CS 494
Object-Oriented Analysis & Design

Using PARTS to lllustrate
Requirements Concepts

©2001 T. Horton 2/6/01 D-1

Examples based on PARTS

* Proposed software system:
Project Artifact Report Tracking System (PARTS)

* PARTS' concept is very similar to commercial defect-
tracking tools

* See “Vision Statement” for product concept

+ Briefly, PARTS...
— Helps a development team collect info on work-products

(e.g. requirements document, design diagrams, code
files, etc.)

— Includes status and problem reports for an artifact
— Knows about projects, team-members

2/6/01 D-4

Reminder: Requirements

Defining what the system should do
— What the clients needs (as opposed to wants)

— Not how the solution should be designed or
implemented

* We recognize three iterative activities :
— Elicitation: capturing information from sources
— Documentation: “putting it on paper”
— Validation: confirming it meets users’ needs
« Analysis (or definition) versus Specification
— Customer-oriented requirements
— Develop-oriented requirements

2/6/01 D-2

PARTS is:

« A CASE tool for storing and tracking problem
reports

— Each report contains a problem description
and a status

— Each problem can be assigned to someone

— Problem reports are made on one of the
“artifacts” of a project

— Employees are assigned to a project

— A manager may add new artifacts and assign
problem reports to team members

2/6/01 D-5

BTW... Specification Documents

Steven McConnell (IEEE Software, Oct. 2000) says any

of the following are called “requirements document”:

— Half-page summary of software product vision

— Two-page key features list

— 50-page list of details about end-user requirements (he
calls this a function-requirements document)

— 250-page exhaustive list of details about screens and
GUI, input and input conditions, all system states and
state changes, all persistent data, etc.

This 4th item is what we usually mean by a Software
Requirements Specification (SRS) document

2/6/01 D-3

PARTS Example: Needs vs. Wants

Customer says: “l want a client and a server
developed in Java.”

Real need:
— Centralized data store
— Remote access by team members

« Other possible solutions:

— Web pages and cgi-bin scripts

— Commercial database products that support
client access

— Buy a commercial product!

2/6/01 D-6

A-1




PARTS Example: Domain, Constraints

What's the domain for PARTS?
Team-based Software Development
Domain vocabulary:
— Work-product, artifact (what's the difference?)
— Problem reports, project, team members
Domain dictionary or Glossary: Frequently an output of
the requirements activity

Possible examples of Constraints:

— System must use Oracle DBMS.

— System must create MS Word reports.
— System must be written in Java.

2/6/01 D-7

Objects

* Note: Davis’ discussion attempts to include
both OO and non-OO0 views of requirements

* What's an Object?

— A real-world entity

— Important to the discussion of requirements

— Has a crisply-defined boundary

Object’s have attributes, functions, states,

and relationships

(Sometimes) Objects are groups into classes

2/6/01 D-10

PARTS Example: System Boundary

Different types of Users of the system?

— Manager: Can create projects, assign a
problem to a team-member

— “Ordinary” team-member: Can access info, but
not create projects, assign problems, etc.

Hardware components?

— Interaction with printer subsystem of the OS
Other system entities:

— Oracle DBMS, MS Word

— Client-server communications using sockets

2/6/01 D-8

Functions

« Atask, service, process, activity, mathematical
function, etc. that...
— Is performed in the real world

— Is to be performed by the system to solve the real-world
problem

* Requirements about functions may
— define, limit, specify relationships, etc.
« Functions may be group hierarchically
— Abstract to specific (detailed)
— Important: This is not design!

« Organizing functions only for understanding
requirements.

Objects, Functions and States

Before continuing, consider another way of thinking
about requirements...

Alan Davis says: All requirements

— Define an object, function or state;

— Limit or control actions associated with an object,
function or state;

— Define relationships between objects, functions and
states.

The challenges:

— Identifying these.

— Representing and documenting them effectively.

— Making use of this information later in development.

2/6/01 D-9

2/6/01 D-11
States
« A condition of some thing...
that captures some history of that thing...
and is used by the thing to determine
behavior.
¢ What'’s a “thing”?
— The system
— An object
— A function
2/6/01 D-12

A-2



PARTS Example: Objects

¢ Objects the system must “understand”
— Project, Artifacts

— Team-member (with user-id and password?)
— Problem report

2/6/01 D-13

PARTS Example: States

« System-level states:

— Operations or interface available if a manager logs into
PARTS

« Object states:

— A problem-report can be unassigned, open or closed
(i.e. resolved)

* Function states:
— Possibly an command-history list for Undo and Redo
« Perhaps some actions cannot be undone?
— Non-PARTS example:

a database transaction may be complete, in progress,
aborted, etc.

2/6/01 D-16

Class Diagram for Prob. Rep. Tool

or

Employee 1. AssgnedTo Project Atifact

[#name : string
[Fame : string

[+status : enum

1
1
Responfible For

Manager Developer

+name : string 0+

Problem Report | o

1 o
Vanaged By Histofy Log
0.0

History Entry

Code Bug Report

“when: Date
-whatDone : string

2/6/01 D-14

PARTS Use Case Model: Actors

* Manager
— A person assigned to a project with permission to do
more things than an ordinary team-member
* Super User
— Has the ability to create projects and users
*« Member
— An “ordinary” member of a development team
* Non-member

— A user not assigned to a team who has been given read-
access to a project by its manager

2/6/01 D-17

PARTS Example: Functions

At what level?

— (High-level) Enter a report for a given artifact.

— (Lower-level) Prompt user to confirm request to
delete a problem request

(Note: use cases focus at high levels)
Function classification and/or hierarchy:

— Manager operations vs. ordinary operations
— Operations related to queries and reports

2/6/01 D-15

PARTS Use Case Model: Use Cases

Let’'s organize these by categories:

— Project management related use cases

— Problem Report related use cases

— “Support” use cases

In the next slides, we'll list use case titles and
the actors who participate in them

— Even just doing this raises some good
questions about imprecise requirements!

2/6/01 D-18




PARTS Use Cases: Management

Create User (Actors: SU, Mgr)

Update User Info (SU, Mgr, Member)

— Let's say “update” includes “delete”

— Members can only update certain info about themselves
Create Project (SU)

Update Project (SU, Mgr)

Add Member to Project (Mgr, SU??)

— Hmm, do the requirements say the SU can do this?
Create Project Artifact (Mgr, SU?7?)

Update Project Artifact (Mgr, SU??)

2/6/01 D-19

PARTS Use Case Details

¢ On the Web site:

— More detailed examples of use cases based
on use case templates showing scenarios,
etc.

2/6/01 D-22

PARTS Use Cases: PR-related

Create PR for Artifact (Member, SU?)
View PR (Member, Non-Member)
Change PR Status (Member, Mgr, SU?)
Update PR History (Member)

— System does this too! Do we model this as part of
the use case? Not obvious how!

Assign PR to Member (Mgr)
Delete PR (Mgr)
Search for PRs (Member, Non-member)

2/6/01 D-20

PARTS UML Use Case Diagram

COO——%

% Create Project SuperUser
Manager Q
Create User %
O Member

Update User Info

2/6/01 D-23

PARTS Use Cases: “Support”

Display Projects
Display Project Artifacts
Display Artifact PRs
Log Into PARTS

Comments:

— All of these are “used” by other use-cases (perhaps)
— Or, are these just parts of the user-interface

— Need mechanism to look at and select a “thing”

2/6/01 D-21

A-4



