
A Reliable and Secure Connection Migration Mechanism for Mobile Agents

Xiliang Zhong, Cheng-Zhong Xu, and Haiying Shen
Department of Electrical & Computer Engg.

Wayne State University, Detroit, Michigan 48202
{xlzhong, czxu, shy}@wayne.edu

Abstract

Connection migration in mobile systems is to support
continuous and transparent communication operations be-
tween mobile agents. This paper presents a reliable connec-
tion migration mechanism that provides exactly-once de-
livery for all transmitted data during agent migration. It
integrates with an agent-based access control mechanism
that controls the access to network ports. To avoid frequent
agent authentication and permission checking due to agent
migration, a secret session key is associated with each con-
nection. We present the design and implementation of the
mechanism, named NapletSocket in Naplet mobile agent
system. It is a pure middleware implementation, requiring
no modification of Java virtual machines. Evaluation re-
sults show that the NapletSocket system incurs a moder-
ate overhead in connection setup, mainly due to security
checking. Once a secure connection is established, only a
marginal cost is needed to pay for reliable communication
during agent migration.

1. Introduction
In agent-oriented programming, agents often communi-

cate with each other via mailbox-likeasynchronous persis-
tentcommunication mechanisms due to the requirement for
agent autonomy [2]. That is, an agent can send messages
to others no matter its communication parties exist or not.
The messages in transmission are often forwarded in sup-
port of agent migration.

Asynchronous persistent communication plays a key role
in many distributed applications and is widely supported by
existing mobile agent systems; see [13] for a recent com-
prehensive review of location independent communication
protocols between mobile agents. However, it is not ap-
propriate or sufficient for certain applications that require
agents to cooperate closely. For example, in the use of mo-
bile agents for parallel computing [16], cooperative agents
need to be synchronized frequently during their lifetime.
A synchronous transientcommunication mechanism would
keep the agents work more closely and efficiently. Socket
over TCP is an example that ensures instantaneous com-
munication in distributed applications. Since agents tendto

move from one server to another for various reasons, it is
desirable that an established socket connection would mi-
grate with the agent continuously and transparently.

The traditional TCP protocol has no support for mobility
because it has been designed with the assumption that the
communication peers are stationary. There are recent stud-
ies on mobile TCP/IP in both network and transport layers
to support the mobility of physical devices in the arena of
mobile computing. We refer to this type of mobility as phys-
ical mobility, in contrast to logical mobility of codes. Rep-
resentatives of the protocols include Mobile IP [7] in net-
work layer, MSOCKS [8],TCP-R [6], M-TCP [12] and Mi-
grate [11] in transport layer. Although these protocols pro-
vide feasible ways to link moving devices to network, they
have no control over the logical mobility. Mobile agents
may also be run on wired networks that have no support
for mobile TCP/IP.

Mobile agent systems are usually organized as a mid-
dleware. Agent connection migration requires support of
session-layer implementations in the middleware. In the
past, a few session-layer connection migration mecha-
nisms were proposed. Examples include Persistent Connec-
tion [18], Mobile TCP [10], and MobileSocket [9]. How-
ever, none of them were targeted at agent mobility. Agent
related connection migration involves two unique relia-
bility and security problems. Since both the end points
of a connection would move around, a reliable con-
nection migration needs to do more for exactly-once
delivery for all transmitted data. Security is a major con-
cern in agent-oriented programming. Socket is one of
the critical resources and its access must be fully con-
trolled by agent servers. Agent-oriented access control
must be enforced during the setup of connections. Con-
nection migration is vulnerable to eavesdropper attacks.
Additional security measures are needed to protect trans-
actions on an established connection from any malicious
attacks due to migration.

In this paper, we present the design and implemen-
tation of an integrated mechanism that deals with secu-
rity and reliability in connection migration. It provides an
agent-oriented socket programming interface for location-
independent socket communication. The interface is imple-
mented by a socket controller that guarantees exactly-once

Application

NapletSocket

Rediretor

Client Side Server Side

Controller
Data

Socket

Data

Socket
Data Channel

Middleware Layer

TCP Socket

Application Layer

Control Channel

NapletSocket

Application

Rediretor Controller

Figure 1: NapletSocket Architecture.

delivery of data, including data in transmission when the
communicating agents are moving. To assure secure con-
nection migration, each connection migration is associated
with a secret session key created during connection setup.

We prototyped the mechanism as a NapletSocket com-
ponent in Naplet mobile agent system. Naplet [14] is a
featured mobile agent system we developed in house for
educational purposes. It supports a mailbox-based PostOf-
fice mechanism with asynchronous persistent communica-
tion. NapletSocket provides a complementary mechanism
for synchronous transient communication.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of the design of NapletSocket. Re-
liability and security concerns and measures are discussed
in Section 3. Section 4 presents performance evaluation re-
sults. Related works are summarized in Section 5. Section 6
concludes the paper with remarks on future work.

2. NapletSocket Design
2.1. NapletSocket Architecture

A basic requirement of connection migration is location-
independent. The NapletSocket connection migration
mechanism provides an interface similar to Java Socket.
It comprises of two classesNapletSocket(agent-id)and
NapletServerSocket(agent-id). They resemble Java Socket
and ServerSocket in semantics, except that the Naplet-
Socket connection is agent oriented. It is known that Java
Socket/ServerSocket establish a connection between a pair
of endpoints in the form of (Host IP, Port). For security rea-
sons, an agent is not allowed to specify a port number for
its pending connection. Instead, it is the underlying sup-
port system that allocates ports to the connection based on
resource availability and access permissions. Naplet sys-
tem contains an agent location service that maps an agent
ID to its physical location. This ensures location transpar-
ent communication between agents.

For connection migration, NapletSocket system provides
two new methodssuspend()andresume(). They can be ei-
ther called by agents for explicit control over connection
migration, or by Naplet navigator for transparent migration.

Fig. 1 shows the NapletSocket architecture. It comprises
of three components: data socket, controller and redirector.
The component of data socket is the actual channel for data
transfer. It contains a pair of send/recieve buffers to keep
undelivered data. The controller is used for management of
connections and operations that need access right to socket
resources. The redirector is used to redirect socket connec-
tion from a remote agent to a local resident agent. Both con-

Table 1: States in NapletSocket transitions.
State Description
CLOSED Not connected
LISTEN Ready to accept connections
CONNECT SENT Sent aCONNECTrequest
CONNECT ACKED Confirmed aCONNECTrequest
ESTABLISHED Normal state for data transfer
SUS SENT Sent aSUSPENDrequest
SUS ACKED Confirmed aSUSPENDrequest
SUSPENDED The connection is suspended
RES SENT Sent aRESUMErequest
RES ACKED Confirmed aRESUMErequest
CLOSE SENT Sent aCLOSErequest
CLOSE ACKED Confirmed aCLOSErequest

troller and redirector can be shared by all NapletSockets so
that only one pair is necessary.

To open a connection, the controller of the client agent
sends a request to the counterpart at the server. After the
request is acknowledged, the client connects to the redi-
rector at the server side and the connection is then handed
to the desired agent. After a connection is established, the
two agents communicate with each other through access-
ing the socket, no matter where their communication par-
ties are located. Under the hood are a sequence of operations
by the NapletSocket library. The underlying data socket is
first closed, when the NapletSocket takes a suspend action
before agent migration. After the agent lands on the des-
tination, the NapletSocket system resumes the connection
by connecting to the server-side redirector. The data sock-
ets of both client and server are then updated and new in-
put/output streams are re-created atop of the socket.

2.2. State Transitions

The design of NapletSocket can be described as a fi-
nite state machine, extended from the TCP protocol. It con-
tains 12 states, as listed in Table 1. The states in bold
are newly added to the standard TCP state transitions di-
agram. A NapletSocket connection is in one of these states.
The NapletSocket system takes an action when a certain
event occurs, according to the current state of the connec-
tion. There are two types of events: calls from local agents
and messages from remote agents. Actions include sending
messages to remote agents and calling local functions.

Fig. 2 shows the state transitions of NapletSocket. The
solid lines show the transitions of clients connecting to
servers and the dotted lines are for the servers. Details of
the open/suspend/resume/close transactions are as follows.

Open a connectionBoth client and server are initially at the
CLOSEDstate. When an agent does an active open, aCON-
NECT request is sent to the server and the state of the con-
nection changes toCONNECT SENT. If the request is ac-
cepted, the client side NapletSocket receives anACK and a
socketID to identify the connection. Then it sends back its
own ID and the state changes toESTABLISHED.

CLOSED

ESTABLISHED

SUSPEND_ACKED SUSPEND_SENT

SUSPENDED

RESUME_SENTRESUME_ACKED

appl:suspend
send:SUS

appl:resumesend:RES

exec:suspend

LISTEN

CONNECT_ACKED CONNECT_SENT

recv:ID

appl:active open

send:CONNECT

CLOSE_SENT

CLOSE_ACKED

appl:listen

starting point

recv:A
CK,ID

send:ID

recv:C
ONNECT

send ACK,ID

recv:SUS

send:ACK

recv:ACK

exec:suspend

recv:RES

send:ACK

recv:CLS
send: ACK

appl:close

send:CLS

appl:close

exec:close

exec:resume
recv:ACK

exec:resume

appl:active open

send:CONNECT

appl:close or

timeout

recv: ACK

exec: close

exec:close

transitions for client transitions for server
appl: state transition taken when application issues operation
recv: state transitions taken by received message
send: send message to remote peer for the transition
exec: send message to local peer for the transition

timeout

Figure 2: NapletSocket state transitions diagram.

Connection in server side switches to the LISTEN state
once an agent does a listen. When aCONNECT request
comes from a client, the server acknowledges it by sending
back anACK and a socketID. It then changes to theCON-
NECT ACKED state. After the socketID of the client side is
received, it switches toESTABLISHEDand the NapletSocket
connection is established. Now the data can be transferred
between the two peers as normal socket connection.

Suspend/Resume a connectionAfter a connection is estab-
lished, either of the two parts may suspend it. The one who
wants to suspend a connection invokes the suspend inter-
face and aSUS is sent to the peer. If the request is acknowl-
edged, anACK is sent back and triggers the action of closing
underlying input/output streams and data socket. The con-
nection state then switches toSUSPENDED.

When the other side of NapletSocket receives theSUS

message, it sends back anACK if it agrees to suspend. Then
it closes the input/output streams and the data socket un-
der NapletSocket. After that, the state for this peer also
changes toSUSPENDED. Now connections at both peers are
suspended. No data can be exchanged in this state.

At the SUSPENDEDstate, when either of the agents de-
cides to resume the connection, it invokes the resume in-
terface. The resume process first sets up a new connec-
tion to the remote redirector and sends aRES message.
After an ACK is received, it then resumes the connection
and the state switches back toESTABLISHED. For the re-
mote peer in theSUSPENDEDstate, once it receives a re-
sume request, it first sends back anACK. Then the redirec-
tion server hands its connection to the desired NapletSocket
and new input/output streams are created. After that, both
peers change back to theESTABLISHED state.

Close a connectionIn either theESTABLISHEDor theSUS-
PENDEDstate, if an agent decides to close the current con-
nection, it invokes the close interface and the NapletSocket
does an active close by sending aCLS(CLOSE) request to the
peer. After the request is acknowledged, local data socket
is closed. For the other side of the connection, it closes
passively after receiving aCLS request. It first acknowl-
edges the request and then closes the underlying socket and
streams. At the time, data socket at both sides is closed and
the state changes toCLOSED.

3. Design Issues

3.1. Transparency and Reliability

If there is any connection setup before agent migration,
the connection should be migrated transparently. The main
approach for connection migration is to use a data socket
under NapletSocket. Each time the agent migrates, the un-
derlying data socket is closed before migration and updated
to a new data socket after migration. But for a connection
between two freely migrated agents, it is possible that mi-
gration happens at the same time when there are data being
transferred and in this case, the data may fail to reach their
destinations. So the presence of mobility causes a prob-
lem for reliable communication. Furthermore, two agents
may migrate simultaneously which makes it more difficult
to achieve reliability .

In order to guarantee that messages can be finally de-
livered, we added an input buffer to each input stream and
wrapped them together as a NapletInputStream. To suspend
a connection, the operation retrieves all currently undeliv-
ered data into the buffer before it closes the socket. The data
in the NapletInputStream migrate with the agent. When mi-
gration finishes and the connection is resumed at the remote
server, a read operation first reads data from the input buffer
of its NapletInputStream. It doesn’t read data from socket
stream until all data from the buffer have been retrieved.

In the case both agents of a connection want to move si-
multaneously, there is a problem since the resume opera-
tion from one agent only remembers the previous location
of the other agent. A simple solution to this problem is to
give priority to one side of the connection and delay the
other. For example, we can assign server-side NapletSocket
a higher priority than client-side NapletSocket so as to en-
sure server-side migration occurs before client-side. How-
ever, this could lead to a deadlock problem if more than
two agents that are connected to each other in a dual role
of client and server are moving simultaneously. For exam-
ple, in a configuration of three agents X, Y, and Z which
are clients of Y, Z, and X, respectively, the system gets into
a deadlock state if all the agents want to move at the same
time. To prevent deadlock in simultaneous migration, we
can determine migration priority based on ordered agent
IDs. Although the agentID based priority policy guaran-
tees deadlock-free, it may cause another fairness problem
in migration. It deserves further studies at least in theory.

3.2. Security

Security is always a basic and direct concern in mobile
agent system. Here we address security issues in two as-
pects. First, the agent should not be able to cause any se-
curity problems to the host it resides, either at the origi-
nal host or at the host it migrates to. Second, the connec-
tion itself should be secure from possible attacks like eaves-
dropping. More specifically, a connection can only be sus-
pended/resumed by the one who initially establishes it.

Regarding the first issue, it is safe enough if we deny
any requests to create a Socket or ServerSocket from an
agent. Permissions are only granted to requests from the
NapletSocket system. So the only way for an agent to use
socket resources is through the service provided by the mo-
bile agent system. Now the problem becomes whether we
can deny permission if a request is from an agent and grant
it if it is from the system.

This problem can be solved by user-based access con-
trol introduced in the latest JDK security mechanism. It al-
lows permissions to be granted according to who is execut-
ing the piece of code (subject), rather than where the code
comes from (codebase). A subject represents the source of
a request such as a mobile agent or NapletSocket controller.
By denying access requests from the subject of agents for
socket resources and granting them to local users like ad-
ministrators, we achieve our security goal in a simple and
clear manner. In mobile agent applications, an agent sub-
ject has no permissions to access local socket resources by
default. When it needs access to a socket resource, it sub-
mits a request to a proxy service in NapletSocket controller.
The proxy authenticates the agent and checks access per-
missions. After the security check passes, a NapletSocket
or NapletServerSocket will be created by the proxy and re-
turned to the agent. More details about agent-oriented ac-
cess control in Naplet system can be found in [15].

Regarding the second issue, connection migration can be
realized by the use of a socketID. However, a plain socket
ID couldn’t prevent a third party from intercepting the infor-
mation and exercising eavesdropping attacks. To this end,
we applied Diffie-Hellman key exchange protocol [4] to es-
tablish a secret session key between the pair of communicat-
ing agents at the setup stage of their connection. Any sub-
sequent requests for suspend, resume, and close operations
on the connection must be accompanied with the secret key.
Such requests will be denied unless their keys are verified
by remote peers. Since the key generated by Diffie-Hellman
protocol is hard to break, NapletSocket connections are pro-
tected from eavesdropping attacks.

3.3. Socket Handoff

As we know in NapletSocket, when a client connects to
a server, it uses an agentID to specify which server to con-
nect to. So we need to find both host name and port number
from theID. For host name, we can keep records of traces of
agents and locate the host according to itsID. For port num-
ber, we need to send a query message to the host where the

Agent A
Client Redirection

Server
Server

Agent B

Create NapletServerSocket

Secuty Check

Create NapletSocket

Connect to Redirection Server

Handoff Socket
Construct NapletSocket

Security Check

Exchange Control Messages

Return

Start ServerSocket

Return

Call accept()

Wait for connection

Figure 3: Socket handoff in connection setup.

NapletServerSocket is. The server has to maintain a table in-
dicating which agent uses which port and return the port to
client. Then the client can start a connection. In fact, it is
not necessary for the client to know which port to connect
to. By connecting to the redirector at the server and indi-
cating which agent it wants to connect to. The server looks
up which NapletServerSocket this request is for and redi-
rects the current socket to it. Then the NapletServerSocket
is waken up from waiting and constructs a NapletSocket ac-
cording to the data socket it receives. We call this socket
handoff and it can save at least one round trip time in query-
ing host name and port number and there is no need for the
server to maintain a table mapping ports to agents. Fig. 3
shows the sequence diagram for socket handoff in connec-
tion setup.

Similar mechanism also applies when resuming a con-
nection. In this case, the client connects to redirection server
at the other side and sends a request to resume . The server
then hands the socket connection to the suspended Naplet-
Socket and wakes it up. Finally the notified NapletSocket
updates its underlying data socket.

3.4. Control Channel
It is necessary to exchange control messages during state

transitions of a NapletSocket connection. From a perfor-
mance perspective, we used a separate channel for control
messages and chose UDP as the transport layer protocol.
For the omission failures and ordering problems caused by
UDP, we adopted a retransmission mechanism to provide
reliable delivery on top of UDP. The basic idea is to use re-
transmission in case of failure. After sending a control mes-
sage, the sender starts a retransmission timer and waits for
anACK from the receiver. If anACK is received before time-
out, the timer is cancelled. If noACK is received after time-
out, the message is retransmitted and a new timer for the
message is set. Sequenced numbers are used to relate a re-
ply to the corresponding request.

4. Evaluation
In this section, we present the performance of Naplet-

Socket and compare it with Java Socket. The experiments

0

20

40

60

80

100

120

140

 Java Socket NS w/o security NS with security

T
im

e
(m

s
)

Management

Handshaking

Security Check

Key Exchange

Open Socket

Figure 4: Breakdowns of the latency to open a connection.

Table 2: Latency to open/close a connection
Connection Type Open (ms) Close (ms)
Java Socket 3.7 0.6
NapletSocket w/o security 18.2 12.5
NapletSocket with security 134.4 12.6

were conducted in a group of Sun Blade workstations con-
nected by a 100M ethernet. Two primary performance met-
rics were used in evaluation: latency and throughput.

4.1. Open and Close a Connection
The first experiment was on the latency to open and close

a NapletSocket connection. The connection has an option to
enable/disable security checking. We performed open and
close operations for 100 times and calculated the average
time for each operation. Table 2 shows the results. For com-
parison, the latencies to open and close a Java Socket con-
nection are also included. It is known that opening a connec-
tion involves a number of operations: authentication, autho-
rization, secret key exchange, handshaking and socket es-
tablishment. Breakdown of the latencies for opening a con-
nection is shown in Fig. 4.

From Table 2, we can see that opening a connection
with migration and security support costs almost 40 times
as much as that of Java Socket. Fig. 4 shows that more than
80% of the time was spent on key establishment, authentica-
tion and authorization. The latency would reduce to 18.2ms
without security support. In both cases, NapletSocket in-
volves some latencies. But with the reliable communication
mechanism provided for mobile agents, open a connection
is a one-time operation and the connection remains alive
once established, which means that cost of opening a con-
nection can be amortized over agent migration.

4.2. Suspend and Resume a Connection
We measured the latencies for suspend and resume op-

erations and recorded 27.8ms and 16.9ms respectively. The
delays mainly come from the exchange of control messages
(handshaking), which makes up about 50% for suspending
and 70% for resuming. Suspending a connection also re-
quires to check if there are any undeliver data in the input
stream. Resuming a connection also needs to set up a data
socket and create I/O streams.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1,000 10,000 100,000

Message Size(Bytes)

T
h
ro

u
g
h
p
u
t(

M
b
/s

)

Java Socket

NapletSocket

Figure 5: Throughput of NapletSocket vs. Java Socket.

The benefit of provisioning a reliable connection can be
seen by comparing the time required for re-opening a con-
nection with that of suspend/resume. If we close a Naplet-
Socket before migration and reopen a new one after that,
the total latency involved is about 147ms. However, if we
use suspend and resume instead, the latency is less than one
third of the cost for close and reopen operations. When an
agent travels around the network, the total time saved by us-
ing suspending and resuming is considerable.

In summary, both of these operations bring latencies, but
with the continuous connection it offers, the latency is rea-
sonable and acceptable.

4.3. Throughput
In the next experiment, we measured the throughput of

NapletSocket. The benchmark chosen for this experiment
was TTCP [3], a well-known program for measurement of
Java Socket throughput. We measured throughput by chang-
ing the message size (product of package number and pack-
age size). Fig. 5 shows the results. The throughput of Java
Socket is included for comparison.

From the figure, we can see the throughput of Naplet-
Socket degrades slightly (less than 5%), in comparison with
Java Socket. This degradation is mainly due to synchroniza-
tion required in accessing I/O streams. With the increase of
message size, the performance gap between NapletSocket
and Java Socket becomes almost negligible.

5. Related Work
There are a number of techniques proposed for connec-

tion migration in different contexts.
The conventional technique is from network-layer, en-

abling the same IP address to be used even when users
change to another network attachment point. An example
of this technique is Mobile IP [7] which works on a con-
cept of home agent associated with the mobile host. Every
package destined to a mobile host by its home address is in-
tercepted by its home agent and forwarded to it.

Network layer implementations are not appropriate or
sufficient for some applications [1]. There are many stud-
ies focusing on transport layer support for mobility. One of
the representative work is due to Snoeren [11, 1]. It uses an
end-to-end mechanism to handle host mobility, by extend-
ing the TCP protocol with a TCP migrate option. The se-

mantics of TCP remains unchanged. There are other simi-
lar work, such as TCP-R [6], M-TCP [12]. Although most
of them work well, they require to changeOS kernels. This
hinders the protocols from wide deployment.

Connection migration in network and transport layers is
mainly for the support of physical mobility. Connection mi-
gration due to code mobility requires support at session
layer. Zhang and Dao introduced a persistent connections
model [18]. They described connection end points in terms
of location-independent IDs, which are stored in a central-
ized host. When an end point changes its attachment point,
it notifies and the host and then the host notifies all others in
the system. By using a centralized host, their approach may
suffer from poor performance.

Qu, et al. later proposed a similar mechanism to pre-
serve upper layer unbroken connections [10]. They used
OS-specific kernel interface to access the kernel buffer for
data not yet delivered.

Okoshi,et al.presented a library solution called Mobile-
Socket on top of Java Socket [9]. They used dynamic socket
switch to update connection of MobileSocket and applica-
tion layer window to keep all outgoing data at user level
buffers so that any data in the buffers can be recovered from
broken connections.

Similar mechanisms were used for robust TCP connec-
tions due to mask server crash or communication failures.
Robust TCP connections [5] addresses reliable communica-
tion problem in the area of fault tolerant distributed comput-
ing. The authors used similar approach when designing reli-
able communication and implemented it as a reliable socket
on top of Java Socket. Reliable Sockets (Rocks) [17] allows
TCP connections to support changes in attachment points.
It emphasizes reliability over mobility, viewing mobilityas
just another cause of network connection failure. It has sup-
port for automatic failure detection and a protocol for safely
inter-operates with end points that do not support Rocks.

6. Conclusions and Future Work
Mailbox-based asynchronous persistent communication

mechanisms in mobile agent systems are not sufficient
for certain distributed applications like parallel comput-
ing. Synchronous transient communication provides com-
plementary services that make cooperative agents work
more closely and efficiently. Connection migration is nec-
essary in response to agent migration. This paper presents
a reliable connection migration mechanism that guarantees
exactly-once message delivery. The mechanism uses agent-
oriented access control and secret session keys to deal with
security concerns arising in connection migration. A proto-
type of the mechanism, NapletSocket, has been developed
in Naplet mobile agent system, which shows a reasonable
overhead in support of connection migration.

We note that current implementation is limited to agent
migration at one endpoint of a connection. As part of on-
going work, we are developing solutions in support of con-
current connection migration where agents at the both end-
points migrate at the same time.

Acknowledgement This research was supported in part by
NSF grants CCR-9988266 and ACI-0203592.

References

[1] M. Alexander and C. Snoeren.A Session-Based Architecture
for Internet Mobility. PhD thesis, MIT, February 2003.

[2] J. Cao, X. Feng, J. Lu, and S. Das. Mailbox-based schedule
for mobile agent communication.IEEE Computer, 35(9):54–
60, 9 2002.

[3] Chesapeake Computer Consultants. Tools - Test TCP
(TTCP). http://www.ccci.com/tools/ttcp/.

[4] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT-
22(6):644–654, 1976.

[5] R. Ekwall, P. Urb’an, and A. Schiper. Robust TCP connec-
tions for fault tolerant computing. InProc. of Int’l Conf. on
Parallel and Distributed Systems, 2002.

[6] D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP mobil-
ity support for continuous operation. InProc. of IEEE Int’l
Conf. on Network Protocols, pages 229-236, October 1997.

[7] J. Ioannidis, D. Duchamp, and G. Q. Maguire. IP-based pro-
tocols for mobile internetworking. InProc. of ACM SIG-
COMM, April 2002.

[8] D. A. Maltz and P. Bhagwat. MSOCKS: An architecture for
transport layer mobility. InProc. of IEEE INFOCOM, pages
1037–1045, 1998.

[9] T. Okoshi, M. Mochizuki, and Y. Tobe. Mobilesocket: To-
ward continuous operation for java applications. InInt’l
Conf. on Computer Communications and Networks, pages
50-57, October 1999.

[10] X. Qu, J. X. Yu, and R. P. Brent. A Mobile TCP Socket.
In Proc. of IASTED Int’l Conf. on Software Engineering,
November 1997.

[11] A. C. Snoeren and H. Balakrishnan. An end-to-end approach
to host mobility. InProc. 6th Int’l Conf. on Mobile Comput-
ing and Networking (MobiCom), 2000.

[12] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Highly available internet services using connection mi-
gration. InProc. of 22nd IEEE Int’l Conf. on Distributed
Computing Systems, July 2002.

[13] P. T. Wojciechowski. Algorithms for location-independent
communication between mobile agents. InProc. of AISB
Symposium on Software Mobility and Adaptive Behaviour,
pages 10–19, March 2001.

[14] C.-Z. Xu. Naplet: A flexible mobile agent framework for
network-centric applications. InProc. of the Second Work-
shop on Internet Computing and e-Commerce (In conjunc-
tion with IPDPS), April 2002.

[15] C.-Z. Xu and S. Fu. Privilege delegation and agent-oriented
access control in naplet. InProc. of Int’l Workshop on Mobile
Distributed Computing (In conjunction with ICDCS), pages
493–497, May 2003.

[16] C.-Z. Xu and B. Wims. Mobile agent based push method-
ology for global parallel computing.Concurrency: Practice
and Experience, 14(8):705–726, July 2000.

[17] V. C. Zandy and B. P. Miller. Reliable network connec-
tions. InProc. of 8th Annual ACM/IEEE Int’l Conf. on Mo-
bile Computing and Networking, September 2002.

[18] Y. Zhang and S. Dao. A persistent connection model for mo-
bile and distributed systems. InProc. of Int’l Conf. on Com-
puter Communications and Networks, September 1995.

