
A - 1

9/28/01 F-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Design Patterns

9/28/01 F-2

Readings

• Chapter 1 of GoF book
– Especially pp. 1-10, 24-26
– I’ll get this to you (toolkit, reserve, Web?)

• Eckel’s Thinking in Patterns, on Web
– Chap. 1, “The pattern concept”
– Chap. 5, “Factories”

• Handouts on various patterns

9/28/01 F-3

Idioms, Patterns, Frameworks

• Idiom: a small language-specific pattern or technique
– A more primitive building block

• Design pattern: a description of a problem that
reoccurs and an outline of an approach to solving that
problem
– Generally domain, language independent
– Also, analysis patterns

• Framework:
– A partially completed design that can be extended to

solve a problem in a domain
• Horizontal vs. vertical

9/28/01 F-4

Examples of C++ Idioms
• Use of an Init() function in constructors

– If there are many constructors, make each one call a
private function Init()

• Init() guarantees all possible attributes are initialized
• Initialization code in one place despite multiple

constructors

• Don’t do real work in a constructor
– Define an Open() member function

• Constructors just do initialization
• Open() called immediately after construction

– Constructors can’t return errors
• They can throw exceptions

9/28/01 F-5

Design Patterns: Essential Elements

• Pattern name
– A vocabulary of patterns is beneficial

• Problem
– When to apply the pattern, what context.
– How to represent, organize components
– Conditions to be met before using

• Solution
– Design elements: relationships, responsibilities,

collaborations
– A template for a solution that you implement

• Consequences
– Results and trade-offs that result from using the pattern
– Needed to evaluate design alternatives

9/28/01 F-6

Patterns Are (and Aren’t)

• Name and description of a proven solution to
a problem

• Documentation of a design decision
• They’re not:

– Reusable code, class libraries, etc. (At a higher
level)

– Do not require complex implementations
– Always the best solution to a given situation
– Simply “a good thing to do”

A - 2

9/28/01 F-7

Describing Design Patterns

• The GoF defined a standard format
– Generally followed
– Not just a UML diagram!

• Pattern Format (13 sections):
– Pattern name and classification
– Intent: what’s it do? Rationale?
– Also known as
– Motivation

• A scenario that illustrates a sample problem and how
this patterns helps solve it.

– Applicability
• For which situations can this be applied?

– Structure
• Graphical representation (e.g. UML)

9/28/01 F-8

Pattern Format (cont’d)

– Participants
• Classes and objects, their responsibilities

– Collaborations
• How participants interact

– Consequences
– Implementation

• Pitfalls, hints, techniques, language issues
– Sample code

• Code fragments that illustrate the pattern
– Known uses

• From real systems
– Related patterns

• Similar patterns, collaborating patterns

9/28/01 F-9

Example 1: Singleton Pattern

• Context: Only one instance of a class is created.
Everything in the system that needs this class
interacts with that one object.

• Controlling access: Make this instance accessible to
all clients

• Solution:
– The class has a static variable called theInstance (etc)
– The constructor is made private (or protected)
– Clients call a public operation getInstance() that returns

the one instance
• This may construct the instance the very first time or

be given an initializer

9/28/01 F-10

Singleton: Java implementation

public class MySingleton {
private static MySingleton theInstance =

new MySingleton();
private MySingleton() { // constructor

…
}

public static MySingleton getInstance() {
return theInstance;

}
}

9/28/01 F-11

Static Factory Methods

• Singleton patterns uses a static factory method
– Factory: something that creates an instance

• Advantages over a public constructor
– They have names. Example:

BigInteger(int, int, random) vs.
BigInteger.probablePrime()

– Might need more than one constructor with same/similar
signatures

– Can return objects of a subtype (if needed)
• Wrapper class example:

Double d1 = Double .valueOf(“3.14”);
Double d2 = new Double (“3.14”);

• More info: Bloch’s Effective Java

9/28/01 F-12

The State Design Pattern

• A connection can be in various states
– Handles requests differently depending on state

• Connection delegates requests to its state object
– Which changes dynamically

