
A - 1

2/6/03 C-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Requirements and Use Cases

2/6/03 C-2

Requirements

• Defining what the system should do
– What the clients needs (as opposed to wants)
– Not how the solution should be designed or

implemented
• We recognize three iterative activities :

– Elicitation: capturing information from sources
– Documentation: “putting it on paper”
– Validation: confirming it meets users’ needs

• Analysis (or definition) versus Specification
– Customer-oriented requirements
– Developer-oriented requirements

2/6/03 C-3

Gathering Requirements

• Many sources of requirements
– Interviews (structured vs. non-structured)
– Stakeholder documents
– Questionnaires
– Existing or similar systems
– Standards in that domain
– Rapid prototypes

• Often information is documented in text
• From these build OO requirements models

2/6/03 C-4

BTW… Specification Documents

• Steven McConnell (IEEE Software, Oct. 2000) says any
of the following are called “requirements document”:
– Half-page summary of software product vision
– Two-page key features list
– 50-page list of details about end-user requirements (he

calls this a function-requirements document)
– 250-page exhaustive list of details about screens and

GUI, input and input conditions, all system states and
state changes, all persistent data, etc.

• This 4th item is what we usually mean by a Software
Requirements Specification (SRS) document

2/6/03 C-5

Example: Automated Library System

• “Vision” Statement
– You have been contracted to develop a

computer system for a university library. The
library currently uses a 1960s program, written
in an obsolete language, for some simple
bookkeeping tasks, and a card index, for user
browsing. You are asked to build an interactive
system which handles both of these aspects
online.

2/6/03 C-6

Example: More Details on Needs

• Books and Journals
– Library contains books and journals
– Books may have several copies
– Some books are short-term loans, all others 3

weeks
– Only staff can borrow journals
– Members can borrow up to 6 items at a time
– Staff can borrow up to 12 items
– New items arrive, old items are disposed of
– Current year’s journals are bound at year-end

A - 2

2/6/03 C-7

Example: More Details… (cont’d)

• Borrowing
– System keeps track of when items are borrowed and

returned
– Produce reminders when an item is over-due
– (Future) Extend the loan of an item (if not reserved)

• Browsing
– Users can search for a book by topic, by author, etc.
– Users can check if item is available
– Can reserve a book
– Anyone can browse the library

2/6/03 C-8

User-centered Requirements

• From such textual descriptions, could we build a
system? How likely would it be to meet users’ needs?

• Goal: Center system definition and development on
user needs.
– Identify various users of the system
– Define what tasks they undertake with the system, and

task outcomes
– Document this in a way that can be used for

requirements specification and later in the lifecycle

2/6/03 C-9

Use Case Modeling

• Use Case:
– “A sequence of actions a system performs to yield an

observable result of value to a particular actor.”
– Stevens/Pooley: A task which an actor needs to perform

with the help of the system

• Actor:
– Someone or something outside the system that interacts

with the system
– A user of the system in a particular role

• Important: We want an “external view” of the system

2/6/03 C-10

Use Cases
• Each use case has a name

– e.g. Borrrow Copy of Book

• A family (or set, or class) of scenarios
– A sequence of interactions
– A set of different but related scenarios

• Documenting Use Cases
– A UML Diagram showing all of them

• Actors are stick-figures; use cases are ovals
– For each use case define using English

• A clear textual description
• A set of scenarios in outline form

2/6/03 C-11

Example: Actors and Use Cases

• Actors
– BookBorrower
– JournalBorrower
– Browser (person who browses, not SW)
– Librarian

• Use Cases
– Borrow copy of a book
– Reserve a book
– Return copy of book
– Borrow journal
– Browse
– Update Catalog

2/6/03 C-12

What Form Does a Use Case Take?

• We can describe Use Cases in a variety of
ways

• First, text paragraphs
• Describes the Actors who participate with the

system
• Describes the sequence of events

A - 3

2/6/03 C-13

Forms of Such Descriptions

•Informal “Scenarios”
an informal narrative story, simple, ‘natural’,
personal, not generalisable

•Use cases
—assume interaction with a system
—assume detailed understanding of the
interaction

•Essential use cases
—abstract away from the details
—does not have the same assumptions as use
cases

2/6/03 C-14

Example Text Description

• Borrow copy of a book:

A Bookborrower presents a copy of a book.
The system checks that the s/he is a library
member, and that s/he has not checked out
too many books. If both checks succeed, then
the system records that the member now as
this copy of the book. Otherwise it refuses the
loan.

2/6/03 C-15

What Else Is In a Use Case
Description?

• Pre- and Post-conditions
– Values of variables, system conditions, other

use cases etc.

• Normal vs. alternative behavior
– Can be shown in the text description

(somehow)
– Exceptions vs. acceptable alternatives

2/6/03 C-16

Example Template for Use Cases
• Use case number or id:
• Use case title:
• Actors:
• Text description (a few sentences)
• Preconditions (if applicable):
• Flow of Events:
• Basic path:

1.First step
2.Second step
3.etc

• Alternative Paths:
– Name and short description (in words) of first alternative

path/scenario.
– Name and short description (in words) of 2nd alternative

path/scenario.
– etc.

• Postconditions (if applicable)
• Special conditions (if applicable).

2/6/03 C-17

Scenario for shared calendar
“The user types in all the names of the meeting participants
together with some constraints such as the length of the
meeting, roughly when the meeting needs to take place, and
possibly where it needs to take place. The system then checks
against the individuals’ calendars and the central departmental
calendar and presents the user with a series of dates on which
everyone is free all at the same time. Then the meeting could be
confirmed and written into people’s calendars. Some people,
though, will want to be asked before the calendar entry is made.
Perhaps the system could email them automatically and ask that
it be confirmed before it is written in.”

2/6/03 C-18

Use case for shared calendar
1. The user chooses the option to arrange a meeting.
2. The system prompts user for the names of attendees.
3. The user types in a list of names.
4. The system checks that the list is valid.
5. The system prompts the user for meeting constraints.
6. The user types in meeting constraints.
7. The system searches the calendars for a date that satisfies
the constraints.
8. The system displays a list of potential dates.
9. The user chooses one of the dates.
10. The system writes the meeting into the calendar.
11. The system emails all the meeting participants informing
them of them appointment

A - 4

2/6/03 C-19

Alternative paths for shared calendar

Step 5. If the list of people is invalid, then:
5.1 The system displays an error
message.
5.2 The system returns to step 2.

Step 8. If no potential dates are found, then
8.1 The system displays a suitable
message.
8.2 The system returns to step 5.

2/6/03 C-20

Example use case diagram for shared
calendar

Administrator Departmental
member

Arrange a
meeting

Update calendar
entry

Retrieve
contact details

2/6/03 C-21

Essential use-case for arrangeMeeting

Use-case Name: arrangeMeeting

USER INTENTION SYSTEM RESPONSIBILITY
1. arrange a meeting

2. request meeting
attendees & constraints

3. identify meeting attendees
& constraints

4. search calendars for
suitable dates

5. suggest potential dates
6. choose preferred date

7. book meeting

2/6/03 C-22

The following slides not covered in
class (yet)

2/6/03 C-23

Relationships between Use Cases

• UML supports two relationships between two
use cases
– <<includes>> and <<extends>>
– Note: before UML 1.3 <<includes>> was

<<uses>>

2/6/03 C-24

<<includes>> in Use Cases

• Meaning:
– The source use case always includes the

actions specified in the target use case

A - 5

2/6/03 C-25

<<extends>> in Use Cases

• Meaning:
– The target use case my include the behavior of

the source use case

2/6/03 C-26

FYI… Extending UML

• Possible to extend the “vocabulary” of UML
• Creates a new kind of building block

– Derived from existing UML feature
– But specific for current problem

• Pre-defined and user-defined stereotypes
• UML even allows you to provide a new icon!
• Syntax: Above name add <<stereotype>> inside

guillemets (French quotes)
• Again, used to provide extra info about some UML

modeling construct

