be in a class of its
owil,

* Primitive obsession A program can use t imiti
_ 0C many primitive data
should really be part of a class. F Frees that

* Switch statements Switch -
statements can mean you are not usin
: . ob -
phism effectively. : B poymer

« Parallel inheri
. allel mhefzza:.zce hierarchies Repeating class definitions in parallel classes
is more duplication to eliminare. '

* Lazy class A class should do enough to pay its own way or be eliminated.

» Speculative generality Designi ibili it i
. gring for future flexibility before it
in¢crease complexity unnecessarily. 7 reft s needed

¢ Message chain Too masy messages in a chain are hard to follow.
+ Middleman Sometimes, it is better to work with an object directly.

PPTOP Cy C]. 5351
* Inappro rate IRema Asses Shoﬂid]lt i}ﬁed 0 know 00 muC%} about

+ Incomplete library aass Sometimes ’ o
you can’t get it al
yourself, : ? get it ali and need to do some

® Data class Classes need something to do.
* Refused bequest Subclasses should use most of what their parents give them.

* Comments Could a comment be eliminal idi
ted by providing a bett
method or variable? - ’ F B & berer name for

.When Not to Refactor

K:;owmg when not to refactor is also important. One of the main reasons not to
g actor is when the code is so bad that it needs to be rewritten from scratch
d:fcn@a%iy,}:{oﬁe can become so outdated, so difficult to understand, or so buggy
at it would be more cost-effective to start ow it
er than to try to fix
fhat it v Y it or add new
| This decision can also apply to code that is written in a non-object-oriented
a?guzgf: Most ref‘actormgs apply to object-oriented languages. Obviously, these
refactorings ha.ve limited use for non-O0 languages. It may be time to rewrite
the program using an OO language.

oy b

208

CHAPTER 8 Refuctoring

Some Refactorings

The identification of refactorings gives you a catalog of things to look .for in exist-
ing code. Each refactoring has been given a name, much i:i{e'the design patterns
we discussed in Chapter 7. There are many more refactorings than there are
design patterns, and most refactorings ace much simpler and easier to understand.

In this section, we will go over a few refacrorings. It is not the goal here to -
_make you into a mmaster of refactoring, but to give you an idea of some of the spe-

cifics. Just as design patterns befong in every good programmer’s tootbox, refac
toring has its place there as wefl.

Refactoring Categories.

More than 70 specific refactorings have been identified in Fowler's book, and
many more aze identified on the refactoring Web site, with more aé_ded all Fhe
time. The refactorings have been organized into the following categories. Specific
individual refactorings are shown in italics. This summary mentions only a frac-

tien of the total number,

Composing Methods :
One common problem comes fromi code that has methods that are too long. The

Composing Methods group of refactorings is intended to help reduce the size of

methods and to help improve the readability of the code by replacing sequences .
of code with calls ro methods that are built from the original code. Refacto:m.gs .
in this category include Extract Method, Inline Metbod, and Replace Temp with -

Query.

Moving Features Between Objects : _ -
During object design, it is important to decide where to place various responsibil

ities. Sometimes, responsibility can be placed in the wrong class. Some classes

end up with too many responsibilities, Such refactorings as Mowve Method, Move

Field, and Extract Class can be used to help put responsibilities where t?zey_:

belong.

Organizing-Data

Sometimes objects can be used instead of simple data items. Refactorings stch as |

Replace Data Value with Qbject ot Replace Array with Object can :.aake work:
ing with a class easier. They can also clarify what the data item is being used fo
and make it easier 1o work with.

Some Refactorings

209

Simplifying Conditional Expressions

Conditional expressions can be some of the most complicated and confusing
parts of any program to understand. Such refactorings as Decompose Condi-
tional or Consolidate Duplicate Conditional Fragments can be used to simplify
code.

Making Method Calls Simpler
Defining the interface to a class can be difficult. Just what the methods are named
and how they are called can lead wo confusion or simplicity. Refactorings such.
as Rename Method, Add Parameter, and others from this category can help
improve the interface to a class.

Dealing with Geperalization

One guideline we discussed for good object design was moving methods as high
up thé inheritance hierarchy 2s possible. Getting methods and subclasses in just
the right place is the goal of this category of refactorings. Some of them include
Puli Up Method, Push Down Method, Extract Subclass, and Extract Superclass.,

. All are meant w help refine the inheritance hierarchy.

Some Specific Refactorings

In Fowler’s book, each individual refactoring description includes the rame of
the refactoring, a short description of the problem, a short description of the
solution, a more desailed discussion of the motivation for using the refactoring,
and a discussion of the mechanics for carrying out the refactoring.

Currently, refactoring is mostly a manual operation. It is up to the program-
mer to identify specific refactorings and then actually rewrite the code. As this
book is written, a few refactoring software tools that can help with some of the
mechanical aspects of the different refactorings are emerging. The refactoring
Web site, www. refactoring. com, keeps information about the latest refactoring
to0ls. ;

- The following descriptions of some refactorings are neither complete nor
intended to imply that they are the most important refactorings. They were cho-
sen simply to illustrate some typical refactorings from each category.

Extract Method

Extract Method is used when you have a code fragment that has meaning when
taken by itself. That code is extracted and turned into a method whose name
clearly explains the purpose of the method. Short, well-named methods can make
code clearer. A well-named method can eliminate the need for a comment. Some-
times, you can even find duplicated code that belongs i a method.

CHAPTER & Refoctoring

‘Repiace Temp with Query

Replace Temp with Query is used ‘when you find a temporary. variable used to
hold the resulss of 2n expression, By extracting the expression into a method and
then replacing all references to the temp with the method call, the meaning can
be clearer, and you can reuse the method in other places.)

Move Method
If you find a method is being used more often by another class than the one
where it is defined, you can use Move Method to move the method to the other

class: You remove the original definition, and invoke the new methed from the

original class.

Extract Class

If you find you have one class doing work that should really be done by two, use
Extract Class. You can create a new class and move the relevant metizods and
attributes from the old class into the new one.

Decompose Conditional

One way to improve complicated condxtzoz}al statements is to extract the code
that makes up the then and else parts into methods with meaningful names. This
reduces the complexity, makes the statements more meaningful to read and
often results in methods that can be reused

Rename Method

Rename Method is one of the simplest refactorings, yet it can lead to code that is
much easier to understand. If the name of a method (or even 2 variable) does not
indicate its purpose, then it should be renamed so that it is meaningful.

Pull Up Method

If you find methods in different subclasses that have identical resalss, you can use
Pull Up Method 1o move them to the superclass. Eliminating this duplicate
behavior makes the code easier to maintain and understand,

Extract Subclass

If a class has methods that are used by only some of the instances of that class,
those instances should have their own subclass. Extract Subclass is used to
extract those features into a new subclass,

Resources 211

- Chapter Summary e

* Refactoring is a programming tool that can 1mprove the design of existing
code.

* A major goal of refactoring is to reduce the risk of change by oroviding a
wel-defined approach to improving code.

* Several things indicate you need to refactor, including “code smells.”

* There are many refactorings in several categories..

Resources

Refactoring: Improving the Design of ﬂisting Code, Martin Fowler, Addison-
Wesley, 1999, ISBN 0-201-48567-2.

Refactoring Web site: waw. refactoring. com.

