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Abstract

Structured P2P overlay networks based on a consistent
hashing function have an aftermath load balance problem
that needs to be dealt with. A load balancing method
should take into account both proximity and dynamic fea-
tures of DHTs. Randomized matching between heavily
loaded nodes with lightly loaded nodes can deal with the dy-
namic feature. But current randomized methods are unable
to consider physical proximity of the node simultaneously.
There are locality-aware methods that rely on an additional
logical network to capture the physical locality in load bal-
ancing. Due to the cost for network construction and main-
tenance, these locality-aware algorithms can hardly deal
with DHTs with churn. This paper presents a locality-aware
randomized load balancing algorithm to deal with both of
the proximity and dynamic features of DHTs. We introduce
a factor of randomness in the probing process in a range of
proximity to deal with the DHT churn. We further improve
the randomized load balancing efficiency by d-way probing.
Simulation results show the superiority of a locality-aware
2-way randomized load balancing in DHTs, in comparison
with other pure random policies and locality-aware sequen-
tial algorithms. In DHTs with churn, it performs no worse
than the best churn resilient algorithm.

1 Introduction

Over the past years, the immerse popularity of peer-to-
peer (P2P) resource sharing services has produced a signifi-
cant stimulus to content-delivery overlay network research.
An important class of the overlay networks is distributed
hash tables (DHTs) [7, 11, 8, 10] that map keys to the nodes
of a network based on a consistent hashing function. How-
ever, consistent hashing [3] produces a bound ofO(log n)
imbalance of keys between nodes, where n is the number of
nodes in the system. Load balancing algorithm is to avoid
load imbalance by distributing application load among the
nodes in proportional to node capacities. The design of
a load balancing algorithm should take into account DHT
proximity feature to minimize load balancing cost and dy-
namic feature to handle churn — a situation where a great

number of nodes join, leave and fail continually and rapidly.
In the past, numerous load balancing algorithms were

proposed with different characteristics [11, 6, 2, 16, 4].
However, few of them are able to deal with both the dy-
namism and proximity. In general, the dynamic feature of
DHTs should be dealt with by randomized matching be-
tween heavily loaded nodes with lightly loaded nodes. Rao
and Godfreyet al. [6, 2] proposed randomized load balanc-
ing algorithms for dynamic DHTs with churn. The algo-
rithms treat all nodes equally in random probing, without
consideration of node proximity information in load bal-
ancing. Zhu and Hu presented a proximity-aware algorithm
to take into account the node proximity information in load
balancing [16]. The algorithm is based on an additional net-
work constructed on top of DHTs. Although the network is
self-organized, the load balancing algorithm is hardly appli-
cable to DHTs with churn.

In this paper, we present novel locality-aware random-
ized (LAR) load balancing algorithms to deal with both the
proximity and dynamic features of DHTs. The algorithms
take advantage of the proximity information of the DHTs
in node probing and distribute application load among the
nodes according to their capacities. We introduce a factor
of randomness in the probing process in a range of prox-
imity so as to make the load balancing algorithm resilient
enough to deal with the dynamic feature of DHTs. We fur-
ther improve the efficiency of the random probing process
by d-way probing. The algorithms are implemented in Cy-
cloid [10], based on a concept of “moving item” for retain-
ing DHTs’ network efficiency and scalability. We evaluated
the performance of the LAR load balancing algorithms via
comprehensive simulations. Simulation results demonstrate
the superiority of a locality-aware 2-way randomized load
balancing algorithm in DHTs, in comparison with other
pure random approaches and locality-aware sequential al-
gorithms. In DHTs with churn, it performs no worse than
the best churn resilient algorithm.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative load balancing
approaches for structured P2P systems. Section 3 details a
load balancing framework. Section 4 presents the LAR load
balancing algorithms. Section 5 shows the performance of
the approaches in terms of a variety of metrics in DHTs



with and without churn. Section 6 concludes this paper with
remarks on possible future work.

2 Related Work

Load balance is an aftermath problem in any DHTs
based on consistent hashing functions. Kargeret al. proved
that the consistent hashing function in chord [11] leads to
a bound ofO(log n) imbalance of keys between the nodes.
Stoicaet al. proposed an abstraction of “virtual servers”
for Chord load balancing. This abstraction simplifies the
treatment of load balancing problem at the cost of higher
space overhead and lookup efficiency compromise. The
original concept of “virtual servers” ignored the file size
and node heterogeneity. Later on, Raoet al. [6] proposed
three algorithms to rearrange load based on nodes’ differ-
ent capacities. Their basic idea is to move load from heavy
nodes to light nodes so that each node’s load does not ex-
ceed its capacity. Most recently, Godfreyet al. [2] extended
this work for dynamic P2P systems. This is, if a node’s
capacity utilization exceeds a predetermined threshold, its
excess virtual servers will be moved to a light one immedi-
ately without waiting for next periodic balancing. The al-
gorithms assumes a goal of minimizing the amount of load
moved. They neglects the effect of proximity information.
With proximity consideration, load transferring and com-
munication are between physically close heavy nodes and
light nodes. One of the first work to utilize the proxim-
ity information to guide load balancing is due to Zhuet
al. [16]. The authors suggested to build a K-nary tree (KT)
structure on top of a DHT overlay. The KT tree helps to
use proximity information to move load between physically
close heavy and light nodes. However, the construction and
maintenance of KT are costly, especially in churn. Besides,
when a parent fails or leaves, the load imbalance of some
of its children in the subtree cannot be solved before its re-
covery. Most recently, Karger and Ruhl [4] proved that the
“virtual servers” method could not be guaranteed to handle
item distributions in a certain condition. As a remedy, they
proposed two schemes with provable features:moving items
andmoving nodesto achieve equal load between a pair of
nodes, and then a system-wide load balance state.

This paper presents LAR algorithms to take into account
proximity information in load balancing and deal with net-
work churn meanwhile and a first implementation of item
movement based load balancing algorithms though it is also
suitable for “virtual servers”.

3 Load Balancing Framework

Cycloid is a lookup efficient constant-degree DHT with
n=d · 2d nodes, whered is dimension. Each Cycloid node
has O(1) neighbors and is represented by a pair of in-
dices(k, ad−1ad−2 . . . a0), where k is a cyclic index and
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Figure 1. Cycloid node routing links state.

ad−1ad−2......a0 is a cubical index. The cyclic index is an
integer, ranging from 0 tod − 1 and the cubical index is a
binary number between 0 and2d − 1. The nodes with the
same cubical index are ordered by their cyclic index mod
d on alocal cycle. The largest cyclic index node in a local
cycle is called theprimary nodeof the nodes at the same lo-
cal cycle. All local cycles are ordered by their cubical index
mod2d on a large cycle. Figure 1 shows the routing links
of a Cycloid node (4,10111010). They include the node’s
predecessor and successor in the local cycle, two primary
nodes of the preceding and the succeeding remote cycles,
onecubical neighborand twocyclic neighbors. For more
information about Cycloid, please refer to [10].

In the following, we will present a framework for load
balancing based on “moving item” on Cycloid. It takes ad-
vantage of the Cycloid’s topological properties and conduct
a load balancing process in two steps:local load balancing
within a cluster andglobal load balancingbetween clusters.

A general load balancing approach with consideration of
node heterogeneity is to partition nodes into a super node
with high capacity and a class of regular nodes with low
capacity [14]. Each super node, together with a group of
regular nodes, forms a cluster in which the super node oper-
ates as a server to the others and all the super nodes op-
erate as equal nodes. Super-peer network strikes a bal-
ance between the inherent efficiency of centralization and
distribution, and takes advantage of capacity heterogene-
ity, as well. Since Cycloid consists of cycles with a pri-
mary node in each cycle, we build a Cycloid super-peer
network by assigning each primary node as a super node
in its cycle/cluster. The neighborhood construction mecha-
nism in [12] can be used to construct super-peer networks
in other DHTs such as Chord, Pastry, etc.

Let Li represent theactual loadof a real serveri. It is
the sum of the load of the items it stores:Li =

∑mi

k=1 Li,k,
assuming the node hasmi items. LetCi be the capacity of
nodei andTi its pre-defined target load in a percentage of
the node capacity. We refer to the node whose actual load is
no larger than its target load (i.e. Li ≤ Ti) as alight node;
otherwise a heavy node. We definenode utilizationNUi

as the fraction of its target capacity that is used:NUi =



Li/Ti. A system utilizationis the fraction of the system’s
total target capacity.

Each node contains a list of data items, labelled as
IDk (k = 1, 2, . . .). To reduce the workload of a
heavy node, the items chosen to transfer are calledexcess
items. Each primary node has a pair of donating sorted
list (DSL) and starving sorted (SSL) list which store the
load information of all nodes in its cluster. A DSL is
for light nodes and a SSL is for heavy nodes. Thefree
capacity of light node i,4Li, is defined as4Li=Ti −
Li. Load informationof a heavy node i is expressed
as<Li,1, IDi,1, ip addr(i)>, <Li,k, IDi,k, ip addr(i)>,
. . . , <Li,m, IDi,m, ip addr(i)>, in which ip addr(i) de-
notes the IP address of node i. Load information of a
light node j is expressed as<4Lj , ip addr(j)>. A SSL is
sorted in a descending order ofLi,k. A DSL is sorted in an
ascending order of4Lj . Load rearrangement is executed
between a pair of DSL and SSL, as shown in Algorithm 1.
This scheme guarantees that heavier items have high prior-
ities to be reassigned to a light node, which means faster
convergence to a system-wide load balance state.

Algorithm 1 Primary node performs load rearrangement
periodically between a pair of DSL and SSL.

1: for each item k in SSLdo
2: for each item j in DSLdo
3: if Li,k <= 4Lj then
4: item k is arranged to be transferred fromi to j
5: if 4Lj − Li,k > 0 then
6: put< (4Li − Li,k), ip addr(i) > back to DSL
7: end if
8: end if
9: end for

10: end for

We use a centralized method for local load balancing,
and a decentralized method for global load balancing. Pe-
riodically, each node reports its load information to its pri-
mary node. A primary node with nonempty starving list
(PNS) first performs local load rearrangement between its
DSL and SSL. It then probes other primary nodes’ DSLs
for global load rearrangement until its SSL becomes empty.
This scheme can be extended to perform load rearrange-
ment between one SSL and multiple DSLs for improve-
ment.

4 Locality-Aware Randomized Load Balanc-
ing Algorithms

The load balancing framework presented in the preced-
ing section facilitates the development of load balancing al-
gorithms with different characteristics. The key difference
between the algorithms is, for a PNS, how to choose another
primary node for a global load rearrangement between their
SSL and DSL. It affects the efficiency and overhead to reach
a system-wide load balance state.

4.1 D-way Randomized Probing

In a randomized probing policy, each PNS probes other
primary nodes randomly for load rearrangement. A sim-
ple form is one-way probing, in which a PNS, say nodei,
probes other primary nodes one by one to execute load rear-
rangement betweenSSLi andDSLj , wherej is a probed
node.

The randomized probing in our load balancing frame-
work is similar to load balancing problem in other con-
texts: competitive online load balancingandsupermarket
model. Competitive online load balancing is to assign each
task to a server on-line with the objective of minimizing
the maximum load on any server, given a set of servers and
a sequence of task arrivals and departures. Azaret al. [1]
proved that in competitive online load balancing, allowing
each task to have two server choices to choose a less loaded
server instead of just one choice can exponentially mini-
mize the maximum server load and result in a more bal-
anced load distribution. Supermarket model is to allocate
each randomly incoming task modelled as a customer with
service requirements, to a processor (or server) with the ob-
jective of reducing the time each customer spends in the
system. Mitzenmacheret al. [5] proved that allowing a task
two server choices and to be served at the server with less
workload instead of just one choice leads to exponential im-
provements in the expected execution time of each task. But
a poll size larger than two gains much less substantial extra
improvement.

The randomized probing in our load balancing frame-
work can be represented by the above models if we regard
SSLs as tasks, and DSLs as servers. As to the problem of
the same capacity for each server in those models, we treat
the condition that different DSLs have different total free
capacity in the same way as that those DSLs are already as-
signed some tasks and with different free capacity left; that
is, in the middle way of task assignment with a same very
large total target capacity for each of DSLs. We generalize
the one-way random probing policy to a d-way probing, de-
noted by Rd (d≥1), in which d primary nodes are probed at
a time, and the primary node with the most total free capac-
ity in its DSL is chosen for load rearrangement. We expect
that 2-way probing could achieve a more balanced load dis-
tribution with faster speed even in churn, but d (>2)-way
probing may not result in much additional improvement.

4.2 Locality-Aware Probing

One goal of load balancing is to keep each node’s utiliza-
tion below one with minimum overhead and time. Proxim-
ity is one of the most important performance factors. We
integrate proximity-neighbor selection and topologically-
aware overlay construction techniques [13] into Cycloid to
build a topology-aware Cycloid. That is, a node selects the
routing table entries pointing to the topologically nearest



among all nodes with nodeId in the desired portion of the Id
space, and each node Id is represented by its Hilbert num-
ber so that physically close primary nodes are close to each
other in the large cycle. As a result, the primary nodes of a
node’s neighbors are closer to the node than randomly cho-
sen primary nodes in the entire network, such that the cost
for communication and load movement can be reduced if
a primary node contacts its primary node neighbors or pri-
mary nodes of its neighbors. There are two methods for
locality-aware probing:randomizedandsequentialmethod.
In locality-aware randomized probing, each PNS contacts
its primary node neighbors or primary nodes of its neigh-
bors. After all neighbors have been tried, if the PNS’s SSL
is still nonempty, global random probing is started in the en-
tire Id space. In locality-aware sequential probing, denoted
by Lseq, each PNS contacts its successor,Successor(PNS).
After load rearrangement, if its SSL is still nonempty,Suc-
cessor(Successor(PNS))is tried. This process is repeated,
until that SSL becomes empty.

5 Performance Evaluation

We designed and implemented a simulator in Java for
evaluation of the load balancing algorithms on topology-
aware Cycloid. We selected 15 nodes as landmark nodes
to generate the landmark vector and a Hilbert number [13]
for each node Id. We use two transit-stub topologies gener-
ated by GT-ITM [15]: “ts5k-large” and “ts5k-small”. “ts5k-
large” has 5 transit domains, 3 transit nodes per transit do-
main, 5 stub domains attached to each transit node, and 60
nodes in each stub domain on average. “ts5k-small” has
120 transit domains, 5 transit nodes per transit domain, 4
stub domains attached to each transit node, and 2 nodes in
each stub domain on average. “ts5k-large” is used to repre-
sent a situation in which Cycloid overlay consists of nodes
from several big stub domains, while “ts5k-small” repre-
sents a situation in which Cycloid overlay consists of nodes
scattered in the entire Internet and only few nodes from the
same edge network join the overlay. To account for the fact
that interdomain routes have higher latency, each interdo-
main hop counts as 3 hops of units of latency while each
intradomain hop counts as 1 hop of unit of latency. Ta-
ble 1 lists the parameters of the simulation and their default
values. Pareto distribution reflects real world where there
are machines with capacities that vary by different orders of
magnitude. We will compare the different load balancing
algorithms in Cycloid without churn in terms of the follow-
ing performance metrics; performance of the LAR in Cy-
cloid with churn will be evaluated in Section 5.4.

(1) Load movement factor, defined as the total load trans-
ferred due to load balancing divided by the system ac-
tual load. It represents load movement cost for load
balance.

(2) Total time of probings, defined as the time spent for
primary node probing assuming that probing one node

Table 1. Simulation settings and algorithm pa-
rameters.

Environment Parameter Default value
Object arrival location Uniform over Id space
Number of nodes 4096
Node capacity Bounded Pareto: shape 2

lower bound:2500, upper bound: 2500*10
Number of items 20480
Existing item load Bounded Pareto: shape: 2,

lower bound: mean item actual load/2
upper bound: mean item actual load/2*10

takes 1 time unit, and probing n nodes simultaneously
also takes 1 time unit. It represents the speed of prob-
ing phrase in load balancing to achieve a system-wide
load balance state.

(3) Total number of load rearrangements, defined as the
total number of load rearrangement between a pair of
SSL and DSL.

(4) Total probing bandwidth, defined as the sum of the
bandwidth consumed by all probings. A probing’s
bandwidth is the sum of the bandwidth of all commu-
nication, each of which is message size times physical
path length of the message travelled. It is assumed that
the size of a message asking and replying for informa-
tion is 1 unit. It represents the traffic burden caused by
probings.

(5) Moved load distribution, defined as the cummula-
tive distribution function (CDF) of the percentage of
moved load versus moving distance. It represents the
load movement cost for load balance. The more load
moved along the shorter distances, the less load bal-
ancing costs.

Because metrics (2) and (3) are not affected by topology,
we will only show results of them in “ts5k-large”.

5.1 Effectiveness of LAR Algorithms

In this section, we will show the effectiveness of LAR
load balancing algorithms. First, we present the impact of
LAR algorithm on the alignment of the skews in load distri-
bution and node capacity when the system is fully loaded.
From Figure 2(a) and (b), we can see that many nodes
are overloaded before load balancing and after load balanc-
ing they become light by transferring excess items to light
nodes. Figure 2(c) shows the scatterplot of loads according
to node capacity. These figures show that the load balancing
frame assigns load to nodes based on their capacity with the
consideration of node heterogeneity.

We measured the load movement factors due to different
load balancing algorithms: one-way random (R1), two-way
random (R2), LAR1, LAR2, and Lseq, on systems of utiliza-
tion from 0.5 to 1, with 0.05 increase in each step. The sim-
ulation results showed that the algorithms require the same



(a) Before load balancing (b) After load balancing (c) Utilization of nodes after load balancing

Figure 2. Effect of load balancing

amount of load movement in total for load balance. This is
in consistent with the observations by Rao,et al.[6] that the
load moved depends only on distribution of loads, the target
to be achieved and not on load balancing algorithms. This
result suggests that a better load balancing algorithm should
explore how to move the same amount of load along shorter
distance to reduce item transfer cost; in another word, how
to achieve locality-aware load balancing. In the following,
we will examine the performance of various load balancing
algorithms in terms of other performance metrics.

5.2 Comparison Between Different Algorithms

Figure 3(a) shows the probing time of Lseq is much more
than R1 and LAR1. This result implies that random al-
gorithm is better than sequential algorithm in probing ef-
ficiency. Figure 3(b) shows that the rearrangement number
of those three methods are almost the same. This implies
that these three algorithms need almost the same number of
primary nodes for load rearrangement to achieve load bal-
ance. However, more probing time of Lseq suggests that
Lseq is not as efficient as random probing. It is consis-
tent with the observation of Mitzenmacher in [5] that simple
randomized load balancing schemes can balance load effec-
tively although it is often difficult to analyze such schemes.

Figure 3(c) and (d) show the performance of the algo-
rithms in “ts5k-large”. From Figure 3(c), we can observe
that bandwidth for probings of R1, LAR1 and Lseq are al-
most the same in lightly loaded system with utilization no
more than 0.6. When system utilization is greater than 0.6,
this bandwidth of R1 is more than LAR1 and Lseq, and the
performance gap increases as the system load increases. It
is because that much less number of probings is needed in
lightly loaded system compared with that in heavily loaded
system. Such that, probing distance has less effect in band-
width consumption in lightly load system. The bandwidth
results of LAR and Lseq are almost the same when system
utilization is no more than 0.9, and when system utiliza-
tion is more than 0.9, the bandwidth of LAR is more than
Lseq’s. This is due to the fact that in more heavily loaded

system, more randomly chosen nodes from entire Id space
need to be probed, which have longer distances to prob-
ing nodes than sequential nodes, resulting in more probing
bandwidth consumption. Figure 3(d) shows the moved load
distribution in global load balancing with system utilization
approaches to 1. We can see that LAR1 and Lseq are able
to transfer about 60% of total moved load within 10 hops,
while R1 transfers only about 15% within 10 hops. That’s
because R1 is locality-oblivious while LAR1 and Lseq are
locality-aware.

Figure 3(e) and (f) show the performance of algorithms
in “ts5k-small”. These results also confirm that LAR1 and
Lseq achieve better locality-aware performance than R1,
although the improvement is not so significant as that in
“ts5k-large”. It is because that in “ts5k-small” topology,
nodes are scattered in the entire network. In this case, the
neighbors of a primary node may not be physically closer
than other nodes.

In summary, these results suggest that the randomized
algorithm is more efficient than the sequential algorithm
in the probing process. The locality-aware approaches can
effectively assign and transfer loads between neighboring
nodes first, thereby reduce network traffic and improve load
balancing efficiency. The LAR algorithm performs best
among the three algorithms.

Figures 4 and 5 show the breakdown of total probed
nodes in percentage of the probed nodes got from neigh-
bors or from randomly choosing in entire Id space in LAR1

and LAR2 respectively. Label “one neighbor and one ran-
dom” in Figure 5 represents the condition when there’s only
one neighbor in routing table, then another probed node is
chosen randomly from Id space. We can see that the per-
centage of neighbor primary node constitutes the most part.
With system utilization increases, the percentage of neigh-
bor primary node decreases because the neighbors’ DSLs
don’t have enough free capacity for a larger number of ex-
cess items. Therefore, neighbors can support most of sys-
tem excess items in load balancing, and randomly chosen
primary nodes must be resorted to for excess items that can-
not be supported by neighbors.
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Figure 4. Breakdown of probed nodes of LAR 1

5.3 Effect of D-Way Random Probing

We tested the performance of the LARd algorithms with
different concurrency degreed. Figure 6(a) shows that
LAR2 has much less probing time than LAR1. It implies
that LAR2 reduces the probing time of LAR1 at the cost of
more number of probings. Unlike LAR1, in LAR2, a prob-
ing node only sends its SSL to a node with more total free
capacity in its DSL between two probed nodes. The more
item transfers in one load rearrangement, the less probing
time. It leads to less number of SSL sending operation of
LAR2 than LAR1, resulting in less number of load rear-
rangements as shown in Figure 6(b). Therefore, simultane-
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Figure 5. Breakdown of probed nodes of LAR 2

ous probings to get a node with more total free capacity in
its DSL can save load balancing time and reduce network
traffic load.

From Figure 6(a) and (b), we can observe that the prob-
ing efficiency of LARd (d>2) is almost the same as LAR2,
though they need to probe more nodes than LAR2. Our
results are almost in consistent with the observations of
randomized algorithms in parallel computing that a two-
way probing method leads to an exponential improvement
over one-way probing, but a d-way (d>2) probing leads
to much less substantial additional improvement [5]. In
the following, we will show whether the improvement of
LARd (d ≥ 2) over LAR1 is at the cost of more band-



width consumption or locality-aware performance degrada-
tion. Figure 6(c) and (d) show experiment results in “ts5k-
large”. We can see from Figure 6(c) that the probing band-
width of LAR2 is almost the same as LAR1. Figure 6(d)
shows the moved load distribution in global load balanc-
ing of each algorithm. We can see that the distribution of
LAR2 is proximately the same as LAR1, and their perfor-
mance is better than that of LAR4 and LAR6, which are
almost the same. This is caused by the fact that the more
simultaneous probed nodes, the less possibility that the best
primary node is a close neighbor node. Based on these re-
sults, we can conclude that LAR2 improves on LAR1 at no
cost of bandwidth consumption. It retains the advantage of
locality-aware probing.

Figure 6(e) and (f) show the performance of each algo-
rithm “ts5k-small”. The nodes in “ts5k-small” are scattered
all over the network. This feature leads to less significant
result in Figure 6(f). However, we can get the same conclu-
sions as those in “ts5k-large”.

5.4 Load Balancing in Systems with Churn

In practice, nodes and items continually join and leave
P2P systems. It is hard to achieve load balance with churn
because of two facts. First, before a node leaves, it transfers
all its items to its neighbor, which becomes overloaded if
it cannot provide sufficient capacity for those items. Sec-
ond, continuous and fast file joins increase the probability
of overloaded nodes generation. These require an load bal-
ancing algorithm to find nodes with sufficient free capacity
for excess items quickly in order to keep load balance con-
dition in churn.

We evaluated the efficiency of the LAR algorithms in dy-
namic situations with respect to a number of performance
factors. Experiment results verified the superiority of the
algorithm in DHTs with churn, in comparison with a churn
resilient algorithm (CRA) proposed in [2]. Due to space
constrains, we present a summary of experimental results
in this section; more details can be found in [9]. In this ex-
periment, We run each trial of the simulation for 20T sim-
ulated seconds, where T is a parameterized load balancing
period, and it was set to 60 seconds in our test. The item
join/departure rate was modelled by a Poisson process with
a rate of 0.4; that is, there were one item join and one item
departure every 2.5 seconds. The system utilization of sys-
tem was set to 0.8. We adopted the same metrics as in [2]:

(1) 99.9th percentile node utilization (99.9th NU). We
measure the maximum 99.9th percentile of the utiliza-
tions of the nodes after each load balancing period T in
simulation and take the average of those results over a
20T period as the 99.9th NU.

(2) Load movement factor, defined as the load moved
movement factor corresponding to the 99.9th NU.

(3) Load moved/DHT load moved (L/DHT-L), defined as
the total load moved incurred due to load balancing
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Figure 7. Effect of load balancing with churn

divided by the total load of items moved due to node
joins and departures in the system.

Figure 7 plots the performance due to LAR1 and CRA
versus node interarrival time. By comparing results of
LAR1 and CRA, we can have a number of observations.
First, the 99.9th NUs of LAR1 and CRA are kept no more
than 1 and 1.25 respectively. This implies that on average,
LAR1 can achieve the load balancing goal in churn. Sec-
ond, LAR1 moves up to20% and CRA moves up to45%
of the system load to achieve load balance for system uti-
lization as high as80%. Third, the load moved due to load
balancing is very small compared with the load moved due
to node joins and departures and it is up to 0.4 for LAR1

and 0.53 for CRA. When the node interarrival time is 10,
the L/DHT-L is the highest. It is because faster node joins
and departures generate much higher degree of load imbal-
ance, such that more load transferred is needed to achieve
load balance. The fact that the results of LAR1 are com-
parable to CRA implies that LAR algorithm is as efficient
as CRA to handle churn. In summary, in the face of rapid
arrivals and departures of items of widely varying load and
nodes of widely varying capacity, LAR algorithm achieves
load balance while moving up to20% of the load that arrives
into the system, and up to40% of the load the underlying
DHT moves due to node arrivals and departures. It ensures
a load balance condition even in churn.

6 Conclusions

This paper presents LAR load balancing algorithms to
deal with both of the proximity and dynamic features of
DHTs. The algorithms distribute application load among
the nodes by “moving items” according to node capacities,
as well as node proximity information in topology-aware
DHTs. We introduce a factor of randomness in the probing
process in a range of proximity to deal with DHT churn. We
further improve the randomized load balancing efficiency
by d-way probing. Simulation results show the superior-
ity of a locality-aware 2-way randomized load balancing in
DHTs with and without churn.

We note that the load balancing algorithms work for key
distribution load balancing. In file sharing P2P systems,
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Figure 6. Effect of load balancing due to different LAR algorithms

a main function of nodes is to handle key location query.
Query load balancing is a critical part of P2P load balanc-
ing; that is, the number of queries that nodes receive, handle
and forward is based on their different capacities accord-
ingly. We will explore methods for this.
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