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Abstract

There are many structured P2P systems that use DHT
technologies to map data items onto the nodes in various
ways for scalable routing and location. Most of the systems
require O(log n) hops per lookup request with O(log n)
neighbors per node, where n is the network size. In this pa-
per, we present a constant-degree P2P architecture, namely
Cycloid, which emulates a Cube-Connected-Cycles (CCC)
graph in the routing of lookup requests. It achieves a time
complexity of O(d) per lookup request by using O(1) neigh-
bors per node, where n = d · 2d. We compare Cycloid with
other two constant-degree systems, Viceroy and Koorde in
various architectural aspects via simulation. Simulation re-
sults show that Cycloid has more advantages for large scale
and dynamic systems that have frequent node arrivals and
departures. In particular, Cycloid delivers a higher location
efficiency in the average case and exhibits a more balanced
distribution of keys and query loads between the nodes.

1. Introduction

Over the past years, the immerse popularity of P2P re-
source sharing services has produced a significant stimu-
lus to content-delivery overlay network research. An impor-
tant class of the overlay networks is distributed hash tables
(DHTs) that map keys to the nodes of a network based on
a consistent hashing function. Representatives of the DHTs
include CAN [13], Chord [15], Pastry [14], Tapestry [16],
Kademlia [10]. They organize the nodes in various ways for
efficient location of data items. Most of the DHTs require
O(log n) hops per lookup request with O(log n) neighbors
per node, where n is the network size.

The network degree determines the number of neigh-
bors with which a node must maintain continuous contact.
In order to reduce the cost for maintenance, in this paper
we present a new constant-degree DHT, namely Cycloid.
It achieves a lookup path length of O(d) with O(1) neigh-
bors, where d is the network dimension and n = d · 2d. It
combines Chord and Pastry and emulates a cube-connected-
cycles (CCC) graph in the routing of lookup requests be-
tween the nodes.

There exist other two constant-degree DHTs: Viceroy [9]
and Koorde [6]. Both of them feature a time complexity of
O(log n) hops per lookup request with O(1) neighbors per
node. But they are different in maintenance of the connec-
tivity between a changing set of nodes and in routing for
efficient key location. Koorde embeds a de Bruijn graph
on the identifier circle for forwarding lookup requests. It
bears much resemblance to Chord in routing and connec-
tivity maintenance. Viceroy emulates a butterfly network by
assuming a real number id space in [0, 1). It requires to se-
lect a butterfly level parameter of each node according to an
estimate of the network size. Due to the dynamic nature of
peer-to-peer systems, the level of a node may change with
time. By contrast, Cycloid specifies each node by a pair of
cyclic and cubic indices. It emulates a CCC graph by using a
routing algorithm similar to the one in Pastry. Although the
lookup complexity of all the three constant-degree DHTs are
of the same order O(log n), our simulation results show that
Cycloid has a much shorter path length per lookup request
in the average case than Viceroy and Koorde. Cycloid dis-
tributes keys and lookup load more evenly between the par-
ticipating nodes than Viceroy. Also, Cycloid is more robust
as it continues to function correctly and efficiently with fre-
quent node joins and leaves.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative DHTs. In partic-
ular, Viceroy and Koorde are discussed in detail. Section 3
details the architecture of Cycloid, with an emphasis on its
nodal routing table, routing algorithm, and self-organization
considerations. Section 4 shows the performance of Cycloid,
in comparison with Viceroy and Koorde. Finally, Section 5
concludes this paper with remarks on possible future work.

2. Related Work

There are two classes of peer-to-peer content-delivery
overlay networks: unstructured and structured. Unstructured
networks such as Gnutella [1] and Freenet [4] do not as-
sign responsibility for data to specific nodes. Nodes join and
leave the network according to some loose rules. Currently,
the query method is either flooding [1] where the query is
propagated to all neighbors, or random-walkers [7] where
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Table 1: A Comparison of representative DHTs; d=log n in
CAN and n=d · 2d in Cycloid.

Systems Base Network Lookup Cost Routing Table Size
Chord cycle O(log n) O(log n)

CAN mesh O(dn1/d) O(d)

eCAN mesh O(dn1/d) O(d)
Pastry hypercube O(log n) O(|L|)+ O(|M |)+

Tapestry O(log n)
Viceroy butterfly O(log n) 7
Koorde de Bruijn O(log n) ≥2
Cycloid CCC O(d) 7

the query is forwarded to randomly chosen neighbors un-
til the object is found.

Flooding-based search mechanism brings about heavy
traffic in a large-scale system because of exponential in-
crease in messages generated per query. Though random-
walkers reduce flooding by some extent, they still create
heavy overhead to the network due to the many request-
ing peers involved. Furthermore, flooding and random walk-
ers cannot guarantee data location. They do not ensure that
querying terminates once the data is located, and they can-
not prevent one node from receiving the same query multi-
ple times, thus wasting bandwidth.

Structured networks have strictly controlled topologies.
The data placement and lookup algorithms are precisely de-
fined based on a distributed hash table (DHT) data structure.
The node responsible for a key can always be found even
if the system is in a continuous state of change. Because of
their potential efficiency, robustness, scalability and deter-
ministic data location, structured networks have been stud-
ied intensively in recent years. Representative DHTs include
CAN [13], Chord [15], Pastry [14], Tapestry [16], Kadem-
lia [10].

In the following, we review and compare some of the
structured DHTs by focusing on their topological aspects.
Space limitation prevents us from a detailed discussion of
each system. Instead, we give more detailed descriptions of
constant-degree Viceroy and Koorde DHTs for comparison.
Hypercube-based Pastry is discussed in detail, as well be-
cause it serves as a base of our Cycloid DHT. We summarize
their architectural characteristics in Table 1. In [3], we pre-
sented an abstract and generic topological model that cap-
tured the essence of the structural P2P architectures.

Hypercube-Based. Plaxton et al. [11] developed perhaps the
first routing algorithm that could be scalably used for P2P
systems. Tapestry and Pastry use a variant of the algorithm.
The approach of routing based on address prefixes, which
can be viewed as a generalization of hypercube routing, is
common to all theses schemes. The routing algorithm works
by correcting a single digit at a time in the left-to-right or-
der: If node number 12345 received a lookup query with
key 12456, which matches the first two digits, then the rout-
ing algorithm forwards the query to a node which matches
the first three digits (e.g., node 12467). To do this, a node
needs to have, as neighbors, nodes that match each prefix

of its own identifier but differ in the next digit. For each pre-
fix (or dimension), there are many such neighbors (e.g., node
12467 and node 12478 in the above case) since there is no
restriction on the suffix, i.e., the rest bits right to the cur-
rent bit. This is the crucial difference from the traditional
hypercube connection pattern and provides the abundance in
choosing cubical neighbors and thus a high fault resilience
to node absence or node failure. Besides such cubical neigh-
bors spreading out in the key space, each node in Pastry also
contains a leaf set L of neighbors which are the set of |L|
numerically closest nodes (half smaller, half larger) to the
present node ID and a neighborhood set M which are the set
of |M | geographically closest nodes to the present node.

Ring-based. Chord uses a one-dimensional circular key
space. The node responsible for the key is the node
whose identifier most closely follows the key numer-
ically; that node is called the key’s successor. Chord
maintains two sets of neighbors. Each node has a succes-
sor list of k nodes that immediately follow it in the key
space and a finger list of O(log n) nodes spaced exponen-
tially around the key space. The ith entry of the finger list
points to the node that is 2i away from the present node
in the key space, or to that node’s successor if that node is
not alive. So the finger list is always fully maintained with-
out any null pointer. Routing correctness is achieved with
such 2 lists. A lookup(key) is, except at the last step, for-
warded to the node closest to, but not past, the key. The path
length is O(log n) since every lookup halves the remain-
ing distance to the home.

Constant-degree DHTs. Viceroy [9] maintains a connection
graph with a constant-degree logarithmic diameter, approx-
imating a butterfly network. Each Viceroy node in butterfly
level l has 7 links to its neighbors, including pointers to its
predecessor and successor pointers in a general ring, point-
ers to the next and previous nodes in the same level ring,
and butterfly pointers to its left, right nodes of level l + 1,
and up node of level l − 1, depending on the node location.
In Viceroy, every participating node has two associated val-
ues: its identity ∈ [0, 1) and a butterfly level index l. The
node id is independently and uniformly generated from a
range [0, 1) and the level is randomly selected from a range
of [1, log n0], where n0 is an estimate of the network size.
The node id of a node is fixed, but its level may need to be
adjusted during its life time in the system.

Viceroy routing involves three steps: ascending to a level
1 node via up links, descending along the down link until
a node is reached with no down links, and traversing to the
destination via the level ring or ring pointers. Viceroy takes
O(log n) hops per lookup request.

Koorde [6] combines Chord with de Bruijn graphs. Like
Viceroy, it looks up a key by contacting O(log n) nodes with
O(1) neighbors per node. As in Chord, a Koorde node and
a key have identifiers that are uniformly distributed in a 2d

identifier space. A key k is stored at its successor, the first
node whose id is equal to or follows k in the identifier space.
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Figure 1: A 3-dimensional Cube-Connected-Cycles.

Node 2d − 1 is followed by node 0.
Due to the dynamic nature of the P2P systems, they of-

ten contain only a few of the possible 2d nodes. To embed
a de Bruijn graph on a sparsely populated identifier ring,
each participating node maintains knowledge about its suc-
cessor on the ring and its first de Bruijn node. To look up a
key k, the Koorde routing algorithm must find the succes-
sor of k by walking down the de Bruijn graph. Since the
de Bruijn graph is usually incomplete, Koorde simulates the
path taken through the complete de Bruijn graph, passing
through the immediate real predecessor of each imaginary
node on the de Bruijn path.

3. Cycloid: A Constant-Degree DHT

Cycloid combines Pastry with CCC graphs. In a Cycloid
system with n = d · 2d nodes, each lookup takes O(d) hops
with O(1) neighbors per node. Like Pastry, it employs con-
sistent hashing to map keys to nodes. A node and a key have
identifiers that are uniformly distributed in a d · 2d identi-
fier space.

3.1. CCC and Key Assignment

A d-dimensional CCC graph is a d-dimensional cube
with replacement of each vertex by a cycle of d nodes. It
contains d · 2d nodes of degree 3 each. Each node is rep-
resented by a pair of indices (k, ad−1ad−2 . . . a0), where k
is a cyclic index and ad−1ad−2......a0 is a cubical index. The
cyclic index is an integer, ranging from 0 to d−1 and the cu-
bical index is a binary number between 0 and 2d−1. Figure 1
shows the 3-dimensional CCC. A P2P system often contains
a changing set of nodes. This dynamic nature poses a chal-
lenge for DHTs to manage a balanced distribution of keys
among the participating nodes and to connect the nodes in
an easy-to-maintain network so that a lookup request can be
routed toward its target quickly. In a Cycloid system, each
node keeps a routing table and two leaf sets with a total of 7
entries to maintain its connectivity to the rest of the system.
Table 2 shows a routing state table for node (4,10111010) in
an 8-dimensional Cycloid, where x indicates an arbitrary bi-
nary value, inside leaf set maintains the node’s predecessor
and successor in the local cycle, and outside leaf set main-
tains the links to the preceding and the succeeding remote
cycles. Its corresponding links in both cubical and cyclic as-
pects are shown Figure 2.

(7, 101-1-1001)

(5, 101-1-1001)
(6, 101-1-1010)(3, 101-1-1010)

(7, 101-1-1010) (0, 101-1-1011)

(6, 101-1-1011)

(2, 101-1-1001)

(3,101-1-1100) (3,101-1-0011)(3,101-0-xxxx)

(5,101-1-1100)

(6,101-1-xxxx)
(7,101-1-0011)

(0,101-1-0011)

Preceding Remote Cycle Local Cycle

Remote Cycle Remote CycleRemote Cycle

Succeeding Remote Cycle

(4, 101-1-1010)

Figure 2: Cycloid node routing links state.

Table 2: Routing table of a Cycloid node (4,101-1-1010).

NodeID(4,101-1-1010)
Routing table

cubical neighbor: (3,101-0-xxxx)
cyclic neighbor: (3,101-1-1100)
cyclic neighbor: (3,101-1-0011)

Leaf Sets (half smaller, half larger)
Inside Leaf Set

(3,101-1-1010) (6,101-1-1010)
Outside Leaf Set

(7,101-1-1001) (6,101-1-1011)

In general, a node (k, ad−1ad−2 . . . ak . . . a0) (k �= 0)
has one cubical neighbor (k − 1, ad−1ad−2 . . . akxx...x)
where x denotes an arbitrary bit value, and two cyclic neigh-
bors (k − 1, bd−1bd−2 . . . b0) and (k − 1, cd−1cd−2 . . . c0).
The cyclic neighbors are the first larger and smaller nodes
with cyclic index k− 1 mod d and their most significant dif-
ferent bit with the current node is no larger than k − 1. That
is,
(k-1, bd−1 . . . b1b0)
= min{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≥ad−1 . . . a1a0}
(k-1, cd−1 . . . c1c0)
= max{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≤ad−1 . . . a1a0}
The node with a cyclic index k = 0 has no cubical neigh-
bor and cyclic neighbors. The node with cubical index 0 has
no small cyclic neighbor, and the node with cubical index
2d − 1 has no large cyclic neighbor.

The nodes with the same cubical index are ordered by
their cyclic index mod d on a local cycle. The left inside leaf
set node points to the node’s predecessor and the right inside
leaf set node points to the node’s successor in the local cy-
cle. The largest cyclic index node in a local cycle is called
the primary node of the local cycle. All local cycles are or-
dered by their cubical index mod 2d on a large cycle. The
left outside leaf set node points to the primary node in the
node’s preceding remote cycle and the right outside leaf set
node points to the primary node in the node’s succeeding re-
mote cycle in the large cycle.

The cubical links allow us to change cubical index from
left to right, in the same left-to-right order as in Pastry. The
cyclic links allow us to change the cyclic index. It is easy to
see that the network will be the traditional cube-connected
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cycles if all nodes are alive. Our connection pattern is re-
silient in the sense that even if many nodes are absent, the
remaining nodes are still capable of being connected. The
routing algorithm is heavily assisted by the leaf sets. The
leaf sets help improve the routing efficiency, check the ter-
mination condition of a lookup, and wrap around the key
space to avoid the target overshooting. How the routing ta-
ble and leaf sets are initialized and maintained is the subject
of Section 3.3.

The Cycloid DHT assigns keys onto its id space by the
use of a consistent hashing function. The key assignment is
similar to Pastry, except that the Cycloid associates a pair of
cyclic and cubic indices with each node. For a given key, the
cyclic index of its mapped node is set to its hash value mod-
ulated by d and the cubical index is set to the hash value di-
vided by d. If the target node of a key’s id (k, ad−1 . . . a1a0)
is not a participant, the key is assigned to the node whose id
is first numerically closest to ad−1ad−2 . . . a0 and then nu-
merically closest to k.

3.2. Cycloid Routing Algorithm

Cycloid routing algorithm emulates the routing algorithm
of CCC [12] from source node (k, ad−1 . . . a1a0) to desti-
nation (l, bd−1 . . . b1b0), incorporating the resilient connec-
tion pattern of Cycloid. The routing algorithm involves three
phases, assuming MSDB be the most significant different bit
of the current node and the destination.

1. Ascending: When a node receives a request, if its
k<MSDB, it forwards the request to a node in the out-
side leaf set sequentially until cyclic index k≥MSDB.

2. Descending: In the case of k≥MSDB, when k=MSDB,
the request is forwarded to the cubical neighbor, oth-
erwise the request is forwarded to the cyclic neighbor
or inside leaf set node, whichever is closer to the tar-
get, in order to change the cubical index to the target
cubical index.

3. Traverse cycle: If the target Id is within the leaf sets,
the request is forwarded to the closest node in the leaf
sets until the closest node is the current node itself.

Figure 3 presents an example of routing a request from
node (0,0100) to node (2,1111) in a 4-D Cycloid DHT.
The MSDB of node (0,0100) with the destination is 3. As
(0,0100) cyclic index k=0 and k<MSDB, it is in the ascend-
ing phase. Thus, the node (3,0010) in the outside leaf set is
chosen. Node (3,0010)’s cyclic index 3 is equal to its MSDB,
then in the descending phase, the request is forwarded to
its cubical neighbor (2,1010). After node (2,1010) finds that
its cyclic index is equal to its MSDB 2, it forwards the re-
quest to its cubical neighbor (1,1110). Because the destina-
tion (2,1111) is within its leaf sets, (1,1110) forwards the
request to the closest node to the destination (3,1111). Sim-
ilarly, after (3,1111) finds that the destination is within its
leaf sets, it forwards the request to (2,1111) and the destina-
tion is reached.

Each of the three phases is bounded by O(d) hops, hence
the total path length is O(d). The key idea behind this algo-
rithm is to keep the distance decrease repeatedly. The cor-
rectness of the routing algorithm can be shown by showing
its convergence and reachability. By convergence, we mean
that each routing step reduces the distance to the destination.
By reachability, we mean that each succeeding node can for-
ward the message to the next node. Because each step sends
the lookup request to a node that either shares a longer pre-
fix with the destination than the current node, or shares as
long a prefix with, but is numerically closer to the destina-
tion than the current node, the routing algorithm is conver-
gent. Also, the routing algorithm can be easily augmented to
increase fault tolerance. When the cubical or the cyclic link
is empty or faulty, the message can be forwarded to a node in
the leaf sets. Our discussion so far is based on a 7-entry Cy-
cloid DHT. It can be extended to include two predecessors
and two successors in its inside leaf set and outside leaf set,
respectively. We will show via simulations in the next sec-
tion that the 11-entry Cycloid DHT has better performance.

3.3. Self-Organization

Peer-to-Peer systems are notoriously dynamic in the
sense that nodes are frequently joining in and depart-
ing from the network. Cycloid deals with node joining and
leaving in a distributed manner, without requiring hash in-
formation to be propagated through the entire network.
This section describes how Cycloid handles node join-
ing and leaving.

3.3.1. Node Join When a new node joins, it needs to ini-
tialize its routing table and leaf sets, and inform other related
nodes of its presence. Like Chord and Viceroy, Cycloid as-
sumes that any new node initially knows about a live node.
Assume the first contact node is A = (k, ad−1ad−2 . . . a0)
and the new node is X = (l, bd−1bd−2 . . . b0). According to
the routing algorithm in Section 3.2, the node A will route
the joining message to the existing node Z whose id is nu-
merically closest to the id of X. Z’s Leaf Sets are the ba-
sis for X’s Leaf Sets. In particular, the following two cases
are considered:

1. If X and Z are in the same cycle, Z’s outside leaf set be-
comes the X’s outside leaf set. X’s inside leaf set is ini-
tiated according to Z’s inside leaf set. If Z is X’s suc-
cessor, Z’s predecessor and Z are the left node and right
node in X’s inside leaf set respectively. Otherwise, Z
and Z’s successor are the left node and right node.

2. If X is the only node in its local cycle, then Z is not
in the same cycle as X. In this case, two nodes in X’s
inside leaf set are X itself. X’s outside leaf set is ini-
tiated according to Z’s outside leaf set. If Z’s cycle is
the succeeding remote cycle of the X, Z’s left outside
leaf set node and the primary node in Z’s cycle are the
left node and right node in X’s outside leaf set. Other-
wise, the primary node in Z’s cycle and Z’s right out-
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(0,0100) � (3,0010) � (2,1010) � (1,1110) � (3,1111) ) � (2,1111)

ascending descending traverse cycle

Node (0,0100)
Routing table

Cubical: null
Cyclic : null
Cyclic:  null

Leaf Sets
Inside Leaf Set

(3,0100) (1,0100)
Outside Leaf Set

(3,0010) (3,0110)

Node (3,0010)
Routing table

Cubical: (2,1010)
Cyclic: (2,0010)
Cyclic : (2,0010)

Leaf Sets
Inside Leaf Set

(2,0010) (0,0010)
Outside Leaf Set

(3,0001) (3,0011)

Node (2, 1010)
Routing table

Cubical: (1,1110)
Cyclic: (1,1010)
Cyclic: (1,1010)

Leaf Sets
Inside Leaf Set

(1,1010) (3,1010)
Outside Leaf Set

(3,1001) (3,1011)

Node (1,1110)
Routing table

Cubical: (0,1100)
Cyclic: (0,1110)
Cyclic: (0,1110)

Leaf Sets
Inside Leaf Set

(0,1110) (2,1110)
Outside Leaf Set

(3,1101) (3,1111)

Node (3,1111)
Routing table

Cubical: (2,0010)
Cyclic: null
Cyclic: (2,1110)

Leaf Sets
Inside Leaf Set

(4,1111) (2,1111)
Outside Leaf Set

(3,1110) (3,0000)

Figure 3: An example of routing phases and routing table states in Cycloid.

side leaf set node are the left node and right node in X’s
outside leaf set.

We use a local-remote method to initialize the 3 neigh-
bors in the X’s routing table. It searches for a neighbor in
the local cycle in a decreasing order of the node cyclic in-
dex. If the neighbor is not found, then its neighboring re-
mote cycle is searched. The remote cycle search sequence
depends on the kth bit in the cubical index. If ak is 1, the
search direction is counter-clockwise, otherwise the direc-
tion is clockwise. This is done in order to enhance the pos-
sibility and the speed of finding the neighbors.

After a node joins the system, it needs to notify the nodes
in its inside leaf set. It also needs to notify the nodes in its
outside leaf set if it is the primary node of its local cycle.
Once the nodes in the inside leaf set receive the joining mes-
sage, they will update themselves. When the nodes in the
outside leaf set receive the joining message, in addition to
update themselves, they need to transfer the message to the
nodes in their inside leaf set. Thus, the message is passed
along in the joining node’s neighboring remote cycle until
all the nodes in that cycle finish updating.

3.3.2. Node Departure Before a node leaves, it needs to
notify its inside leaf set nodes. In Cycloid, a node only
has outgoing connections and has no incoming connections.
Therefore, a leaving node cannot notify those who take it as
their cubical neighbor or cyclic neighbor. The need to no-
tify the nodes in its outside leaf set depends on whether the
leaving node is a primary node. Upon receiving a leaving no-
tification, the nodes in the inside and outside leaf sets update
themselves. In addition, the nodes in the outside leaf set need
to notify other nodes in their local cycle one by one, which
will take at most d steps. As a result, only those who take the
leaving node as their inside leaf set or outside leaf set are up-
dated. Those nodes who take the leaving node as their cubi-
cal neighbor or cyclic neighbor cannot be updated. Updating
cubical and cyclic neighbors are the responsibility of system
stabilization, as in Chord.

3.3.3. Fault Tolerance Undoubtedly, low degree P2P net-
works perform poorly in failure-prone environments, where
nodes fail or depart without warning. Usually, the system
maintains another list of nodes to handle such problems,
such as the successor list in Chord [15] and the bucket in

Viceroy [9]. In this paper, we assume that nodes must no-
tify others before leaving, as the authors of Koorde argued
that the fault tolerance issue should be handled separately
from routing design.

4. Cycloid Performance Evaluation

In [6], Kaashoek and Karger listed five primary perfor-
mance measures of DHTs: degree in terms of the number of
neighbors to be connected, hop count per lookup request, de-
gree of load balance, degree of fault tolerance, and mainte-
nance overhead. In this section, we evaluate Cycloid in terms
of these performance measures and compare it with other
two constant-degree DHTs: Viceroy and Koorde. Recall that
each Cycloid node maintains connectivity to 7 neighbors in
its routing table. Cycloid can be extended to include more
predecessors and successors in its inside and outside leaf
sets for a trade-off for lookup hop count. The results due
to 11-neighbor Cycloid are included for a demonstration of
the trade-off. Similarly, Koorde DHT provides a flexibility
to making a trade-off between routing table size and routing
hop count. For a fair comparison, in our simulations, we as-
sumed the Koorde DHT maintained connectivity to 7 neigh-
bors, including 1 de Bruijn node, 3 successors and 3 im-
mediate predecessors of the de Bruijn node. Since all of the
constant-degree DHTs borrowed ideas from Chord and other
DHTs with O(log n) neighbors, we also include the results
of Chord as references. The actual number of participants
varied in different experiments.

4.1. Key location efficiency

It is known that all of the constant-degree DHTs have
a complexity of O(log n) or O(d) hops per lookup re-
quest with O(1) neighbors. Although Cycloid contains more
nodes than the others for the same network dimension, its
average routing performance relative to Viceroy and Koorde
is unknown. In this experiment, we simulated networks with
n = d · 2d nodes and varied the dimension d from 3 to
8. Each node made a total of n/4 lookup requests to ran-
dom destinations. Figure 4 plots the mean of the measured
path lengths of the lookup requests due to various DHT rout-
ing algorithms. The path length of each request is measured
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Figure 4: Path lengths of lookup requests in various DHTs
of different network sizes.

by the number of hops traversed during its search. From
the figure, we can see that the path lengths of Viceroy are
more than 2 times than those of Cycloid, although key loca-
tions in both Cycloid and Viceroy involve the same ascend-
ing, descending and traverse ring/cycle phases. There are
two reasons. First, the ascending phase in Cycloid usually
takes only one step because the outside leaf set entry node
is the primary node in its cycle. But the ascending phase in
Viceroy takes (log n)/2 steps on average because each step
decreases the level one at a time. Figures 5(a) and (b) present
breakdowns of the lookup cost in different phases in Cy-
cloid and Viceroy, respectively. From the figures, we can see
that the ascending phase in Viceroy constitutes about 30%
of the total path length, but only up to 15% in Cycloid. Sec-
ond, the descending phase in Cycloid takes d steps because
each step redirects the request to a node with longer pre-
fix or is numerically closer to the target. It is followed by
another d hops of search in local cycles or cubic neighbor
cycles. In Viceroy, the distance to the target can be halved
each step in the second descending phase. But Figure 5(b)
shows that the descending phases constitutes around only
20% of the total searching path. More than half of the cost
is spend in the third traverse ring phase. In the traverse ring
phase, the lookup request approaches the destination step by
step along ring links or level ring links and needs another
(log n)/2 steps on average.

In Koorde, each node redirects an incoming lookup re-
quest to its first de Bruijn node or a successor. Each selec-
tion of a first de Bruijn node would reduce the distance by
half. Since the first de Bruijn node may not be the immediate
predecessor of the imaginary node of the destination, selec-
tion of a successor is to find the immediate predecessor. Fig-
ure 5(c) shows a breakdown of the cost between the two se-
lections. The selection of successors constitutes about 30%
of the total path length, which implies some nodes might
interpose land in between the current node’s first de Bruijn
node and the imaginary node. In this case, the current node’s
successors have to be passed in order to reach the immedi-
ate predecessor of the imaginary node. Because of the dense
network in which every node is alive, there are only a few
nodes at interpose between de Bruijn node and the imagi-
nary node, consequently, the path length of taking succes-
sors takes a reasonable percentage of the whole path length.

However, Koorde’s lookup efficiency is reduced in sparse
network. We will discuss this in Section 4.5.

The principle of Cycloid routing algorithm is almost the
same as that of Koorde. In both algorithms, starting from a
specific chosen node, the node id bits are changed one by
one until the target node id is reached. Both of their path
lengths are close to d, the dimension of the network in sim-
ulation. Since a d-dimensional Cycloid contains more (d-
1)·2d nodes than Koorde of the same dimension, Cycloid
leads to shorter lookup path length than Koorde in networks
of the same size, as shown in Figure 4.

From Figure 4, we can also see that the path length of
Viceroy increases faster than the dimension log n. Its path
length increases from 4 in a 4-dimensional network to 12.91
in an 8-dimensional network. This means the more nodes a
Viceroy network has, the less the key location efficiency.

4.2. Load balance

A challenge in the design of balanced DHTs is to dis-
tribute keys evenly between a changing set of nodes and to
ensure each node experiences even load as an intermediate
for lookup requests from other nodes. Cycloid deals with
the key distribution problem in a similar way to Koorde, ex-
cept that Cycloid uses a pair of cyclic and cubical indices
to represent a node. Viceroy maintains a one-dimensional id
space. Although both Cycloid and Viceroy nodes have two
indices to represent their place in the overlay network, the
cyclic index is part of the Cycloid node id but the level is not
part of the Viceroy node id. Also, Viceroy stores keys in the
keys’ successors.

In this experiment, we simulated different DHT networks
of 2000 nodes each. We varied the total number of keys to be
distributed from 104 to 105 in increments of 104. Figure 6(a)
plots the mean, the 1st and 99th percentiles of the number
of assigned keys per node when the network id space is of
2048 nodes. The number of keys per node exhibits variations
that increase linearly with the number of keys in all DHTs.
The key distribution in Cycloid has almost the same degree
of load balance as in Koorde and Chord because Cycloid’s
two-dimensional id space is reduced to one-dimension by
the use of a pair of modula and divide operations. By com-
parison, the number of keys per node in Viceroy has much
larger variations. Its poor balanced distribution is mainly due
to the large span of real number id space in [0, 1). In Viceroy,
the key is stored in its successor; that is, a node manages all
key-value between its counter-clockwise neighbor and itself.
Because of Viceroy’s large id span, its node identifiers may
not uniformly cover the entire space, some nodes may man-
age much more keys than the others.

Figure 6(b) plots the mean, the 1st and 99th percentiles of
the number of keys per node in Cycloid and Koorde DHTs
when there are only 1000 participants in the network. From
the figure, it can be seen that Cycloid leads to a more bal-
anced key distribution than Koorde for a sparse network. In
Koorde, the node identifiers do not uniformly cover the en-
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Figure 5: Path length breakdown in various DHTs of different sizes.
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Figure 6: Key distribution in networks of various sizes

tire identifier space, leading to unbalanced key allocation as
a result of storing the key in its successor. By comparison,
using 2 dimension key allocation method, Cycloid achieves
better load balance by storing the key in its numerically
closest node; that is, the keys between a node’s counter-
clockwise neighbor and itself will be allocated to that neigh-
bor or the node itself rather than to itself totally. Chord
solved this problem by replicating each node into O(log n)
“virtual nodes”, but such replication would destroy the op-
timality of constant degree in Koorde. In [6], Kaashoek and
Karger put forward a question of finding a system that is
both degree optimal and load balanced. Cycloid should be
an answer.

In summary, when the entire identifier space is mostly oc-
cupied, Cycloid’s load balance is as good as Chord. When
the actual nodes only occupy small part of the total entire
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Figure 7: Query load variances in DHTs of different sizes.

identifier space, Cycloid’s load balance is better than Chord.
Key distribution aside, another objective of load balanc-

ing is to balance the query load between the participating
nodes. The query load is measured as the number of queries
received by a node for lookup requests from different nodes.

Figure 7 plots the the mean, the 1st and 99th percentiles
of query loads of various DHT networks of 64 nodes and
2048 nodes. The figures shows that Cycloid exhibits the
smallest variation of the query load, in comparison with
other constant-degree DHTs. This is partly due to the sym-
metric routing algorithm of Cycloid.

In Viceroy, the ascending phase consists of a climb us-
ing up connections until level 1 is reached and the descend-
ing phase routes down the levels of tree using the down links
until no down links. As a result, the nodes in the higher lev-
els will be the hot spots, on the other hand, the nodes of the
lower levels have smaller workload, which leads to the great
workload variation, especially in the large-scale network. In
Koorde, the first de Bruijn of a node with id m is the node
immediately precedes 2m. So, all the first de Bruijn nodes’
identifiers are even in a “complete”(dense) network and with
high probability the ids are even in an incomplete(sparse)
network. Consequently, the nodes with even ids have heavy
workload while nodes with odd ids have light workload ac-
cording to the lookup algorithm of Koorde. In Cycloid, be-
cause of the leaf sets, the nodes with small cyclic index, typ-
ically 0 or 1, will be light loaded. However, these nodes con-
stitute only small part of the Cycloid network, in compari-
son with the hot spots in Viceroy and Koorde.
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Table 3: Timeout numbers in different DHTs as more nodes
depart/fail.

p 7-Cycloid 11-Cycloid Chord Koorde
0.1 0.53(0, 4) 0.56(0, 4) 0.62(0, 6) 0.02(0, 1)
0.2 1.24(0, 8) 1.38(0, 8) 1.37(0, 8) 0.04(0, 1)
0.3 2.46(0, 11) 2.14(0, 10) 2.38(0, 11) 0.06(0, 2)
0.4 4.09(0, 17) 3.67(0, 15) 3.91(0, 16) 0.08(0, 3)
0.5 5.88(0, 24) 5.24(0, 25) 6.53(0, 26) 0.09(0, 4)

4.3. Simultaneous node failures/departures

In this section, we evaluate the impact of massive node
failures and departures on the performance of various DHTs,
and on their capability to performing correct lookups with-
out stabilization. We use the term of departure to refer to
both failure and departure. We assume that node departures
are graceful—a node informs its relatives before its depar-
ture. Ungraceful departure is not discussed in this paper.

In this experiment, we simulated a network of 2048
nodes. Once the network becomes stable, each node is made
to fail with probability p ranging from 0.1 to 0.5. After a
failure occurs, we performed 10,000 lookups with random
sources and destinations. We recorded the number of time-
outs occurred in each lookup, the lookup path length, and
whether the lookup found the key’s correct storing node.
A timeout occurs when a node tries to contact a departed
node. The number of timeouts experienced by a lookup is
equal to the number of departed nodes encountered. Figure 8
shows the mean path length of the lookups with the change
of departure probability p in different DHTs. The mean, the
1st and 99th percentiles of the number of timeouts of each
DHTs are presented in Table 3.

In Cycloid, the path length increases due to the increas-
ing of the number of timeouts as the p increases. Recall that
when a departed node is met, the leaf sets have to be turned
to for the next node. Therefore, the path length increases.
All lookups were successfully resolved means that the Cy-
cloid is robust and reliable.

We can see from the Figure 8 that unlike Cycloid and Ko-
orde, the lookup path length in Viceroy decreases with the
increase of p. In Viceroy, a node has both outgoing and in-
coming connections. A node notifies its outgoing and incom-

ing connections before its departure. Therefore, all related
nodes are updated before the node departs. Based on this
characteristic, a massive departures has no adverse effect
on Viceroy’s ability to perform correct lookups and hence
Viceroy has no timeouts. The decrease of the path length
is caused by the decrease of the network size. We can see
from Figure 8 that when the departure probability is 0.5, the
path length is 16.45, which is very close to the average path
length (16.92) in a 1024-node “complete” network, as shown
in Figure 4.

In order to eliminate the impact of simultaneous node de-
partures in Viceroy, a leaving node would induce O(log n)
hops and require O(1) nodes to change their states. This
causes a large amount of overhead. In Cycloid, the path
length increased a little with a small fraction of departed
nodes. Even though the path length of Cycloid increases
slightly, it is still much less than that of Viceroy.

In Figure 8, Koorde’s path length increased not so much
as in Cycloid when the node departure probability p exceeds
0.3. Unlike Cycloid and Viceroy, Koorde has lookup fail-
ures when p becomes larger than 0.3. Our experiment re-
sults show that there are 791, 1226, and 4259 lookup fail-
ures when p=0.3, 0.4, and 0.5, respectively.

In Koorde, when a node leaves, it notifies its successors
and predecessor. Then, its predecessor will points to its suc-
cessor and its successor will point to its predecessor. By this
way, the ring consistency is maintained. The nodes who take
the leaving node as their first de Bruijn node or their first de
Bruijn node’s predecessor will not be notified and their up-
date are the responsibility of stabilization.

Each Koorde node has 3 predecessors of its first de Bruijn
node as its backups. When the first de Bruijn node and its
backups are all failed, the Koorde node fails to find the next
node and the lookup is failed. When the failed node percent-
age is as low as 0.2, all the queries can be solved success-
fully at a marginal cost of query length with increase path
length as shown in Figure 8. When p exceeds 0.3, with in-
creasing of timeouts as shown in Table 3, the number of fail-
ure increases, the path length increases not so much as be-
fore because less backups are taken.

From Table 3, we can see that although Koorde has much
less timeouts than Cycloid, it still has a large number of
failures. In Koorde, the critical node in routing is the de
Bruijn node whose backups cannot always be updated. In
contrast, Cycloid relies on updated leaf sets of each node for
backup. Therefore, Koorde is not as robust as Cycloid in re-
sponse to massive node failures/departures. The experiment
shows that Cycloid is efficient in handling massive node fail-
ures/departures without stabilization.

4.4. Lookups during node joining and leaving

In practice, the network needs to deal with nodes join-
ing the system and with nodes that leave voluntarily. In this
paper, we assume that multiple join and leave operations
do not overlap. We refer the reader to [8] for techniques to
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Figure 9: Path length of lookup requests in different DHTs
as the node join/leave rates change.

achieve concurrency and to handle failures in the system. In
this experiment, we compare Cycloid with Viceroy and Ko-
orde when nodes join and leave continuously.

The setting of this experiment is exactly the same as the
one in [15]. Key lookups are generated according to a Pois-
son process at a rate of one per second. Joins and voluntary
leaves are modeled by a Poisson process with a mean rate of
R, which ranges from 0.05 to 0.40. A rate of R = 0.05 cor-
responds to one node joining and leaving every 20 seconds
on average. In Cycloid, each node invokes the stabilization
protocol once every 30 seconds and each node’s stabiliza-
tion routine is at intervals that are uniformly distributed in
the 30 seconds interval. Thus, R ranges from a rate of 1.5
joins and 1.5 leaves per one stabilization periods to a rate of
12 joins and 12 leaves per one stabilization period. The net-
work starts with 2048 nodes.

Figure 9 shows the mean path length of lookup operations
in different DHTs as the node join/leave rate R changes. The
statistics of the number of timeouts are shown in Table 4.
There are no failures in all test cases. From the path length
evaluation in Section 4.1, we know that the mean path length
of Cycloid in steady states is 8.38. From Figure 9, we can
see that the measured path lengths in the presence of node
joining and/or leaving are very close to this value and do
not change with the rate R. This is because with the help
of stabilization, there are less needs for a node to turn to its
leaf sets in the case of meeting an absent or departure node.
Consequently, a lookup request would experience less time-
outs and its path length remains unchanged. Compared with
the timeout results in Table 3, we can see that stabilization
avoids most of the timeouts.

In Koorde, the path lengthes changed little compared to
11.59 in stable network though the timeouts increases with
the rate of node joins and leaves. The failure time is reduced
to 0 compared to the large failure time in the Section 4.3.
It is because stabilization updates the first de Bruijn node
of each node and the de Bruijn node’s predecessors in time.
When the first de Bruijn node and all of its predecessors are
failed, passed lookups would fail with high probability.

The results show that Viceroy’s performance is not af-
fected by the node leaving and joining. It is because, before
a node leaves and after a node joins, all the related nodes are

Table 4: Timeout numbers as the node join/leave rate
changes.

R 7-Cycloid 11-Cycloid Chord Koorde
0.05 .005(0, 0) .059(0, 2) .033(0, 1) .003(0, 0)
0.10 .009(0, 0) .103(0, 2) .078(0, 2) .013(0, 1)
0.15 .014(0, 1) .171(0, 2) .130(0, 2) .008(0, 0)
0.20 .031(0, 1) .205(0, 3) .125(0, 2) .013(0, 1)
0.25 .047(0, 2) .246(0, 2) .151(0, 2) .016(0, 1)
0.30 .052(0, 2) .289(0, 3) .191(0, 3) .016(0, 1)
0.35 .058(0, 2) .367(0, 4) .220(0, 3) .023(0, 1)
0.40 .070(0, 2) .374(0, 4) .233(0, 3) .023(0, 1)

updated. Although Viceroy has no timeouts, its path length
is much longer compared to Cycloid’s path.

4.5. Impact of network sparsity in the ID space

Due to the dynamic nature of peer-to-peer systems, a
DHT needs to maintain its location efficiency, regardless of
the actual number of participants it has. But, in most of the
DHTs, some node routing table entries are void when not
all nodes are present in the id space. For example, if a lo-
cal cycle in Cycloid has only one node, then this node has
no inside leaf set nodes. It is also possible that a node cannot
find a cubical neighbor, or cyclic neighbor. We define the de-
gree of sparsity as the percentage of non-existent nodes rel-
ative to the network size. To examine the impact of sparsity
on the performance of other systems, we did an experiment
to measure the mean search path length and the number of
failures when a certain percentage of nodes are not present.
We tested a total of 10,000 lookups in different DHT net-
works with an id space of 2048 nodes. Figure 10 shows the
results as the degree of network sparsity changes. There are
no lookup failures in each test case. From the figure, we can
see that Cycloid keeps its location efficiency and the mean
path length decreases slightly with the decrease of network
size. In Viceroy, it’s impossible for nodes to fully occupy its
id space because the node id ∈ [0, 1). Therefore, it is very
likely that the some links of a node are void and hence the
sparsity imposes no effect on the location efficiency. In Ko-
orde, the path length increases with the actual number of par-
ticipants drops. This is because a sparse Koorde DHT ex-
hibits a large span between two neighboring nodes. Since
Koorde routes a lookup request through the immediate real
predecessor of each imaginary node on the de Bruijn path,
the distance between the imagination node and its imme-
diate predecessor in the sparse DHT leads to a longer dis-
tance between the predecessor’s first de Bruijn node and the
imagination node in the next step. Therefore, more succes-
sors need to be taken to reach the immediate predecessor of
the imagination, thus more path length.

In summary, the sparsity does not have adverse effect on
the location efficiency in Cycloid. However, Koorde’s per-
formance degrades with the decrease of the number of ac-
tual participants.
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Figure 10: Path length of lookup requests in different DHTs
with the change of the degree of network sparsity.

5. Conclusions

In this paper, we have presented a constant-degree DHT,
namely Cycloid, and compared it with other two constant-
degree DHTs: Viceroy and Koorde. Cycloid is based on
Pastry and CCC, while Viceroy and Koorde emulate but-
terfly and de Bruijn graphs, respectively. Cycloid resembles
Viceroy and Koorde in appearance because CCC is a sub-
graph of butterfly network and de Bruijn is a coset graph of
butterfly, as recently proved in graph theories [2, 5]. But they
are different in connectivity maintenance of dynamic partic-
ipants and in routing for key location.

We have evaluated the performance of the DHTs in terms
of the lookup hop count, degree of load balance, degree
of fault tolerance, cost for maintenance. Experiment results
show that (1) Cycloid yields the best average-case location
efficiency; (2) Cycloid distributes keys and query load more
evenly between the participants than Viceroy. In compari-
son with Koorde, Cycloid results in higher degrees of load
balance for sparse networks and the same degree of load bal-
ance for dense networks; (3) Cycloid is more robust because
it continues to function correctly when a node’s information
is only partially correct. By contract, Koorde cannot per-
form well with partial correct information and incomplete
network; (4) Cycloid scales well with the number of nodes,
recovers from large numbers of simultaneous node depar-
tures and joins, and answers lookups correctly even during
recovery. By contrast, Viceroy handles massive node fail-
ures/departures at a high cost for connectivity maintenance,
especially in the case when a node needs to change its level.

A common problem with constant-degree DHTs is
their weakness in handling node leaving without warn-
ing in advance. Keeping more information like successor
list in Chord and Bucket in Viceroy helps resolve the prob-
lem, but destroys the optimality of constant degree. Because
of this disadvantage, whenever a node joins or leaves, Cy-
cloid needs to notify its inside leaf set. Especially, if the
joining or leaving node is the primary node of a cycle in Cy-
cloid, the updates might produce much more overhead.
In addition, the initialization and updates of three neigh-
bors in the routing table may also cause much overhead.
These issues need to be further addressed.
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