A Reliable and Secure Connection Migration Mechanism for Mobile Agents

Xiliang Zhong, Cheng-Zhong Xu, and Haiying Shen
Department of Electrical & Computer Engg.
Wayne State University, Detroit, Michigan 48202

{xlzhong, czxu, shy@wayne.edu

Abstract move from one server to another for various reasons, it is
desirable that an established socket connection would mi-
Connection migration in mobile systems is to support grate with the agent continuously and transparently.

continuous and transparent communication operations be- The traditional TCP protocol has no support for mobility
tween mobile agents. This paper presents a reliable connechecause it has been designed with the assumption that the
tion migration mechanism that provides exactly-once de- communication peers are stationary. There are recent stud-
livery for all transmitted data during agent migration. It jes on mobile TCP/IP in both network and transport layers
integrates with an agent-based access control mechanismo support the mobility of physical devices in the arena of
that controls the access to network ports. To avoid frequentmobile computing. We refer to this type of mobility as phys-
agent authentication and permission checking due to agentical mobility, in contrast to logical mobility of codes. Rep
migration, a secret session key is associated with each conresentatives of the protocols include Mobile IP [7] in net-
nection. We present the design and implementation of thework layer, MSOCKS [8],TCP-R [6], M-TCP [12] and Mi-
mechanism, named NapletSocket in Naplet mobile agenirate [11] in transport layer. Although these protocols-pro
system. It is a pure middleware implementation, requiring vide feasible ways to link moving devices to network, they
no modification of Java virtual machines. Evaluation re- have no control over the logical mobility. Mobile agents
sults show that the NapletSocket system incurs a mOder-may also be run on wired networks that have no support
ate overhead in connection setup, mainly due to securityfor mobile TCP/IP.

checking. Once a secure connection is established, only a
marginal cost is needed to pay for reliable communication dl
during agent migration.

Mobile agent systems are usually organized as a mid-

eware. Agent connection migration requires support of
session-layer implementations in the middleware. In the
past, a few session-layer connection migration mecha-
nisms were proposed. Examples include Persistent Connec-
1. Introduction tion [18], Mobile TCP [10], and MobileSocket [9]. How-

In agent-oriented programming, agents often communi- €ver, none of them were targeted at agent mobility. Agent
cate with each other via mailbox-likesynchronous persis- ~ 'elated connection migration involves two unique relia-
tentcommunication mechanisms due to the requirement for Pility and security problems. Since both the end points
agent autonomy [2]. That is, an agent can send message§’ & connection would move around, a reliable con-
to others no matter its communication parties exist or not. N€ction migration needs to do more for exactly-once
The messages in transmission are often forwarded in supdelivery for all transmitted data. Security is a major con-
port of agent migration. cern in agent-oriented programming. Socket is one of

Asynchronous persistent communication plays a key role the critical resources and its access must be fully con-
in many distributed applications and is widely supported by trolled by agent servers. Agent-oriented access control
existing mobile agent systems; see [13] for a recent com-mMust be enforced during the setup of connections. Con-
prehensive review of location independent communication N€ction migration is vulnerable to eavesdropper attacks.
protocols between mobile agents. However, it is not ap- Ad(_jmonal security measures are n_eeded to protect trans-
propriate or sufficient for certain applications that requi @ctions on an established connection from any malicious
agents to cooperate closely. For example, in the use of mo-2ttacks due to migration.
bile agents for parallel computing [16], cooperative agent In this paper, we present the design and implemen-
need to be synchronized frequently during their lifetime. tation of an integrated mechanism that deals with secu-
A synchronous transiemommunication mechanism would rity and reliability in connection migration. It provides a
keep the agents work more closely and efficiently. Socket agent-oriented socket programming interface for location
over TCP is an example that ensures instantaneous comindependent socket communication. The interface is imple-
munication in distributed applications. Since agents tend mented by a socket controller that guarantees exactly-once

Client Side o Server Side
Application Layer

Application Application Table 1: States in NapletSocket transitions.
Middleware Layer Lat inti
i Nap State Description
Rediretor ‘Controller SZZ:ZH TCP Socket S[c;::(aet‘ Rediretor ‘Controller CLOSED Not connected
t c"a‘a Channel % T LISTEN Ready to accept connections
ontrol Channe! CONNECT_SENT | SentacONNECTrequest
.) . CONNECT_ACKED | Confirmed acONNECTrequest
Figure 1: NapletSocket Architecture. ESTABLISHED Normal state for data transfer
delivery of data, including data in transmission when the | SUS_SENT Sent asusPENDrequest
communicating agents are moving. To assure secure con-| SUS_ACKED Confirmed asusPENDrequest
nection migration, each connection migration is assodiate | SUSPENDED The connection is suspended
with a secret session key created during connection setup. | RES_SENT Sent.aRESUMErequest
We prototyped the mechanism as a NapletSocket com- | RES-ACKED Confirmed aRESUMErequest
ponent in Naplet mobile agent system. Naplet [14] is a | CLOSE-SENT Sent aCLOSErequest
featured mobile agent system we developed in house for | CLOSE-ACKED Confirmed acCLOSErequest

educational purposes. It supports a mailbox-based PostOf-)
fice mechanism with asynchronous persistent communica-roller and redirector can be shared by all NapletSockets so

tion. NapletSocket provides a complementary mechanismthat only one pair is necessary.

for synchronous transient communication. To open a connection, the controller of the client agent
The remainder of the paper is organized as follows. Sec-S€nds a request to the counterpart at the server. After the

tion 2 gives an overview of the design of NapletSocket. Re- réquest is acknowledged, the client connects to the redi-

liability and security concerns and measures are discussed€ctor at the server side and the connection is then handed

in Section 3. Section 4 presents performance evaluation rel0 the desired agent. After a connection is established, the

sults. Related works are summarized in Section 5. Section W0 agents communicate with each other through access-

concludes the paper with remarks on future work. ing the socket, no matter where their communication par-
ties are located. Under the hood are a sequence of operations

2. NapletSocket Design by the NapletSocket library. The underlying data socket is
) first closed, when the NapletSocket takes a suspend action

2.1. NapletSocket Architecture before agent migration. After the agent lands on the des-

A basic requirement of connection migration is location- tination, the NapletSocket system resumes the connection
independent. The NapletSocket connection migration by connecting to the server-side redirector. The data sock-
mechanism provides an interface similar to Java Socket.ets of both client and server are then updated and new in-
It comprises of two classeblapletSocket(agent-idind put/output streams are re-created atop of the socket.
NapletServerSocket(agent-idjhey resemble Java Socket
and ServerSocket in semantics, except that the Naplet-2.2. State Transitions
Socket connection is agent oriented. It is known that Java
Socket/ServerSocket establish a connection between a paiﬁit
of endpoints in the form of (Host IP, Port). For security rea-

The design of NapletSocket can be described as a fi-
e state machine, extended from the TCP protocol. It con-
sons, an agent is not allowed to specify a port number fortains 12 states, as listed in Table 1. The states jn bolq
; ' di tion. Instead. it is the underlving sup- are newly added to the standar_d TCP state transitions di-
Its pending connection. ’ ying sup agram. A NapletSocket connection is in one of these states.

port system that _a_llocates ports to the c_on_nection based OMrhe NapletSocket system takes an action when a certain
resource availability and access permissions. Naplet sys- vent occurs, according to the current state of the connec-

fgr?ocﬁgtaﬁnssii; ?ggg&;?\cz?r“rﬁg Zﬁgﬂf:strozfa?:r?‘:‘rggsagf_nﬁon. There are two types of events: calls from local agents
phy: ' PA" and messages from remote agents. Actions include sending

emFC?mr?]l:]ngt'r??n?e:V\;fin sgelnttsé ket svstem provid messages to remote agents and calling local functions.
orconnection migration, Fapiet>0Cket System provides Fig. 2 shows the state transitions of NapletSocket. The

two new methodsuspend(pndresume() They can be ei- solid lines show the transitions of clients connecting to

ther called by agents for explicit control over connection servers and the dotted lines are for the servers. Details of

mlgr_atlon, or by Naplet navigator for trqnsparent m|gna1|_o the open/suspend/resume/close transactions are asgollow
Fig. 1 shows the NapletSocket architecture. It comprises

of three components: data socket, controller and redirecto Open a connectiorBoth client and server are initially at the
The component of data socket is the actual channel for datacLOSED state. When an agent does an active opan i&-
transfer. It contains a pair of send/recieve buffers to keepNECT request is sent to the server and the state of the con-
undelivered data. The controller is used for management ofnection changes tGcONNECT. SENT. If the request is ac-
connections and operations that need access right to socketepted, the client side NapletSocket receives@k and a
resources. The redirector is used to redirect socket cennecsocketiD to identify the connection. Then it sends back its
tion from a remote agent to a local resident agent. Both con-own ID and the state changesESTABLISHED.

stertng por Close a connectiorin either theESTABLISHED or thesus-

CLOSED

PENDEDstate, if an agent decides to close the current con-
nection, it invokes the close interface and the NapletSocke
does an active close by sendinglas(CLOSE) request to the
peer. After the request is acknowledged, local data socket
is closed. For the other side of the connection, it closes

passively after receiving aLs request. It first acknowl-
gt edges the request and then closes the underlying socket and
streams. At the time, data socket at both sides is closed and
the state changes tn. 0OSED.

appl:active open
send:CONNECT

recv: ACK

T
exec: close
SUSPEND_ACKED

S8

3. Design Issues
3.1. Transparency and Reliability

S,
~8y,
S0,
Ny

appliclose

ereciloss P If there is any connection setup before agent migration,
5.53« sengsaume the connection should be migrated transparently. The main
approach for connection migration is to use a data socket
wreoremmel rocACK under NapletSocket. Each time the agent migrates, the un-
‘ e derlying data socket is closed before migration and updated

appl. Siat trancilon lakan when applcation ssues operation to a new data socket after migration. But for a connection
recv: state transitions taken by received message . e . .
Send: - send message o emole peer for the ransiton between two freely migrated agents, it is possible that mi-
gration happens at the same time when there are data being
Figure 2: NapletSocket state transitions diagram. transferred and in this case, the data may fail to reach their

destinations. So the presence of mobility causes a prob-
lem for reliable communication. Furthermore, two agents
may migrate simultaneously which makes it more difficult
to achieve reliability .

In order to guarantee that messages can be finally de-
livered, we added an input buffer to each input stream and
cyvrapped them together as a NapletinputStream. To suspend
a connection, the operation retrieves all currently undeli
ered data into the buffer before it closes the socket. The dat
Suspend/Resume a connectiafter a connection is estab- in the NapletinputStream migrate with the agent. When mi-
lished, either of the two parts may suspend it. The one whogration finishes and the connection is resumed at the remote
wants to suspend a connection invokes the suspend interserver, a read operation first reads data from the inputibuffe
face and ssusis sent to the peer. If the request is acknowl- of its NapletinputStream. It doesn’t read data from socket
edged, amck is sent back and triggers the action of closing stream until all data from the buffer have been retrieved.
underlying input/output streams and data socket. The con- |n the case both agents of a connection want to move si-
nection state then switches SO SPENDED multaneously, there is a problem since the resume opera-

When the other side of NapletSocket receives sbes tion from one agent only remembers the previous location
message, it sends back aok if it agrees to suspend. Then of the other agent. A simple solution to this problem is to
it closes the input/output streams and the data socket ungive priority to one side of the connection and delay the
der NapletSocket. After that, the state for this peer also other. For example, we can assign server-side NapletSocket
changes teUSPENDED Now connections at both peers are a higher priority than client-side NapletSocket so as to en-
suspended. No data can be exchanged in this state. sure server-side migration occurs before client-side. How

At the susPENDEDstate, when either of the agents de- ever, this could lead to a deadlock problem if more than
cides to resume the connection, it invokes the resume in-two agents that are connected to each other in a dual role
terface. The resume process first sets up a new connecef client and server are moving simultaneously. For exam-
tion to the remote redirector and sendRas message. ple, in a configuration of three agents X, Y, and Z which
After an ACK is received, it then resumes the connection are clients of Y, Z, and X, respectively, the system gets into
and the state switches back #sTABLISHED. For the re- a deadlock state if all the agents want to move at the same
mote peer in thesUSPENDEDState, once it receives a re- time. To prevent deadlock in simultaneous migration, we
sume request, it first sends backark. Then the redirec- can determine migration priority based on ordered agent
tion server hands its connection to the desired Naplet3ockeIDs. Although the agentb based priority policy guaran-
and new input/output streams are created. After that, bothtees deadlock-free, it may cause another fairness problem
peers change back to tBs TABLISHED state. in migration. It deserves further studies at least in theory

Connection in server side switches to the LISTEN state
once an agent does a listen. WhercaNNECT request
comes from a client, the server acknowledges it by sending
back anack and a socketD. It then changes to theon-
NECT_ACKED state. After the sockeb of the client side is
received, it switches tesTABLISHEDand the NapletSocket
connection is established. Now the data can be transferre
between the two peers as normal socket connection.

3.2. Security x - — ; x
. i i . . . Agent A ien edirection erver Agent B
Security is always a basic and direct concern in mobile \—ST”—‘ \—WLNaDIetServ d
\
\
\

agent system. Here we address security issues in two as- e el

pects. First, the agent should not be able to cause any se-

curity problems to the host it resides, either at the origi-

nal host or at the host it migrates to. Second, the connec-

tion itself should be secure from possible attacks like gave

dropping. More specifically, a connection can only be sus- L
Exchange Contr

Return
—_——

Create NapletSocket ‘

I=—— Security Check ‘

Call accept()

Connect to Redirect\oi‘n Server Wait for connection
Il

Handoff Socket
Construct NapletSoJ:ket

pended/resumed by the one who initially establishes it.

| Message: ‘

Regarding the first issue, it is safe enough if we deny [o——xchange Contrcl Messages }
any requests to create a Socket or ServerSocket from an |~~———— | w |
agent. Permissions are only granted to requests from the \ \
NapletSocket system. So the only way for an agent to use ! T ! ! !
socket resources is through the service provided by the mo-
bile agent system. Now the problem becomes whether we

can deny permission if a request is from an agent and grant\apletServerSocket is. The server has to maintain a table in
itif itis from the system. dicating which agent uses which port and return the port to
This problem can be solved by user-based access conclient. Then the client can start a connection. In fact, it is
trol introduced in the latest JDK security mechanism. It al- not necessary for the client to know which port to connect
lows permissions to be granted according to who is execut-to. By connecting to the redirector at the server and indi-
ing the piece of code (subject), rather than where the codecating which agent it wants to connect to. The server looks
comes from (codebase). A subject represents the source ofip which NapletServerSocket this request is for and redi-
arequest such as a mobile agent or NapletSocket controllerrects the current socket to it. Then the NapletServerSocket
By denying access requests from the subject of agents folis waken up from waiting and constructs a NapletSocket ac-
socket resources and granting them to local users like adcording to the data socket it receives. We call this socket
ministrators, we achieve our security goal in a simple and handoff and it can save at least one round trip time in query-
clear manner. In mobile agent applications, an agent sub-ing host name and port number and there is no need for the
ject has no permissions to access local socket resources byerver to maintain a table mapping ports to agents. Fig. 3
default. When it needs access to a socket resource, it subshows the sequence diagram for socket handoff in connec-
mits a request to a proxy service in NapletSocket controller tion setup.
The proxy authenticates the agent and checks access per- Similar mechanism also applies when resuming a con-
missions. After the security check passes, a NapletSockehection. In this case, the client connects to redirectionese
or NapletServerSocket will be created by the proxy and re- at the other side and sends a request to resume . The server
turned to the agent. More details about agent-oriented acthen hands the socket connection to the suspended Naplet-
cess control in Naplet system can be found in [15]. Socket and wakes it up. Finally the notified NapletSocket
Regarding the second issue, connection migration can beupdates its underlying data socket.
realized by the use of a socket. However, a plain socket
ID couldn’t prevent a third party from intercepting the infor- 3.4. Control Channel
mation and exercising eavesdropping attacks. To this end, |tis necessary to exchange control messages during state
we applied Diffie-Hellman key exchange protocol [4] to es- transitions of a NapletSocket connection. From a perfor-
tablish a secret session key between the pair of communicatmance perspective, we used a separate channel for control
ing agents at the setup stage of their connection. Any sub-messages and chose UDP as the transport layer protocol.
sequent requests for suspend, resume, and close operatiofpr the omission failures and ordering problems caused by
on the connection must be accompanied with the secret keyypp, we adopted a retransmission mechanism to provide
Such requests will be denied unless their keys are verifiedreliable delivery on top of UDP. The basic idea is to use re-
by remote peers. Since the key generated by Diffie-Hellmantransmission in case of failure. After sending a control-mes
protocol is hard to break, NapletSocket connections are pro sage, the sender starts a retransmission timer and waits for

Figure 3: Socket handoff in connection setup.

tected from eavesdropping attacks. anAck from the receiver. If amck is received before time-
out, the timer is cancelled. If neck is received after time-
3.3. Socket Handoff out, the message is retransmitted and a new timer for the

As we know in NapletSocket, when a client connects to Mmessage is set. Sequenced numbers are used to relate a re-
a server, it uses an agaptto specify which server to con- Ply to the corresponding request.
nect to. So we need to find both host name and port number .
from theid. For host name, we can keep records of traces of4' Evaluation
agents and locate the host according teotg-or port num- In this section, we present the performance of Naplet-
ber, we need to send a query message to the host where th8ocket and compare it with Java Socket. The experiments

140

120

100 —— OManagement

OHandshaking
80 —

O Security Check
60 —— MKey Exchange

Time(ms)

O Open Socket

40

)]
e]

Java Socket

Figure 4: Breakdowns of the latency to open a connection.

NS w/o security

NS with security

Table 2: Latency to open/close a connection

100

80 — [— ||
70 1 — | — | — [H
O Java Socket
60 1— —— 11— -

50 +—— oNapletSocket — — — — —

40 — |-

20
10 -
0 = :

10

Throughput(Mb/s)

100 1,000 10,000 100,000
Message Size(Bytes)

Figure 5: Throughput of NapletSocket vs. Java Socket.

The benefit of provisioning a reliable connection can be
seen by comparing the time required for re-opening a con-

Connection Type Open (ms)| Close (ms) nection with that of suspend/resume. If we close a Naplet-
Java Socket 3.7 0.6 Socket before migration and reopen a new one after that,
NapletSocket w/o security] 18.2 125 the total latency involved is about 147ms. However, if we
NapletSocket with security 134.4 12.6 use suspend and resume instead, the latency is less than one

third of the cost for close and reopen operations. When an

were conducted in a group of Sun Blade workstations con- gent travels around the network, the total time saved by us-
n_ected by a 100M ethern.et. Two primary performance met- ing suspending and resuming is considerable.
rics were used in evaluation: latency and throughput.

4.1. Open and Close a Connection

The first experiment was on the latency to open and close
a NapletSocket connection. The connection has an option to#-3. Throughput

enable/disable security checking. We performed open and

In summary, both of these operations bring latencies, but
with the continuous connection it offers, the latency is rea
sonable and acceptable.

In the next experiment, we measured the throughput of

close operations for 100 times and calculated the averageNapletSocket. The benchmark chosen for this experiment

time for each operation. Table 2 shows the results. For com-was TTCP [3], a well-known program for measurement of
parison, the latencies to open and close a Java Socket conjava Socket throughput. We measured throughput by chang-
nection are also included. Itis known that opening a connec-ing the message size (product of package number and pack-
tion involves a number of operations: authentication, auth age size). Fig. 5 shows the results. The throughput of Java
rization, secret key exchange, handshaking and socket esSocket is included for comparison.
tablishment. Breakdown of the latencies for opening a con- From the figure, we can see the throughput of Naplet-
nection is shown in Fig. 4. Socket degrades slightly (less than 5%), in comparison with
From Table 2, we can see that opening a connectionJava Socket. This degradation is mainly due to synchroniza-
with migration and security support costs almost 40 times tion required in accessing I/O streams. With the increase of
as much as that of Java Socket. Fig. 4 shows that more thamessage size, the performance gap between NapletSocket
80% of the time was spent on key establishment, authentica-and Java Socket becomes almost negligible.
tion and authorization. The latency would reduce to 18.2ms
without security support. In both cases, NapletSocket in- 5. Related Work
volves some latencies. But with the reliable communication ~ There are a number of techniques proposed for connec-
mechanism provided for mobile agents, open a connectiontion migration in different contexts.
is a one-time operation and the connection remains alive The conventional technique is from network-layer, en-
once established, which means that cost of opening a conabling the same IP address to be used even when users
nection can be amortized over agent migration. change to another network attachment point. An example
. of this technique is Mobile IP [7] which works on a con-
4.2. Suspend and Resume a Connection cept of home agent associated with the mobile host. Every
We measured the latencies for suspend and resume oppackage destined to a mobile host by its home address is in-
erations and recorded 27.8ms and 16.9ms respectively. Théercepted by its home agent and forwarded to it.
delays mainly come from the exchange of control messages Network layer implementations are not appropriate or
(handshaking), which makes up about 50% for suspendingsufficient for some applications [1]. There are many stud-
and 70% for resuming. Suspending a connection also re-ies focusing on transport layer support for mobility. One of
quires to check if there are any undeliver data in the input the representative work is due to Snoeren [11, 1]. It uses an
stream. Resuming a connection also needs to set up a datand-to-end mechanism to handle host mobility, by extend-
socket and create 1/O streams. ing the TCP protocol with a TCP migrate option. The se-

mantics of TCP remains unchanged. There are other simi-Acknowledgement This research was supported in part by
lar work, such as TCP-R [6], M-TCP [12]. Although most NSF grants CCR-9988266 and ACI-0203592.

of them work well, they require to changes kernels. This

hinders the protocols from wide deployment. References

_Connectlon migration in ne_twork ar_‘d transport If':lyers_ IS [1] M. Alexander and C. SnoereA Session-Based Architecture
mainly for the support of physical mobility. Connection mi- for Internet Mobility PhD thesis, MIT, February 2003.

gration due to code mobility requires support at session [2] j. cao, X. Feng, J. Lu, and S. Das. Mailbox-based schedule

layer. Zhang and Dao introduced a persistent connections for mobile agent communicatiotEEE Computer35(9):54—

model [18]. They described connection end points in terms 60, 9 2002.

of location-independent IDs, which are stored in a central- [3] Chesapeake Computer Consultants. Tools - Test TCP

ized host. When an end point changes its attachment point, (TTCP). http://www.ccci.com/tools/ttcp/.

it notifies and the host and then the host notifies all others in [4] W. Diffie and M. E. Hellman. New directions in cryp-

the system. By using a centralized host, their approach may tzozg(gpgzé, '5554'5 125712530“0“3 on Information TheoriT-

SUf(f;:fﬁ”;ﬁ?:é?%fg;??ggeé similar mechanism to pre- [5] R Ekwall, P. Urb’an, and A. Schiper. Robust ’TCP connec-
. tions for fault tolerant computing. IRroc. of Int’'l Conf. on

serve upper layer unbroken connections [10]. They used

e . Parallel and Distributed System2002.
OS-specific kernel interface to access the kernel buffer for [6] D. Funato, K. Yasuda anz; H.ml'okuda. TCP-R: TCP mobil-

data not yet delivered. ity support for continuous operation. Froc. of IEEE Int'|
Okoshi,et al. presented a library solution called Mobile- Conf. on Network Protocols, pages 229-28&tober 1997.

Socket on top of Java Socket [9]. They used dynamic socket [7] J. loannidis, D. Duchamp, and G. Q. Maguire. IP-based pro-

switch to update connection of MobileSocket and applica- tocols for mobile internetworking. liProc. of ACM SIG-

tion layer window to keep all outgoing data at user level COMM, April 2002.

buffers so that any data in the buffers can be recovered from [8] D. A. Maltz and P. Bhagwat. MSOCKS: An architecture for

broken connections. transport layer mobility. IfProc. of IEEE INFOCOMpages

1037-1045, 1998.

Similar mechanisms were used for robust TCP connec- T. Okoshi, M. Mochizuki, and Y. Tobe. Mobilesocket: To-

tions due to mask server crash or communication failures. [°! . : . - :

i . . ward continuous operation for java applications. It
Robust TCP connections [5] addresses reliable communica- Conf. on Computer Communications and Networks, pages
tion problem in the area of fault tolerant distributed cotapu 50-57 October 1999 ’
ing. The authors used similar approach when designing reli-;10] x. Qu, J. X. Yu, and R. P. Brent. A Mobile TCP Socket.
able communication and implemented it as a reliable socket In Proc. of IASTED Int'| Conf. on Software Engineering
on top of Java Socket. Reliable Sockets (Rocks) [17] allows November 1997.
TCP connections to support changes in attachment points[11] A. C. Snoeren and H. Balakrishnan. An end-to-end approach

It emphasizes reliability over mobility, viewing mobilitys to host mobility. InProc. 6th Int'| Conf. on Mobile Comput-

just another cause of network connection failure. It has sup ing and Networking (MobiCom000.

port for automatic failure detection and a protocol for §afe [12] F. Sultan, K. Srinivasan, D. lyer, and L. Iftode. Migratory

inter-operates with end points that do not support Rocks. TCP: Highly available internet services using connection mi-
gration. InProc. of 22nd IEEE Int'l Conf. on Distributed

6. Conclusionsand Future Work Computing System3uly 2002.

Mailbox-based asvnchronous persistent communication[lg] P. T Woj_ciec_:howski. Algorith_ms for location-independent
y P communication between mobile agents. Rroc. of AISB

mechanisms in mobile agent systems are not sufficient gymposium on Software Mobility and Adaptive Behayiour
for certain distributed applications like parallel comput pages 10-19, March 2001.

ing. Synchronous transient communication provides com-[14] C.-z. Xu. Naplet: A flexible mobile agent framework for
plementary services that make cooperative agents work network-centric applications. IRroc. of the Second Work-
more closely and efficiently. Connection migration is nec- shop on Internet Computing and e-Commerce (In conjunc-
essary in response to agent migration. This paper presents tion with IPDPS) April 2002.

a reliable connection migration mechanism that guaranteed15] C.-Z. Xuand S. Fu. Privilege delegation and agent-oriented
exactly-once message delivery. The mechanism uses agent- ~ &ccess control in naplet. Froc. of Int'l Workshop on Mobile
oriented access control and secret session keys to deal with Eg”ggt?edMgorggggng (In conjunction with ICDGSjages
security concerns arising in connection migration. A proto 16] C -Z_ XU ,andyB Wims. Mobile agent based push method-
type of the mechanism, NapletSocket, has been develope& e ' : 9 P

. . . ology for global parallel computingConcurrency: Practice
in Naplet mobile agent system, which shows a reasonable an(?)I/Expegrjienc;elp4(8):705—72p6 Ju%/: 2000. y

overhead in support of connection migration. [17] V. C. Zandy and B. P. Miller. Reliable network connec-
We note that current implementation is limited to agent tions. InProc. of 8th Annual ACM/IEEE Int'| Conf. on Mo-

migration at one endpoint of a connection. As part of on- bile Computing and Networkin@eptember 2002.

going work, we are developing solutions in support of con- [18] Y. Zhang and S. Dao. A persistent connection model for mo-

current connection migration where agents at the both end- bile and distributed systems. Rroc. of Int'l Conf. on Com-
points migrate at the same time. puter Communications and Networl&eptember 1995.

