
A - 1

10/17/01 H-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Interaction Diagrams

• Examples of Collaboration and Sequence
Diagrams

10/17/01 H-2

Dynamic Views in UML

• Class diagrams are models of data types
– What non-fundamental types are you using? How are

they related?
– Sometimes referred to as the static model

• Running programs define objects of various types that
interact
– Control is passed between objects’ methods
– Information is passed and returned

• UML has two almost identical diagrams for this:
– Collaboration diagram: object-centered
– Sequence diagram: time-oriented

• Important: Each diagram models a particular scenario
– Often we just model important or interesting scenarios

A - 2

10/17/01 H-3

Class Diagram with a Related Collaboration

10/17/01 H-4

Sequence Diagram: Ex. 1

A - 3

10/17/01 H-5

Relationship Between Both Notations

10/17/01 H-6

Collaboration Diagram: Ex. 2

A - 4

10/17/01 H-7

Sequence Diagram: Ex. 2

10/17/01 H-8

Use Cases and Sequence Diagrams

• So far sequence diagrams model interactions
between implementation-level objects

• Also, can be used to model use cases
– Actor(s) interacting with the System

• Most useful if more than one Actor
• Messages are used informally here

– Example: ATM customer tries to overdraw

• Also, sequence diagrams sometimes used in
high-level design
– model interactions between major subsystems

A - 5

10/17/01 H-9

Iteration, Control, Return Values

• Messages can be labeled with a condition:
[hasStock] sellWidget()

• Messages can be repeated:
* msg() or *[k=1..2] msg()

• Return values:
– Maybe on dashed “return” arrow, or
– On message call: n = getName()
– Again, note returns not always explicitly drawn

10/17/01 H-10

Notes on Messages

• Various types of messages supported
– Filled solid arrow head:

• like procedure calls, nested flow of control.
Caller waits for action to complete.

– “Half” arrow head:
• Asynchronous flow of control. Caller is not

blocked, continues to do something.
– Dashed arrow:

• Return from procedure call. May be omitted
if it’s implicit at end of an activation box

– Use stereotypes to define anything else.

A - 6

10/17/01 H-11

Iterations, Constraints, Asynch. Messages

10/17/01 H-12

Phone Switch Example

• Optional for class lecture…

A - 7

10/17/01 H-13

Phone Switch Example

• Classes
– Phone: a person’s telephone
– Line: a “number” associated with a phone

• Lines are busy, calls are made on lines, etc.
– Connection: dynamically created, represents an active

call between lines
– Switch: a phone switch is a computer system that

manages phones, lines and connections
– Console: a terminal attached to the switch
– Simulator: we’re writing a simulation!

10/17/01 H-14

Associations in Our Model
• Switch manages other objects
• More than one Phone may be “linked” to one line

– Like for office secretary, boss
• A Phone may have more than one Line

– But, a Phone has only one Line “selected” at one
time

• Must choose a Line to call or answer
– Also, when a Line is connected, not all Phones that

can possibly use that Line may be participating in
the call.

• A Connection requires at least two Lines to exist

A - 8

10/17/01 H-15

Conceptual Class Diagram

Connection

id : int
state : ConnState
duration : int

Line

number : string
state : LineState

2..*
0..1

2..*
0..1

Phone

state : PhoneState
name : string

1
1..*

1
onConnection

1..*

1

0..* selected

1

0..*

1..*
0..*

1..*
0..*

linkedLines

Switch

name : string

0..*

1

0..*

1

manages

0..*

1

0..*

1

manages

0..*

1

0..*

1

manages

Simulator

0..*

1

0..*

1

controls

1

1

1

1

controls

10/17/01 H-16

Scenario

• A normal call
– Phone1 chooses Line 1 and picks up
– Phone 1 dials number for Phone2
– Phone 2 rings
– Phone 2 picks up
– Call completed and the two people talk
– Phone 2 hangs up
– Phone 1 is disconnected
– Phone 1 hangs up

A - 9

10/17/01 H-17

Class Diagram with Operations

Connection

id : int
state : ConnState
duration : int

disconnect(l : Line) : void
addLine(l : Line) : void

Line

number : int
state : LineState

incomingCall(c : Connection) : void
hungUp(p : Phone) : void
pickedUp(p : Phone) : void
addPhone(p : Phone) : void

2..* 0..12..* 0..1

Phone

state : PhoneState
name : string

selectLine(num : int) : void
pickup() : void
hangup() : void
ring() : void
dial(num : int) : void
addLine(l : Line) : void

1
1..*

1
onConnection

1..*

1

0..*
selected

1

0..*

1..*
0..*

1..*
0..*

l inkedLines

Switch

name : string

getPhone(name : string) : Phone
getLine(number : string) : Line
addLine(num : String) : void
addPhone(p : Phone) : void
linkLinePhone(name : string, num : int) : void
newCall(l1 : Line, l2 : Line) : void
completeConn(l : Line, c : Connection) : void
destroyConn(c : Connection) : void

0..*

1

0..*

1

manages

0..*

1

0..*

1

manages

0..*

1

0..*

1

manages

Simulator

processCmds(in : istream)

0..*

1

0..*

1

controls

1
1

1
1

controls

10/17/01 H-18

Sequence Diagram for a Normal Phone Call
s: Simulator p1: Phone s:Switch l1:

Line
l2:

Line
p2:

Phone
c1:

Connection

selectLine(n)

pickup()

d ia l (num)
l2 := getLine(num)

newCal l (l1 , l2)

pickedUp(p1)

incomingCal l (c1)

hangup()
hungup(p1)

<<create>> (l1)

ring()

pickup()

pickedUp(p2)completeConn(l2,c1)

addLine(l2)

hangup()

hungUp(p2)d i sconnect(l2)destroyConn(c1)

/* change state */

<<destroy>>

