CS 494 o =N
Object-Oriented Analysis & Design

On to Design

©2001 T. Horton 4/8/03 G-1

Reminder: Analysis models

« Earlier we modeled requirements using...
¢ Class Diagrams: Known as the Conceptual Model
— Sometimes known as the logical model.

— Classes represent domain-level entities. (E.g.
things in the user’s world.)

« Thus no classes for implementation-level things.

— Associations model domain-level relationships.
(E.g. user-understood relationships between things
in the user’s world.)

« Usually don’t show navigation on associations

4/8/03 G-2

Reminder: Analysis models (2)

* Use Cases and Sequence Diagrams

— Scenarios in a Use Case can be represented by
UML sequence diagrams

— Objects in the sequence diagram could be either:
« The system and the actors, or...

« Domain-level entities modeled in the conceptual
model (a class diagram)

— Messages between objects are:
« Again, at a high-level of abstraction
« Scenario descriptions become messages

4/8/03 G-3

Reminder: Goals for design

¢ Create detailed “plans” (like blueprints) for
implementation

¢ Build these from requirements models so we are
confident that all user needs will be met

« Create design models before coding so that we
can:

— Compare different possible design solutions

— Evaluate efficiency, ease of modification,
maintainability, etc

4/8/03 G-4

UML Notations for Design

Several UML notations provide various views of
a design

Class diagrams: Possibly created at two
different levels of abstraction for design:

— Specification level: Classes model types, and we

focus solely on interfaces between software
modules

— Implementation level: Think of this as a true
“software blueprint”. We can go directly to code
from this model.

« Two types of Interaction Diagrams:

— Sequence diagrams and Collaboration diagrams
4/8/03 G5

UML Notations for Design (2)

* Sequence diagrams

— Objects will be variables implemented in code

— Messages are operations (e.g. C++ member
functions) applied to objects

— Sequence diagrams thus show how a sequence of
operations called between a set of objects
accomplishes a larger task

— Sequence diagrams for a particular scenario help
identify operations needed in classes

— They also allow us to verify that a design can
support requirements (e.g. a use-case scenario)

4/8/03 G-6

A-1

UML Notations for Design (3)

« State diagrams

— Models how a particular object responds to
messages according to its state

— For a single object, show states and transitions
between states

— Transitions may be conditional based on a guard
condition

— May show an action an object takes on transition,
or also activity carried out within a state

— Occasionally used to model a system’s or
subsystem’s behavior (not just one object’s)

4/8/03 G-7

UML Notations for Design (4)

« Packages
— A simple notation that groups classes together

— Possible to use this to show contents of a
subsystem

« Show dependencies between packages
« Show visibility of classes between packages
— Not really a rich enough notation for diagramming
software architectures
« Component Diagrams

— Models physical modules of code (e.g. files, DLLs,

physical databases) s s

Design Process

There are many different approaches to design,

but here is something typical.

First, create a model of the high-level system

architecture

— UML does not really provide a notation this

Next, use the conceptual class model to build a

design-level class model or models

— Here we’ll assume we're just building an
implementation-level class model

Also, model dynamic behavior using interaction

diagrams.

4/8/03 G-9

Design Process (cont’'d)

« We'll use sequence diagrams with objects from

the implementation-level class model

— Sequence diagrams show how design-level
objects will carry out actions to implement
scenarios defined as part of use-case analysis

— Messages between objects are member-function
calls between objects

— Important: Only member-function calls are shown,
but other language statements (e.g. assignments)
are executed between calls (of course).

4/8/03 G-10

Design Process (cont’'d)

« Important: Development of class and sequence
diagrams is iterative and concurrent

* When we create sequence diagrams for a new
scenarios, we discover classes and operations
that need to be added to the class model

« The two models grow together. Neither is a
complete view of the system.

« Other documentation in text form is often used to
provide details about class diagrams and
sequence diagrams

4/8/03 G-11

Specification-Level Class Diagrams

* How does a design-level class diagram differ
from a conceptual-level diagram?

— No longer just an external view!
— We are now modeling “how” not just “what”.
¢ This class diagram must document:
— Additional classes
— How you will implement associations
« Multiplicity, Navigability or Direction;
Association classes

4/8/03 G-12

A-2

Additional Classes in a Design

« Are additional classes needed? Of course!
In general...
« Design-level “internal” classes

— Data manager classes. E.g. collection objects that
were simply associations before

— Facilitator or helper classes that assist with
complex tasks (e.g. ObservableComponent)

— Factory classes that assist in creating new objects
— Classes to implement other design patterns

« Is there any guidance or strategy for determining
these?

4/8/03 G-13

Class Types n User Interface
a Layered Classes
Architecture

Controller/
Process
* From Ambler, Classes

Sect. 7.1 {}
: 5_|ayer model Business/Domain
+ Classes only Classes

interact within {}

layers, or as

shown by

arrows

— Direction

matters!

« Next slide Persistent Store(s)

describes these w03 G4

System
Classes

Persistence Classes

L1 01

Possible Design Class Types

Ul classes

Business/Domain classes

— Implement domain-objects from Analysis
— Data objects plus their behaviors
Controller/Process classes

— implement business logic, collaborations between
business objects and/or other controller

Persistence classes

— How to store, retrieve, delete objects

— Hides underlying data stores from rest of system
System classes

— Wrap OS-specific functionality in case that changes

4/8/03 G-15

Controller/Process Layer

« Implements business logic
— Encapsulate a business rule (Ambler, Sect. 3.6)

— These often require interactions etc. between
objects of different classes

« Example from a student course enrollment
system:

When can a Student enroll in a Seminar?

— Depends on schedule, pre-requisites, other
constraints

4/8/03 G-16

More on Controllers

* Why not just put business logic into the
Domain class?

— Business rules change. We want domain
classes to be reusable.

— In Ul class? Then must use that Ul to carry out
this process. (Too tightly coupled.)

* How to find Controller classes?
— To start: consider one for each use-case
— If trivial or belongs in domain class, don’t.

4/8/03 G-17

Ambler’s Controller Class Example

« Example in Ambler, page 259

— Class: EnrollinSeminar (what's interesting about that
name?)

« Has link to a Student object

« An instance given to SeminarSelector object (Ul),
which calls seminarSelected(seminar) on it

« It tests if Student/Seminar combination is OK

« An instance given to FeeDisplay object (Ul), which
makes sure user willing to pay

« If so, it's verifyEnrollment() is called to finalize
enrollment

4/8/03 G-18

A-3

Controller Classes: Good O0O?

Violates a principle of the OO approach!

— Data and behavior kept together!

* Yes, but is this always the best solution?
— DVDs and DVD players -- why not one unit?
— Cameras and film vs. disposable cameras

« Consider coupling, change, flexibility...

« Controller classes are an example of the
Mediator design pattern

* Mediator or control classes might grow to

become god classes

— too much control, or too centralized

4/8/03 G-19

Implementing Associations

* How associations are implemented is affected by
multiplicity.

* Where they are implemented depends on
navigability.
— In one class or in both?

— Until now we may not have worried about direction
of associations. That's fine!

— Often navigability cannot be determined until
design phase.

— Often it changes as we do more design.

— In prototypes we often keep links bidirectional for
flexibility. 4803 G20

Implementing Associations (2)

« Often we use class operations to hide
implementation details of associations

— getters, setters, traversal functions, update
functions, etc.

— Don't forget: in C++, in-line functions are efficient

— Also, derived associations (or attributes) are
implemented as member functions that calculate
something that is not stored directly in the class.

4/8/03 G-21

One-Way Associations

« If an association should just be navigable in just

one direction, use the “arrow form” of the UML

association in your class diagram.

— In UML no arrows means two-way or bi-directional.

For implementation, the “target” object becomes

an attribute in the class

— In C++, it could be stored as an embedded object
or as a pointer

— In Java, objects are always references variables
(so embedded objects really are pointers)

Consider using association name or role name

from the class diagram to name this attribute
4/8/03 G-22

Multiplicity and One-Way Associations

« If the multiplicity is “1” or “0..1” then the attribute
would be a pointer to an object of the target class
— E.g. attribute in class Phone: selectedLine: Line*
If the multiplicity is “many” but has a fixed
maximum, then use array of pointers (or objects)
- E.g. “3","0..3", "2..4"

« If no fixed maximum, e.g. “1..*" or “0..*", then use
a collection object as an attribute that stores an
arbitrarily large number of pointers or objects

« For qualified associations use a hash-table or

map object to associate key with target object
4/8/03 G-23

Multiplicity and One-Way Assoc. (2)

« Examples using the C++ standard library...
« A vector class is like an array with no maximum
capacity
— Example attribute in class Phone:
linkedLines: vector<Line*>
« Other C++ classes might be appropriate too: set,
list
— Arrays should only be used if you know the
maximum
« Note: Your team might agree not to show the “*”

to indicate pointers. Conventions vary. waos oo

A-4

Implementing Two-Way Associations

« Three options, depending on your needs
— Note: Sometimes it's OK if traversal in one
direction is slower than the other
« Option One: Just like one-way but in both
classes
— Advantages: Equally efficient in both directions
— But, requires more space

— Also, updating links between objects is more
complex

« Often a good idea to use member functions to

handle updates to links.
4/8/03 G-25

Implementing Two-Way Assoc. (2)

« Option Two:

— In one class, Class A, implement just like one-way
(see above) to access Class B objects.

— In second class, Class B, write an operation that
uses some kind of search of all objects of Class A
to find the one that points back to the current B
object.

« Why? Saves space if access from B to A is
very rare

« But, requires there to be some place where all
objects of Class A are stored

4/8/03 G-26

Implementing Two-Way Assoc. (3)

« Option Three: Implement an Association Class
— This class will have only one instance, which
stores all the links between objects of the two
classes
— Implemented as two dictionary or map objects

« One points to Class A objects, the other to
Class B objects

— Search of this object is used to find links for one
object

4/8/03 G-27

Example of Assoc. Object
« A person works for one company. A company has
many employees.

« If pointers are not “bi-directional”, then Works-For
object must support efficient look-up of a Person
object in order to find that object’'s company.

« Note: This is not a UML diagram!
Works-For

‘ Person2 }/

—— Company2
Person3 pany: o8

Flashback to previous slides...

« Slides on class diagrams had “unused slides”
at the end.

¢ Let’s look at some of those now.

4/8/03 G-29

Association Classes

« Recall that qualified associations really mean
that the link between two objects has an
attribute

« Often associations are “first-class” things

— They have alife-time, state, and maybe
operations

— Just like objects!

* Association classes
— Same name as the association because...
— They represent the same thing!

4/8/03 G-30

A-5

Association Class Example

Company

0..* | employer
Job

description : string
dateHired : Date

employee | 1.*
Py’ salary : Money

Person

4/8/03 G-31

World Cup Example

¢ We need a system to handle the World Cup.
Teams represent countries and are made up
of 22 players.

« Countries qualify from zones, where each
zone is either a country or a group of
countries.

« Each team plays a given number of games in
a specific city. Referees are assigned to
games. Hotel reservations are made in the city
where the teams play.

4/8/03

World Cup Problem: Class Model

Q
City i
<
®
Represents
[raiwes]
L 1 ;
4/8/03 G-33

Return from flashback...

4/8/03

G-34

Implementing Association Classes

Implementation depends on multiplicity

If one-to-one, then it would be possible to...

— Put attributes and operations inside either object

— Or, put them in a separate class that's linked to
either object

If one-to-many, then same choices as one-to-one,

but do this for the object on the “many” end

— Again, could be a separate object (see next case)

If many-to-many, you need a separate class with

an object instantiated for each link

4/8/03 G-35

Example of Association Class
Implementation

« Conceptual-Level Class Diagram

0.1 1.*

I
AssocClass

« Corresponding Design-Level Class Diagram

[classa] [AssocClass | [classe |
1 1. 0.1 1

4/8/03

A-6

Notes on Example Implementation

« No direct link (pointer) in design or
implementation between ClassA and ClassB
instances! But...

Each instance of an AssocClass object is linked
to exactly one ClassA object and also to one
ClassB object

— This forms a 3-tuple for each conceptual-level link
between a pair of ClassA and ClassB objects
« Note multiplicities reflect concept level:

— One ClassA object is linked to 1-to-many AssocClass/ClassB
pairs. Great!

— One ClassB object links to 0-or-one AssocClass/ClassA

pairs. Yes! 4/8/03 G-37

A-7

