
Elastic Routing Table with Probable Performance for Congestion Control in
DHT Networks

Haiying Shen and Cheng-Zhong Xu
Department of Electrical & Computer Engineering

Wayne State University, Detroit, MI 48202
{shy,czxu}@ece.eng.wayne.edu

Abstract

Structured P2P (DHT) networks based on consis-
tent hashing functions have an inherent load balancing
problem. The problem becomes more severe due to the het-
erogeneity of network nodes and the non-uniform and
time-varying file popularity. Existing DHT load balanc-
ing algorithms are mainly focused on the issues caused by
node heterogeneity. To deal with skewed lookups, this pa-
per presents an elastic routing table (ERT) mechanism for
query load balancing, based on the observation that high
degree nodes tend to receive more traffic load. The mech-
anism allows each node to have a routing table of vari-
able size corresponding to node capacities. The indegree
and outdegree of the routing table are also adjusted dy-
namically in response to the change of file popularity and
network churn. Theoretical analysis proves the routing ta-
ble degree is bounded. The elastic routing table facilitates
locality-aware randomized query forwarding to further im-
prove lookup efficiency. By relating query forwarding to a
supermarket customer service model, we prove a 2-way ran-
domized query forwarding policy leads to an exponential
improvement in query processing time over random walk-
ing. Simulation results demonstrate the effectiveness of the
elastic routing table mechanism and its related query for-
warding policy for congestion and query load balanc-
ing. In comparison with the existing “virtual-server”-based
load balancing algorithm and other routing table con-
trol approaches, the ERT-based congestion control pro-
tocol yields significant improvement in query lookup effi-
ciency.

1. Introduction

In structured P2P overlay networks, each peer (or node)
and file key is assigned a unique ID, based on a consis-
tent hashing function. The file keys are mapped on to nodes
according to their IDs and a distributed hash table (DHT)

definition. The DHT maintains topological relationships be-
tween the nodes and supports a routing protocol to locate
a node responsible for a required key. Because of their
lookup efficiency, robustness, scalability and deterministic
data location, DHT networks have received much atten-
tion in recent years. Representatives of the systems include
variable-degree DHTs like CAN [28], Chord [33], Pas-
try [29], Tapestry [34], Kademlia [21], and constant-degree
DHTs like Cycloid [32], Koorde [12] and Vicery [19].

DHT networks have an inherent load balancing problem.
It is because consistent hashing produces a bound of O(log
n) imbalance degree of keys between the network nodes.
The problem becomes even more severe as the nodal het-
erogeneity increases. What is more, files stored in the sys-
tem often have different popularities and the access patterns
to the same file may vary with time. It is a challenge to de-
sign a DHT protocol with the capability of congestion con-
trol.

The primary objective of congestion control is to avoid
bottleneck in any node (i.e. the query load exceeds its capac-
ity). Bottleneck may occurs with query overflow in which
too many queries received by the node at a time or data over-
flow in which a too high volume of data needed to be down-
loaded and forwarded by the node simultaneously. Although
files are often transmitted via a direct connection between
source and destination, data forwarding using intermediary
nodes in the query routing path is often used for the provi-
sioning of anonymity of file sharing, as in Freenet [8], Man-
tis [5], Mutis [1], and Hordes [14].

In the past, many load balancing strategies have been pro-
posed to deal with the network heterogeneity; see [33, 10, 4]
for examples. It is known that a long key ID space inter-
val has a high probability of being contacted than a short
interval. The approaches share a common idea of “virtual
server”, in which a physical node simulates a number of vir-
tual overlay servers so that each node is assigned ID space
interval of a different length according to its capacity. The
simplicity of the approaches comes at a high cost to main-
tain the relationship between a node’s responsible interval

and its capacity. Moreover, because the approaches are based
merely on key ID assignment, they do not provide any con-
trol over congestions caused by the factor of non-uniform
and time-varying file popularity.

There are other approaches, based on “item-movement”,
to take into account the effect of file popularity on query
load [3, 31]. In the approaches, heavily load nodes probe
light nodes and re-assigns excess load between the peers by
changing the IDs of related files or nodes. Albeit flexible, the
load reassignment process incurs high overhead for chang-
ing IDs, especially under churn.

Notice that the existing load balancing approaches as-
sume that each node (or virtual node) has the same and con-
stant DHT size. In other words, each node maintains the
same number of neighboring relationships, irrespective of
its capacity. The principle of power-law networks tells that
higher degree nodes tend to experience more query loads [2].
In light of this, in this paper, we present an elastic rout-
ing table (ERT) mechanism to cope with node heterogeneity,
skewed queries, and churn in DHT networks. Unlike current
structured P2P routing tables with a fixed number of out-
links, each ERT has a different number of inlinks/outlinks
and the indegree/outdegree of each node can be adjusted
dynamically according to its experienced traffic and direct
query flow to light nodes.

Most recently, Li,et al. [16] pursued similar ideas of
using non-uniform DHTs in different nodes for making a
good tradeoff between lookup efficiency and maintenance
cost. Castro,et al. [6] exploited heterogeneity by modifying
the proximity neighbor selection algorithm. The ERT-based
congestion control protocol goes beyond the construction of
capacity-aware DHTs. It deals with congestion due to time-
varying file popularity by adjusting the indegrees and out-
degrees of the routing tables and capacity-aware query for-
warding.

We summarize the contributions of this paper as follows.

• An initial indegree assignment for the construction
of capacity-aware DHTs. The indegrees are provably
bounded.

• A policy for periodic indegree adaptation to deal with
the non-uniform and time-varying file popularity. It is
proved that the indegree bounds remain bounded.

• A topology-aware randomized query forwarding policy
on the elastic DHT networks. It is proved that the ERT-
enabled query forwarding leads to an exponential im-
provement in query processing time over random walk-
ing.

• Comprehensive simulations demonstrate the superior-
ity of the elastic congestion control protocol, in com-
parison with the “virtual-server”-based load balancing
policy and other routing table control approaches.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative congestion con-
trol approaches for unstructured and structured P2P systems.
Section 3 shows the ERT-based protocol, focusing on ini-
tial indegree assignment and periodic adjustment. Section 4
gives the details of topology-aware randomized query for-
warding policy. Section 5 shows the performance of the pro-
tocol with comparison of a variety of metrics. Section 6 con-
cludes this paper with remarks on possible future work.

2. Related Work

There have been many load balancing algorithms to deal
with node heterogeneity and network churn [33, 10, 4]. “Vir-
tual server” [33] is a popular approach, in which each real
node runsO(log n) virtual servers and the keys are mapped
onto virtual servers so that each real node is responsible for
the key ID space of different length proportional to its ca-
pacity. It is simple in concept, but the virtual server abstrac-
tion incurs large maintenance overhead and compromises
lookup efficiency. Godfrey,et al.[10] addressed the prob-
lem by arranging a real server for virtual Id space of con-
secutive virtual Ids. When a node selects its virtual servers,
it first picks a random starting point and then selects one ran-
dom ID within each ofΘ(log n) consecutive intervals of size
Θ(1/n). In [4], Bienkowskiet al.proposed a distributed ran-
domized scheme to let a linear number of nodes with short
ID space interval to divide the existing long ID space inter-
val, resulting in a optimal balance with high probability.

Since a node with a longer interval has a higher probabil-
ity of being contacted, the load balancing algorithms based
on ID space interval assignment control traffic congestion
due to the node heterogeneity in capacity. Initial key ID
space partitioning is insufficient to guarantee load balance,
especially in DHTs with churn. It is often complemented
by dynamic load reassignment. Godfrey and Raoet al.pro-
posed schemes to rearrange load between heavy nodes and
light ones according to their capacities so as to avoid bottle-
neck [9, 27]. They assumed that query load was uniformly
distributed in the ID space.

Bharambeet al. [3] proposed a load balancing algorithm
to deal with the congestion caused by biased lookups. They
defined a node’s load as the number of messages routed or
matched per unit time. The load balancing algorithm pro-
ceeds in a way that heavily loaded nodes probe a number
of sample nodes and requests lightly loaded nodes to leave
from their current locations and rejoin at the location of the
heavily loaded nodes. To get the load distribution informa-
tion, each node periodically samples nodes within a cer-
tain distance and maintains approximate histograms. This
requires much communication and maintenance cost, espe-
cially in churn. In addition, node ID changes due to the node
leave/rejoin incurs high overhead.

2

The idea of using irregular routing tables with respect
to the node capacity has been recently pursued by Huet
al. [11], and Li et al. [16]. Their foci were on a trade-off
between maintenance overhead and lookup efficiency. Huet
al. proposed to deploy large routing tables in high capac-
ity nodes to exploit node heterogeneity and improve lookup
efficiency. Li et al. designed an Accordian mechanism on
Chord to vary the table size in different network scales and
churn rates without compromising lookup efficiency. Cas-
tro et al. [6] proposed a neighbor selection algorithm to con-
struct routing tables based on node different capacities. Its
basic idea of using the node indegree to exploit node het-
erogeneity is similar to our initial indegree assignment al-
gorithm. Their algorithm directs most traffic to high capac-
ity nodes because it does not choose low capacity nodes as
neighbors unless the indegree bounds of high capacity nodes
are reached. In contrast, ERT mechanism would distribute
the traffic between the neighbors proportional to their capac-
ities so as to make full utilization of both high and low ca-
pacity nodes. More importantly, ERT mechanism deals with
more than node heterogeneity. It deals with biased lookups
and network churn by adjusting the table indegree and out-
degree dynamically and query forwarding.

Finally, we note that the problem of congestion control
is non-unique in structured P2P networks. It has been a
crucial performance issue in unstructured P2P networks, as
well. Many studies have been devoted to flow control in un-
structured networks; see [26, 17, 18, 7] for recent examples.
Like congestion control in DHT networks, their solutions are
based on the principle of power-law networks that high de-
gree nodes play an important role in communication. Since
they were designed for flooding or random walk query rout-
ing networks, the flow control algorithms on unstructured
P2P networks cannot be applied for load balancing and con-
gestion control in DHT networks.

3. Elastic DHT

In this section, we will introduce a congestion control
protocol based on ERT in DHT overlays. ERT is designed
based on the principle of power-law networks that a higher
degree node tends to receive more query load. The ERT-
based protocol constructs routing tables of different number
of outlinks so as to distribute query load among the nodes
proportional to their capacities. Each node dynamically ad-
justs its indegree according to its actual query load.

3.1. Query Load Balancing and ERT

We assume a DHT network withn physical nodes. Node
i has a capacity that it is willing to devote or able to pro-
cess queries. We assume that nodei’s capacityci is a quan-
tity that represents the number of queries that nodei can

handle in a given time interval T. In practice, the capacity
should be determined as a function of a node’s access band-
width, processing power, disk speed, etc. We define the load
of nodei, li, as the number of queries it receives and trans-
mits to its neighbors over T. We refer to node with traffic
load li ≤ ci as alight node; otherwise a heavy node or a
overloaded node.

The purpose of a congestion control protocol is to
avoid heavy nodes in query routings and distribute query
load among nodes corresponding to their capacities. From
the view point of a entire system, fair load distribu-
tion is achieved by letting each node’s load share propor-
tional to its “fair load share“, as defined bysi = li/

∑
i li

ci/
∑

i ci
.

Ideally, the fair sharesi should be kept close to 1. One
way to achieve this is to measure the traffic loadli of ev-
ery node periodically and forward queries according to col-
lected global traffic load information. Obviously, this
method is too costly to be used in any scalable over-
lay networks. In [18], Lvet al. showed that a high de-
gree node in Gnutella network would most likely experience
high query load. We apply the same principle to the de-
sign of congestion control in DHT networks. We define
indegree, denoted bydi, 1 ≤ i ≤ n, as the number of in-
links of nodei. With the assumption that nodes and file
queries are uniformly distributed in a DHT network with-
out churn,li is directly related todi. For that reason, we
propose to set the initial indegree of each node to an appro-
priate value, according to its capacity. As a result, heteroge-
nous nodes would have routing tables of different sizes (out-
degree). It is expected that the higher the indegree of a node,
the higher traffic load the node would experience in the uni-
form system without churn. To deal with skewed queries
caused by non-uniform and time-varying file popular-
ity and network churn, we propose an integral indegree
adaptation component to dynamically adjust node in-
degree periodically, which results in DHT routing table
change. We refer to such an elastic routing table ta-
ble as ERT.

3.2. Initial Indegree Assignment

In current DHT networks, each routing table has a fixed
number of outlinks for a given network sizen. For exam-
ple, it is log n in Chord, Pastry and Tapestry, and is a con-
stant number in Cycloid, Koorde and Viceroy. The outlinks
determine node indegree. Since we want to have a node’s in-
degree to be proportion to its capacity, we reverse the rela-
tionship to determine node outdegree by setting an appro-
priate value of indegree. To the end, we need to address two
technical questions:

1. How to determine a node’s indegree in order to make
full use of its capacity and keep it light loaded at the
same time?

3

2. How to construct ERTs with different indegrees for
nodes of different capacities, and meanwhile retain-
ing the original DHT neighbor selection functions in
lookup routing?

We normalize capacity toc so that the average ofc is
1; that is,

∑
i ci = n. Recall that in a uniform system

without churn,li is related todi directly. It follows that
si ≈

di/
∑

i di

ci/
∑

i ci
, anddi ≈ ci

∑
i di

n . Taking
∑

i di

n as a con-
stantα, we defineα as indegree per unit capacity. It is a
system parameter and is determined as a function of differ-
ent metrics in system experience such as inlink query for-
warding rate, query initiation rate, etc. in non-uniform sys-
tem with churn. We first set nodei’s maximum indegreed∞i
as b0.5 + αcic based on the fact that the maximum num-
ber of queries a node can process at a time depends on its
capacity. The initial indegree of nodei is βd∞i , whereβ
is a pre-defined percentage for reservation purpose. There
is a tradeoff inα determination: ifα is too small, high ca-
pacity nodes cannot be fully utilized because of low inde-
gree, while a largeα makes it very possible that low capac-
ity nodes, even high capacity nodes become heavy nodes.
What’s more, largeα leads to extra maintenance cost for
corresponding overlay connections. Therefore, it is very im-
portant to determine a suitableα.

In the following, we will explain how to build ERTs
with initial setting of the indegree for each node. Like bi-
directional links in Gnutela, we let each DHT nodei main-
tain a backward outlink (backward finger) for each of its in-
link, in order to know the nodes which forward queries to
it. Consequently, a double link is maintained for each rout-
ing table neighbor. Once nodei joins the system, it needs
to build its routing table based on DHT protocols. In order
to control eachdi below d∞i , we set a restriction that only
nodes with available capacityd∞i − di ≥ 1 can be the join-
ing node’s neighbors. Each neighbor in nodei’s routing table
creates a backward finger to nodei. After building a basic
routing table, nodei then probes other nodes who can take it
as their neighbor to achieve its initial indegreeβd∞i . As a re-
sult, high capacity nodes produce high indegrees while low
capacity nodes lead to low indegrees.

To probe nodes for indegree expansion, the IDs of those
nodes should be firstly decided. The ID set can be deter-
mined in the opposite way of the original DHT neighbor se-
lection algorithm. We will explain it later in DHT examples.
After the determination of the ID set, nodei sends requests
targeting to some of the nodes in the set that are not in the
list of its backward fingers. On receiving such a request, the
node which is responsible for the ID checks if it can take
nodei as its routing table neighbor. If can, it adds nodei into
its corresponding entry in its routing table and sends back a
positive reply. Once nodei receives positive reply from a
node, say nodej, it builds a backward finger to nodej. In
the following, we take Cycloid, Pastry and Tapestry as DHT

examples to explain indegree expansion algorithm. The al-
gorithm can be applied to Chord and other structured over-
lays that have little flexibility in the selection of neighbors
by relaxing their routing table neighbor constraints. Read-
ers are referred to[30] for the details.

In Cycloid with dimensiond, a node(k, ad−1ad−2 . . . ak

. . . a0) (k 6= 0) has one cubical neighbor
(k − 1, ad−1ad−2 . . . akxx...x), and two cyclic neigh-
bors(k−1, bd−1bd−2 . . . b0) and(k−1, cd−1cd−2 . . . c0) in
its routing table. By the opposite way of neighbor selection,
a node(k−1, ad−1ad−2 . . . ak . . . a0) can send requests tar-
geting to (k + 1, ad−1ad−2 . . . akxx...x) to ask nodes to
take it as their cubical neighbors, and also it can send re-
quests targeting to(k + 1, ad−1ad−2 . . . akxx...x) to ask
nodes to take it as their cyclic neighbors. For instance, node
i (3,101-0-0000) can probe(4, 101 − 1 − xxxx) to in-
crease its indegree. Let’s say, nodei first sends a request
targeting (4,101-1-0000). Assuming nodej receives the re-
quest, ifj ∈ (4, 101 − 1 − xxxx), j addsi as its cubical
neighbor and nodei build a backward finger toj. Let’s as-
sume that nodei needs to increase its indegree to 10,
but it is only 6 after cubical backward finger prob-
ing. Then nodei probe cyclic backward finger for the rest
4 indegree. Algorithm 1 shows the pseudocode of inde-
gree expansion algorithm in Cycloid. In the pseudocode,
we represent representad−1ad−2 . . . ak . . . a0 in node ID
(k, ad−1ad−2 . . . ak . . . a0) asaid.

Pastry’s routing table is organized intodlogcb ne (b is a
configuration parameter) row with2b − 1 entries each. An
entry at rowm of node i’s routing table refers to a node
whose ID shares the nodei’s ID in the first m digits, but
whose(m + 1)th digit is not the(m + 1)th digit in nodei’s
ID. For example, node(10233102) can have nodes with ID
(10xxxxxx) at its row 2. Tapestry’s routing table neighbor
selection algorithm is similar to Pastry’s. Since each entry
has multiple choices, nodei (ad−1ad−2 . . . ak−1ak . . . a0)
can send request targeting to(ad−1ad−2 . . . ak−1akx . . . x)
to ask nodes to take it as theirkth row entry.

The initial indegree assignment algorithm proceeds re-
cursively. We prove the ERT indegree resulted from the al-
gorithm is bounded. We assume a DHT that manages a unit-
size ID space, i.e.,[0, 1) ⊆ R employing arithmetic modulo
1, and the DHT uses consisting hash [13] to partition the ID
space among the nodes. Thus, the responsible ID space im-
balance islog n. We assume that each nodei can estimate
its capacityci and the network scalen within a factor ofγc

andγn, respectively, of the true values, with high probabil-
ity1; readers are referred to [20, 25] for details of such an
estimation process. We denoteñ as estimatedn andc̃i as es-
timatedc.

1 An event happens with high probability (w.h.p.) when it occurs with
probability1−O(n−1).

4

Algorithm 1 Pseudo-code for indegree expansion algorithm
of Cycloid nodei (k, ad−1ad−2 . . . ak . . . a0).

1: //probe backward fingers of cubical neighbor
2: figure out a set of cubical neighbor inlinksID = (k +

1, ad−1ad−2 . . . akxx · · ·x)
3: id = (k + 1, ad−1ad−2 . . . ak00 · · · 0)
4: while not finish probing all IDs in ID∧((d∞i − di) ≥ βd∞i)

do
5: while id is in backward fingersdo
6: id = (k + 1, aid + +) ∈ ID
7: end while
8: probe id for cubical neighbor inlink
9: id = (k + 1, aid + +) ∈ ID

10: end while
11: //probe backward fingers of cyclic neighbor
12: figure out ID of cyclic neighbor inlinksID = (k +

1, ad−1ad−2 . . . akxx · · ·x)
13: id = (k + 1, ad−1ad−2 . . . ak00 · · · 0)
14: while not finish probing all IDs in ID∧((d∞i − di) ≥ βd∞i)

do
15: while id is in backward fingersdo
16: id = (k + 1, aid + +) ∈ ID
17: end while
18: probe id for cyclic neighbor inlink
19: id = (k + 1, aid + +) ∈ ID
20: end while

Theorem 3.1 The initial indegree assigned to a nodei is be-
tweenαci/γc −O(1) andαciγc + O(1) w.h.p.

Proof With γc and γn as the maximum error factor of a
node’s estimated capacity and n,c̃i is within the factorγcγu

of ci andñ is within the factorγn of n w.h.p. As a result, the
indegree first assigned to nodei is at mostb0.5+ c̃iα(ñ)c ≤
c̃iα(ñ)+O(1) ≤ γcciα(γnn)+O(1) ≤ γcciα(n)+O(1) .
The indegree first assigned to nodei is at leastbc̃iγ(ñ) −
0.5c ≥ c̃iα(ñ) − O(1) ≥ ci/γcα(n/γn) − O(1) ≥
ci/γcα(n)−O(1).

3.3. Periodic Indegree Adaptation

In practice, nodes join and leave DHT overlays contin-
uously and the files in the system may have non-uniform
and time-varying popularity. Considering the fact that query
load often vary with time, the initial indegree assignment is
not robust enough to limit a node’s query load under its ca-
pacity. To ensure that queries flow toward nodes with suffi-
cient capacity, the congestion control protocol should adapt
to the change of query rate and lookup skewness caused by
non-uniform and time-varying file popularity, as well as net-
work churn.

We design an indegree periodic adaptation algorithm to
help each node adjust its indegree periodically according to
the maximum load it experienced. Specifically, every node
i records its query loadli over T periodically and checks
whether it is overloaded or lightly loaded by a factor ofγl;

i.e.whethergi = li/ci > γl or < 1/γl. In the former case, it
decreasesµ(li−ci) indegree by asking some of its backward
fingers to delete it from their routing table, then deletes cor-
responding backward fingers, and decreases its maximum
indegreed∞i correspondingly. To choose backward figures
for removing, it chooses the backward figure with longest
logical distance. In the case with the same logical distance,
it chooses the one with longest physical distance. In the lat-
ter case, it increasesµ(ci − li) indegree by probing other
nodes to take it as their neighbors using the inlink expan-
sion algorithm discussed in Section 3.2 and increases itsd∞i
correspondingly.

The following theorem shows that the ERT indegree in
the process of adapation remains bounded.

Theorem 3.2 With indegree assignment and periodic adap-
tation algorithm, a nodei has an inegree between ci

γcγlνmax

and ciγcγl

νmin
whereνmax and νmin represent the maximum

and minimum incoming query rate per inlink in the system,
respectively. And its indegree change is bounded in each
adaptation.

Proof Node i does not need to update its indegree when
c̃iγl ≥ li ≥ c̃i/γl, where ci

γc
≤ c̃i ≤ γcci. Assume dur-

ing a certain time period T, the average incoming query rate
per inlink of nodei is νi; that is, on average, there areνi

queries coming from each inlink during time T. Assume that
nodei has degreedi at a certain time point during T. Such
that,li = νidi.

Whenli > c̃iγl, nodei updates its indegree todi−µ(li−
c̃i). Sinceli > c̃iγl, νidi > c̃iγl, the indegree is at mostdi−
µc̃i(γl − 1), di − µ ci

γc
(γl − 1). It is di − µ(νidi − c̃i) ≥

(1− µ)νidi + µci

γc
. Consequently, the indegree is decreased

to between(1− µ)νidi + µci

γc
anddi − µ ci

γc
(γl − 1). On the

other hand, whenli < ci

γl
, nodei updates its indegree todi+

µ(c̃i − li). Sinceli < c̃i

γl
, νidi < c̃i

γl
, the indegree is at least

di +µc̃i(1− 1
γl

), di +µ ci

γc
(1− 1

γl
). It is di +µ(c̃i−νidi) ≤

(1 − µνi)di + µciγc. Therefore, the indegree is increaseed
to betweendi + µ ci

γc
(1− 1

γl
) and(1− µνi)di + νciγc. The

indegree is changed until it reach a status thatc̃iγl ≥ νidi ≥
c̃i/γl,

ciγcγl

νmin
≥ di ≥ ci

γcγlνmax
.

For example, in a network of size 2048, if a node’s ca-
pacity is 50 and its average incoming query rate is 0.5, its
indegree bounded by 100 in the caseγl = 1.

The following theorem shows the outdegree of an ERT is
bounded as well. We leave its proof in Appendix.

Theorem 3.3 A Cycloid node has an outdegree of at most
2γcγlcmax

νmin
− O(2d

d) + O(1) w.h.p. whered is the DHT di-
mension.

5

4. Topology-aware Randomized Query For-
warding

Periodic indegree adaptation is not sufficient to deal with
query load imbalance caused by churn and skewed lookups.
In this section, we present a complementary topology-aware
randomized query forwarding algorithm to help forward
queries towards light nodes, and meanwhile reducing lookup
latency.

4.1. Query Forwarding

With the initial indegree assignment and periodic adap-
tation algorithms, each node’s routing table has a variable
size. With a high probability, each ERT has a set of out-
links in each of its routing table entries. For example, a Cy-
cloid nodei=(4,101-1-1010) has cubical outlinks pointing to
nodes (3,1010-0000), (3,1010-0001) and (3,1010-0010). If it
receives a query and decides that the query be forwarded to
its cubical neighbors based on its original routing algorithm,
there would be three candidates to take the query.

A simple forwarding policy is random walk, in which one
of the outlinks is selected randomly. Another one is gradient-
based walk that forwards the query to the “best” candidate in
terms of their workload. Instead of probing all of the neigh-
bors to find out the best candidate, we restrict the search
space to a small set of sizeb. That is, one receiving a query,
nodei first randomly selectsb neighbors (outlinks) and then
probes the nodes in the set sequentially, until a light node
is found. In the case that all candidates are overloaded, the
query is forwarded to the least heavily loaded one. For ex-
ample, nodei receives a query with key (2,1010-0011) and
the query should be forwarded to a cubical neighbor accord-
ing to Cycloid routing algorithm. It first randomly choose
two options (3,1010-0010), (3,1010-0001) among the three
cubical neighbors ifb = 2.

The b-way randomized query forwarding is further en-
hanced by taking into account the underlying topology in-
formation in the candidate selection. In the topology-aware
forwarding policy, a node selects the best candidate among
b neighbors by two extra criteria: close to the target ID by
the logical distance (hops) in the DHT network and close
to the node by the physical distance on the Internet; Read-
ers are referred to [31] for a landmarking method to measur-
ing physical distance between two nodes on DHT networks.
In the case that the two candidates are both lightly loaded,
the closer node in logical distance is selected. Their physi-
cal distance is used to break the tie of logical distance.

Probing b neighbors is a costly process. Is there any
method that can help find a good candidate fromb neighbors
at a relatively low cost? Query forwarding in this context can
be regarded as a supermarket customer service model. The
supermarket model is to allocate each incoming task (a cus-

tomer) to a lightly loaded server with the objective of mini-
mizing the time each customer spends in the system. Mitzen-
macher [23] proved that granting a task with two server
choices and dispatching it to one of the servers with less
workload lead to an exponential improvement over the sin-
gle choice in the expected execution time of each task. But
a poll size larger than two gains much less substantial ex-
tra improvement. Furthermore, Mitzenmacheret al.[24] im-
proved the performance of two-choice method dramatically
by the use of memory. In this method, each time a task is al-
located, the least loaded of that task’s choices after alloca-
tion is remembered and used as one of the possible choices
for the next task.

We tailored this memory-based randomized task dis-
patching method with modifications to topology-aware ran-
domized query forwarding. We setb = 2. A node first ran-
domly selects two options, say nodei and nodej. It then se-
lects the better one, say nodei, and the least loaded node be-
tweeni andj is remembered after nodei increases by one
load unit. We assume the node is stilli, which is used for the
next query forwarding. Later, when the node needs to for-
ward a query to the same routing table entry, it only needs to
randomly choose one neighbor, instead of two. With the re-
memberedi, it starts the process again.

To further reduce the heavy nodes in query routing, a
query flows by the use of the information of overloaded
nodes encountered before, to avoid overloaded node in the
succeeding routing. For example, a lookup node has three
options for forwarding a query:i1, i2 andi3. Using the above
method, it forwards the query toi2 with information of over-
loaded nodei1. In the second step, nodei2 has three op-
tions: i1, j1 andj2. Because it knows thati1 is overloaded,
it will not selecti1 as a option for query forwarding. Algo-
rithm 2 shows the pseudocode of the topology-aware ran-
domized query forwarding algorithm.

4.2. Analysis of Query Forwarding

The simple query forwarding model (QFM) can be re-
phrased as the following: after a node receives a query, it for-
wards the query to one of its neighbor options. If the chosen
neighbor is heavily loaded by a factorγl, another specific is
turned to. This process is repeated until the node finds a light
neighbor. In the case that all neighbor options are heavy, the
query is forwarded to the least heavily loaded option. We as-
sume that the query forwarding time for a query is constant
and incoming query is Poison distributed.

The forwarding model can be regarded as a variation
of strong threshold supermarket model(STSM) proposed
in [22, 23] if we takeγl as the threshold T in the latter. In
the STSM, customers arrive at a Poison stream of rateλn
(λ < 1) at n FIFO servers. Each customer chooses a server
independently and uniformly at random and only makes

6

Algorithm 2 Pseudo-code for topology-aware randomized
query forwarding algorithm executed by nodei.

1: receive query Q with overloaded node information A
2: determine the set of outlinks for the query forwarding based on

DHT routing algorithm.
3: choose optionsJ = {j1, j2 . . . } from the outlink set exclud-

ing overloaded node in A
4: if memory has a nodeja then
5: randomly choose a nodejb from J
6: else
7: randomly choose two nodesja andjb from J
8: end if
9: //choose the better node fromja andjb

10: probe nodeja andjb for load status
11: if ja andjb are heavythen
12: addja andjb to A
13: forward Q and A to the least heavily loaded node
14: else
15: if one node is light and one node is heavy inja andjb then
16: add the heavy node to A
17: forward Q and A to the light node
18: end if
19: else
20: choose nodesJlog logically nearest to target ID fromja and

jb

21: choose nodesJphy physically nearest to nodei from Jlog

22: forward Q and A to a node inJphy

23: end if

additional choices if the previous choice is beyond a pre-
determined threshold. If both choices are over the thresh-
old, the customer queues at the shorter of its two choices.
The service time for a customer is exponentially distributed
with mean 1. A key difference between the query forward-
ing model and the supermarket model is that the servers are
homogeneous in the supermarket model but heterogeneous
in the query forwarding model.

Along the line of analytical approach in [22, 23], we ana-
lyze the performance of the query forwarding algorithm. The
following theorem shows that the 2-way randomized query
forwarding improves lookup efficiency exponentially over
random walking. Readers are referred to appendix for the
theorem proof.

Theorem 4.1 For any fixed time spotT , the time a query
waits before being forwarded during the time interval[0, T]
is bounded andb-way (b ≥ 2) forwarding yields an expo-
nential improvement in the expected time for a query queu-
ing in a server.

5. Performance Evaluation

This section demonstrates the distinguished peoperties of
the ERT-based congestion control protocol through simula-
tion built on anO(1)-degree Cycloid network. Simulations
on otherO(log n)-degree networks are expected to produce

Table 1: Simulated environment and algorithm parameters.

Environment Parameter Default value
Cycloid dimensiond 8
Number of nodesn Fixed at 2048
Node capacityc Bounded Pareto: shape 2

lower bound: 500
upper bound: 50000

Query/lookup number 3000
Overload thresholdγl 1
Indegree adaption constantµ 1/2
Indegree adaption period 1 second
Indegree per normalized capacityα dimension d+3
Query process time in light nodes 0.2 second
Query process time in heavy nodes 1 second

better results. We assumed a bounded Pareto distribution for
the capacity of nodes. This distribution reflects real world
situations where machines’ capacities vary by different or-
ders of magnitude. The queries are consecutively generated
with a random source node and a random target key, unless
otherwise noted. Table 1 lists the parameters of the simula-
tion and their default values.

We evaluate the effectiveness of the congestion control
protocol in the following metrics:

• Congestion rate of a nodei, as defined bygi = li/ci.
Ideally, the congestion rate should be kept around 1,
implying the node is neither overloaded nor under uti-
lized, and its capacity is fully utilized. We use the met-
ric of the 99th percentile maximum congestionto mea-
sure the network congestion, and use the metric ofthe
99th percentile congestion of minimum capacity node
to reflect the node utilization.

• Query distribution sharesi. Recall that sharesi =
li/

∑
li

ci/
∑

ci
. It represents the performance of fair load dis-

tribution, i.e. the total system load is distributed among
nodes based on their capacity. The objective of fair
sharing is hard to achieve in DHT networks because of
a number of reasons. First, it is hard to collect the load
and capacity of other nodes. Second, DHT is a dynamic
system with continuous node joins and departures, as
well as continuous query initialization. It is hard to con-
trol instant share of each node in such a dynamic sit-
uation. Third, since query load is not uniformly dis-
tributed among the nodes, and it changes with file pop-
ularity and churn. Although fair sharing is not the ob-
jective of congestion control, we use the metric ofthe
99th percentile shareto show how it can be approxi-
mated by the control of indegrees.

• Query processing time. It is determined by two factors:
lookup path length and the number of heavy nodes en-
countered in each path. The metric of path length re-
flects the performance of the query forwarding algo-
rithm, and the metric of number of heavy nodes in each
path shows how the congestion control protocol avoids

7

heavy nodes in direct traffic flow in order to reduce
lookup latency.

We conducted experiments on Cycloid networks without
congest control (Base) and with ERT-based congestion con-
trol (ERT). For comparison, we also include the results due
to a “virtual server” load balancing method [10] (VS) and a
neighbor selection algorithm for indegree control (NS) [6].
The NS algorithm bears resemblance to the ERT initial in-
degree assignment as to select neighbor based on node in-
degree bound. However, NS always selects high capacity
nodes as neighbors. It may over-compromise the needs of
low capacity nodes. ERT makes full use of node capac-
ity by letting nodes reach their indegree bounds. Moreover,
ERT allows dynamic indegree adaption (A) and facilitates
query forwarding (F) to deal with network churn and skewed
lookups. We represent the congestion control in different
combinations by ERT/A, ERT/F, and ERT/AF, respectively.

We measured their performance as functions of total
lookup number and query processing speed at each node.
We varied lookup number from 1000 to 5000, with 1000 in-
crease in each step. We also varied the processing time of
a query in a light node from 0.1 second to 2.1 second and
5 times of that in a heavy node. The total query load in-
creases in both cases and we observed similar results in sim-
ulation. Because of space constraints, we present the results
due to the change of total query number.

5.1. Congestion Control Efficiency

We measured each node’s maximum congestion during
all test cases and calculated the 99th percentile maximum
node congestion. Figure 1(a) shows the congestion rate due
to each method increases as more lookup queries arrive. The
NS protocol produces a higher 99th percentile maximum
congestion rate than Base. It implies that a heavy node in
NS has much more load corresponding to its capacity than
a heavy node in Base. This is expected because NS strongly
biases high capacity nodes as routing table neighbors. The
high capacity nodes may turn out to be overloaded.

In contrast, VS and ERT/AF lead to much lower conges-
tion rates. That is, they demonstrate effectiveness in control-
ling the load of each node based on its capacity. Although
ERT/A and ERA/F do not perform as well as VS, the com-
bined effect of adaptation and forwarding makes ERT/AF
outperform VS.

The relative performance between NS, VS, and ERT/AF
with respect to Figure 1(a) can be verified by the 99th per-
centile congestion rate of minimum capacity node in Fig-
ure 1(c). It is expected to see that the low capacity node be-
comes congested as the query load increases. Without con-
gestion control (Base), the congestion rate increases sharply.
The congestion control protocols delay the occurrence of
congestion. In particular, the NS protocol over-protected low

capacity nodes due to its high capacity-biased neighbor se-
lection policy. In comparison, ERT/AF keeps low capacity
nodes fully utilized, without driving them into overloaded
states.

Figure 1(b) shows the 99th percentile node share. We can
see that NS generates a much higher share rate, in compari-
son with the other protocols for the same reason of the obser-
vations in Figure 1(a) and (c). That is, NS heavily relies on
high capacity nodes for query routing. Excluding low capac-
ity nodes in neighbor selection may lead to a waste of system
resources because their capacities can be used to ease the
burden of high capacity nodes in certain situations. In con-
trast, VS and ERT/AF do not have this preference in neigh-
bor selection and they achieve good query load sharing be-
tween heterogeneous nodes. The small gain of VS is due to
its fine grained ID space partition between virtual servers.
An ideal share in DHT is difficult to achieve because of
the DHT strict controlled topology, routing algorithm, non-
uniform and variable file popularity, and churn. VS approx-
imates fair sharing by static ID space assignment. However,
it is at the cost of more maintenance overhead and lookup
cost. It cannot handle skewed lookups either.

5.2. Lookup Efficiency

Lookup latency is determined by two factors: lookup
path length and query processing time in each node along
the path. Figure 2(a) shows the total number of overloaded
nodes encountered in query routings grows with the query
load. It also shows that ERT/AF leads to much high lookup
efficiency in comparison with the others. Though NS and VS
improve over Base to a certain extent, there remain a large
percentage of congested nodes in the systems in comparison
with ERT/AF. NS biases high capacity nodes for query load,
which may make them more likely overloaded as the sys-
tem query load increases. Due to DHT’s strictly controlled
topology and precise lookup algorithm, the assumption of
uniformly distributed load of VS does not hold true. The
fixed outdegree of nodes in NS and VS prevents each node
from adapting traffic load on nodes elastically. In contrast,
ERT/AF enables each node match its indegree to its capac-
ity, and adapts its indegree in response to the change of its
experienced query load. Furthermore, the query forwarding
operation helps avoid overloaded nodes during query rout-
ing. Less overloaded nodes in routing leads to more efficient
lookup.

Figure 2(b) shows the path lengths due to different con-
gestion protocols as the network size increases. It is expected
that VS leads to a much longer query path length than Base
because of the additional virtual server layer in routing. This
is consistent with the observation in [10] that VS achieves
the objective of load balancing at the cost of lookup effi-
ciency and the path length increases by at most an additive

8

1

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000
Total lookup number

T
he

 9
9t

h
pe

rc
en

til
e

m
ax

. c
on

ge
st

io
n

Base
NS
VS
ERT/A
ERT/F
ERT/AF

0

2

4

6

8

10

12

1000 2000 3000 4000 5000
Total lookup number

T
he

 9
9t

h
pe

rc
en

til
e

sh
ar

e

Base
NS
VS
ERT/A
ERT/F
ERT/AF

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1000 2000 3000 4000 5000
Total lookup number

T
he

 9
9t

h
pe

rc
en

til
e

co
ng

es
tio

n
of

m

in
. c

ap
ac

ity
 n

od
e

Base
NS
ERT/AF
VS

(a) Maximum congestion (b) Share (c) Congestion of minimum capacity node

Figure 1: Effectiveness of congestion controls.

0

2000

4000

6000

8000

10000

1000 2000 3000 4000 5000
Total lookup number

N
um

be
r

of
 o

ve
rlo

ad
ed

 n
od

es
 in

 r
ou

tin
gs Base

NS
VS
ERT/A
ERT/F
ERT/AF

2
3
4
5
6
7
8
9

10
11
12
13

0 500 1000 1500 2000 2500
Number of nodes

A
ve

. l
oo

ku
p

pa
th

 le
ng

th

Base
NS
VS
ERT/A
ERT/F
ERT/AF

0
1
2
3
4
5
6
7
8
9

10

1000 2000 3000 4000 5000
Total lookup number

P
ro

ce
ss

 ti
m

e
pe

r
qu

er
y

Base
NS
VS
ERT/A
ERT/F
ERT/AF

(a) Heavy nodes in routings (b) Lookup path length (c) Lookup time

Figure 2: Effectiveness of congestion control protocols on lookup efficiency.

constant. ERT/AF takes distance into account in query for-
warding. Likewise, NS considers node distance in neighbor
selection. Both of them reduce path length of Base signifi-
cantly.

Figure 2(c) shows the average, 1st and 99th percentiles
of processing time per query as combined effect of reduced
congested nodes and lookup path length on the overall query
processing time. Although VS reduces the number of con-
gested nodes of Base, its benefits may be outweighed by its
extended path length. Without dynamic congestion control,
Base and NS may forward queries to congested nodes. Static
indegree assignment by NS only results in marginal process-
ing time reduction. On the contrary, ERT/AF tends to direct
queries to light nodes, which have sufficient capacity to han-
dle them promptly.

5.3. Maintenance Cost

Recall that ERT-based congestion control proto-
col achieves its goal using elastic routing tables to adapt
each node indegree to its load. In addition to maintain the ta-
bles, each node needs to maintain a list of backward fin-
gers (the same number of its indegree). We measured the
maximum indegree and outdegree of each node, and calcu-
lated the average, 1st and 99th percentiles of those values
in each method. As we mentioned that the routing ta-
ble size in NS and VS is fixed, but the node degree in ERT

is variable. We use maximum indegree and outdegree in-
stead of average for the evaluation of the management over-
head of ERT in the worse case. Figure 3(a) and (b) plot the
results. Though inlinks in Base and VS don’t need to be
maintained, we include their degrees for comparison. As ex-
pected, the figures show that the indegree and ourde-
gree rates of Base, NS and VS do not change, while the
rates of ERT/AF change as total query load changes. Be-
cause ERT tunes node indegees to adapt to different
query load accordingly, some light loaded node inde-
grees reach a high value to request more load. Indegree
change leads to outdegree change. The indegree and outde-
gree of VS are much higher than others. The reason is vir-
tual node usage leads to larger overlay size. Our results turn
out that the combination of the average, 1st and 99th per-
centiles indegree and outdegree of ERT in the worse
case is much less than the outdegree rates of VS, respec-
tively. Thus, to achieve congestion control, VS needs much
higher cost for maintenance, while ERT only needs a lit-
tle extra maintenance cost.

5.4. Effect of Skewed Lookup

Besides node heterogeneity in capacity, query load im-
balance occurs with non-uniform and time-varying file pop-
ularity and peer interest variation. In this section we con-
sider the effect of skewed lookups.

9

1

10

100

1000

1000 2000 3000 4000 5000
Total lookup number

M
ax

im
um

 in
de

gr
ee

Base
NS
ERT/AF
VN

(a) Indegree

1

10

100

1000

1000 2000 3000 4000 5000
Total lookup number

M
ax

im
um

 o
ut

de
gr

ee

Base
NS
ERT/AF
VN

(b) Outdegree

Figure 3: Degrees of routing tables in different congestion control protocols.

We consider an “impulse” of 100 nodes whose IDs are
distributed over a contiguous interval of the ID space, and
whose interest are in the same 50 keys randomly chosen
from the ID space. We varied the query process rate from
0.1 to 2.2 second per query on a light node, with 0.5 sec-
ond increase in each step. Figure 4(a) and (b) plot the query
processing time of each method. It is surprising to see that
the overloaded node number and the process time per query
of VS is much more than Base. As claimed by the authors
in [10] that a good balance of VS is guaranteed only un-
der the uniform load assumption; this explains why VS has
poor performance in skewed lookups. In VS, a real node
selects IDs of its virtual nodes randomly within consecu-
tive intervals. When query load concentrates on a certain
ID space interval, the load is allocated to consecutive vir-
tual servers. Since most of the virtual servers may reside
on the same real node, the node more likely becomes over-
loaded. In contrast, by assigning and adjusting node inde-
gree based on load dynamically, combined with topology-
aware randomized forwarding algorithm, ERT/FA can han-
dle skewed lookups caused by the change of file popular-
ity and node interests. NS yields a similar lookup latency to
Base on average, but exhibits a large variance.

Figure 4(c) plots the 99th share of each method. By com-
paring it with Figure 1(b), we can observe that the share rate
of each method is higher in skewed lookups. It is expected
because the query load concentrates on certain ID space part,
then certain nodes. The share rate of NS is still much higher
than others in skewed lookups because of its strong bias to-
ward high capacity notes in neighbor selection. It is a re-
source waste to let low capacity nodes idle.

5.5. Effect of Churn

In DHT networks with churn, a great number of nodes
join, leave and fail continually and rapidly, leading to con-
tinuous change of node indegree and outdegree, and overlay
topology. This gives another challenge to congestion con-
trol. If a node leaves, its query load will be allocated to some
other nodes. It is necessary to ensure that these nodes are

light loaded. When a node joins the system, it is important
to make full use of its capacity.

This section evaluates ERT/FA’s adaptability to different
levels of churn. In this experiment, the lookup rate was mod-
elled by a Poisson process with a rate of 1; that is, there was
a lookup every 1 second. The node join/departure rate was
also modelled by a Poisson process. We ranged node inter-
arrival/interdeparture time from 0.1 to 0.9 seconds, with 0.1
second increment in each step. Lower time corresponds to
higher churn. Our results are collected from all node includ-
ing the current nodes in the system when all lookups finish
and the nodes departed.

Figure 5(a) shows the 99th percentile maximum conges-
tion of each method. Comparing it with Figure 1(a), we find
that the rate of each method in churn is lower than without
churn at the point of 3000 lookups. It is because with con-
tinuous nodes join, the same query load is distributed among
more nodes than in static DHT. The rates of NS and Base
grow inversely proportional to node interarrival time, and the
rates of VS and ERT/FA maintain constant. When node in-
terarrival/interdeparture time is 0.1, the rate of NS is higher
than Base’s, and it decreases slightly blow the Base’s when
node interarrival time is 0.3-0.5. This implies that NS has
difficulty to cope with high churn. Recall that in NS, high ca-
pacity nodes have denser inlinks. In high churn, some high
capacity nodes may don’t have enough capacity for a sud-
den query flow, which originally should be responsible by
nodes departed. In a modest churn, the flow is not so intense
for nodes to handle. In high churn, VS has marginally less
rate than Base, which implies that VS can deal with churn to
a certain extend. We can also see that ERT/FA keeps the rate
close to 1 in different levels of churn. in controlling node
congestion in churn.

Figure 5(b) shows the 99th percentile share of each
method. It demonstrates that like in static DHT, NS per-
forms not so well as others in fair load balance in churn. The
99th percentile share of ERT/FA in churn is higher than that
without churn. It is because continuous node joins and de-
partures induce more load on some nodes relative to their
capacity. On the other hand, because of churn, NS’s 99th

10

5000

10000

15000

20000

25000

0.1 0.6 1.1 1.6 2.1
Query process time of a light node (second)

N
um

be
r

of
 o

ve
rlo

ad
ed

 n
od

es
 in

 r
ou

tin
gs

Base
NS
ERT/AF
VN

0

20

40

60

80

100

120

0.1 0.6 1.1 1.6 2.1
Query process time of a light node (second)

P
ro

ce
ss

 ti
m

e
pe

r
qu

er
y

Base
NS
ERT/AF
VN

6

7

8

9

10

11

12

13

14

0.1 0.6 1.1 1.6 2.1
Query process time of a light node (second)

T
he

 9
9t

h
pe

rc
en

til
e

sh
ar

e

Base
NS
ERT/AF
VN

(a) Heavy nodes in routings (b) Lookup time (c) Share

Figure 4: Effectiveness of congestion control protocols in skewed lookups.

percentile share is higher than Base, and VS has more bal-
anced query load distribution than others.

Figure 6(a) shows the heavy node number in routings of
each method in churn. We can see that the number of NS is
much higher than Base in high churn, and the number de-
creases as the node interarrival time increases; both of them
are larger than the result of ERT/AF. This observation is con-
sistent to the findings in Figure 5(a). It confirms that ERT/FA
performs the best in reducing heavy nodes processing query.
Figure 6(b) shows the lookup path length of each method.
Comparing it with Figure 2(b), we can detect that there’s no
big difference, except that ERT/FA has less path length in
churn. We also recorded average timeout for each method.
A timeout occurs when a node tries to contact a departed
node. The number of timeouts experienced by a lookup is
equal to the number of departed nodes encountered. The av-
erage timeout of ERT/FA is 0, and less than 0.06 in other ap-
proaches. The reason for shorter path lengths and less time-
out of ERT/FA is that its ERT avoids timeouts by letting each
node have multiple neighbors in each table entry. Conse-
quently, when a entry neighbor left, others can be used as
a substitute instead of making a detour routing. Figure 6(c)
shows the average, 1st and 99th percentiles of query pro-
cessing time per node of each method. They are consistent
to those without churn in Figure 2(c), except that NS yields
higher latency than Base in high churn. It validates the con-
clusion that NS is not efficient in coping with high churn.

5.6. Effect of Adaption and Query Forwarding

To evaluate the quality of the indegree adaption and
topology-aware randomized query forwarding, we compare
ERT/AF with algorithms without indegree adaption (ERT/F)
or without query forwarding algorithm (ERT/A).

Figure 1(a) plots the 99th percentile maximum conges-
tion rates of different versions. From the figure, we can ob-
serve that the topology-aware 2-way randomized forward-
ing algorithm is effective in reducing the congestion rate of
Base when query load is not high, but becomes not so ef-
fective when the system is highly loaded. For this reason,

it is imperative to have a complementary method to guar-
antee low node congestion. The figure shows that our inde-
gree adaptation algorithm reduces the congestion rate signif-
icantly in various load conditions.

The 99th percentile shares in Figure 1(b) confirm the su-
perior performance of forwarding. The query forwarding al-
gorithm controls query flow to light nodes, ensuring that
queries are forwarded only to nodes with sufficient capac-
ity to handle them. Indegree adaptation also helps for fair
load balancing, though the improvement is not so much as
forwarding.

Figure 2(a) shows the heavy node number encountered
in each lookup path. From the figure, we can observe that
both forwarding and indegree adaptation greatly help elimi-
nate heavy nodes. Their combination demonstrates an accu-
mulated effect. Figure 2(b) plots the path length of each ver-
sion. Recall that topology-aware randomized query forward-
ing algorithm takes node logical distance and physically dis-
tance into account in routing. It is expected that forwarding
leads to a short lookup path. In contrast, indegree adapta-
tion has no effect in path length. Oveall, the combined effect
on overloaded nodes reduction and lookup path length short-
ening results in a great saving of lookup latency, as shown
in Figure 2(c).

6. Conclusions

DHT networks have an inherent congestion prob-
lem caused by query load due to the nature of heterogeneity
and dynamism of network nodes. There are DHT networks
that use virtual servers to partition the ID space among nodes
proportional to node capacities to achieve congestion con-
trol. However, their assumption of equal file popularity
does not hold true in practice, and their overlay mainte-
nance cost is high in churn. Other methods achieve conges-
tion control by static mapping between node indegree and
capacity, as well as biasing high capacity nodes for over-
lay neighbors. Static mapping cannot deal with non-uniform
and time-varying file popularity and churn. Such bias makes
it most likely that high capacity nodes become bottle-

11

0.95

1.05

1.15

1.25

1.35

1.45

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture time (second)

T
he

 9
9t

h
pe

rc
en

til
e

m
ax

. c
on

ge
st

io
n

Base
NS
ERT/AF
VN

2

3

4

5

6

7

8

9

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture time (second)

T
he

 9
9t

h
pe

rc
en

til
e

sh
ar

e

Base
NS
ERT/AF
VN

(a) Maximum congestion (b) Share

Figure 5: Effectiveness of congestion control protocols in networks with churn.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture time (second)

N
um

be
r

of
 o

ve
rlo

ad
ed

 n
od

es
 in

 r
ou

tin
gs

Base
NS
ERT/AF
VN

6

7

8

9

10

11

12

13

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture time (second)

A
ve

. l
oo

ku
p

pa
th

 le
ng

th Base
NS
ERT/AF
VN

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture time (second)

P
ro

ce
ss

 ti
m

e
pe

r
qu

er
y

Base
NS
ERT/AF
VN

(a) Heavy nodes in routings (b) Lookup path length (c) Lookup time

Figure 6: Effectiveness of congestion control protocols on lookup efficiency in churn.

necks. This paper presents a ERT-based congestion con-
trol protocol for DHT networks, which consists of three
components: indegree assignment, periodic indegree adap-
tation, and topology-aware query forwarding. Theoretical
analysis establishes the bounds of the indegree and outde-
gree, and proves the performance of the protocol in general
in terms of both query load balance factor and query pro-
cessing time.

Simulation results show the superiority of the congestion
control protocol compared with other methods in static net-
work, skewed lookups and in churn, and show the effective-
ness of each algorithm in the protocol. It makes full use of
each node’s capacity while control each node’ load below
its capacity. It improves the lookup efficiency in DHT net-
work by reducing lookup latency.

References

[1] Mute. http://mute-net.sourceforge.net/.

[2] L. A. Adamic, B. A. Huberman, R. M. Lukose, and A. R.
Puniyani. Search in power law networks. InPhysical Re-
view E, volume 64, 2001. 46135-46143.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury:supporting scalable multi-attribute range queries. In
Proc. of ACM SIGCOMM, 2004.

[4] M. Bienkowski, M. Korzeniowski, and F. M. auf der Heide.
Dynamic load balancing in distributed hash tables. InProc.

of the 4th International Workshop on Peer-to-Peer Systems
(IPTPS), 2005.

[5] S. Bono, C. Soghoian, and F. Monrose. Mantis: A
lightweight, server-anonymity preserving, searchable P2P
network. Technical report, TR-2004-01-B, Information Se-
curity Institute, Johns Hopkins University, 2004.

[6] M. Castro, M. Costa, and A. Rowstron. Debunking some
myths about structured and unstructured overlays. InProc.
of the 2nd Symposium on Networked Systems Desing and Im-
plementation (NSDI), 2005.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
Proc. of ACM SIGCOMM, 2003.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proc. International Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, 2001.

[9] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in dynamic structured p2p systems.
In Proc. of IEEE Conference on Computer Communications
(INFOCOM), 2004.

[10] P. Brighten Godfrey and I. Stoica. Heterogeneity and load
balance in distributed hash tables. InProc. of IEEE Confer-
ence on Computer Communications (INFOCOM), 2005.

[11] J. Hu, M. Li, W. Zheng, D. Wang, N. Ning, and H. Dong.
Smartboa: Constructing p2p overlay network in the hetero-
geneous internet using irregular routing tables. InProc.
of the 3rd International Workshop on Peer-to-Peer Systems
(IPTPS), 2004.

12

[12] M. F. Kaashoek and R. Karger. Koorde: A simple degree-
optimal distributed hash table. InProc. of the 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[13] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and Panigrahy R. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. InProc. of the 29th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 654–663, 1997.

[14] B. Levine and C. Shields. Hordes: A multicast-based proto-
col for anonymity.Journal of Computer Security, 10(3):213–
240, 2002.

[15] D. Lewin. Consistent hashing and random trees: Algorithms
for caching in distributed networks. masters thesis. Techni-
cal report, Department of EECS, MIT, 1998. Available at the
MIT Library, http://thesis.mit.edu/.

[16] J. Li, J. Stribling, R. Morris, and F. Kaashoek. Bandwidth ef-
ficient management of dht routing tables. InProc. of the 2nd
Symposium on Networked Systems Desing and Implementa-
tion (NSDI), 2005.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. InProc.
of ACM International Conference on Supercomputing (ICS),
2001.

[18] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make
gnutella scalable? InProc. of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS), 2002.

[19] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scal-
able and Dynamic Emulation of the Butterfly. InProc. of
the 21st ACM Symposium on Principles of Distributed Com-
puting (PODC), 2002.

[20] G. Manku. Balanced binary trees for id management and load
balance in distributed hash tables. InProc. of the 23th ACM
Symposium on Principles of Distributed Computing (PODC),
2004.

[21] P. Maymounkov and D. Mazires. Kademlia: A Peer-to-peer
Information Systems Based on the XOR Metric. InProc.
of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[22] M. Mitzenmacher. The power of two choices in randomized
load balancing, 1996. PhD thesis, University of California,
Berkeley.

[23] M. Mitzenmacher. On the analysis of randomized load bal-
ancing schemes. InProc. of the 9th ACM Symposium on Par-
allel Algorithms and Architectures (SPAA), pages 292–301,
1997.

[24] M. Mitzenmacher, B. Prabhakar, and D. Shah. Load balanc-
ing with memory. InProc. of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2002.

[25] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks. In
Proc. of the 2nd international conference on Embedded net-
worked sensor systems (SenSys), 2004.

[26] S. Osokine. The flow control algorithm for
the distributed b́roadcast-routénetworks with re-
liable transport links. Technical report, 2001.
http://www.grouter.net/gnutella/flowcntl.htm/.

[27] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Sto-
ica. Load balancing in structured p2p systems. InProc.
of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. InProc.
of ACM SIGCOMM, pages 329–350, 2001.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer sys-
tems. InProc. of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), 2001.

[30] H. Shen and C. Xu. Elastic routing table for congestion con-
trol in chord. Technical report, Electrical and Computer En-
gineering Department, Wayne State University, 2005. Under
prepare.

[31] H. Shen and C. Xu. Locality-aware randomized load balanc-
ing algorithms for structured p2p networks. InProc. of inter-
national conference on Parallel Processing, 2005.

[32] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-
degree p2p overlay network.Performance Evaluation, 2005.
An early version appeared in Proc. of International Parallel
and Distributed Processing Symposium (IPDPS), 2004.

[33] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 1(1):17–32, 2003.

[34] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: An Infrastructure for Fault-
tolerant wide-area location and routing.IEEE Journal on Se-
lected Areas in Communications, 12(1):41–53, 2004.

A. Proof of a Bounded Outdegree of ERTs

Theorem A.1 A node has an outdegree of at most
2γcγlcmax

νmin
− O(2d′

d′) + O(1) w.h.p. whered′ is the DHT di-
mension.

Proof We use Cycloid DHT as an example. Same proving
process can be applied to any other DHT. A nodei with
cyclic indexki can have at most2ki IDs for routing table
entry selection, we useOi to represent a set those IDs, and
it can have at most2ki IDs for routing table entry backward
finger selection, we useIi to represent a set of those IDs. Be-
cause there are totallyd′ · 2d′ IDs andn nodes in a Cycloid
system with dimensiond′, the probability of node number
for a ID is n

d′2d′ , denoted byη. Consequently, the node num-
ber in 2ki IDs is proximatelyη2ki , denoted byJi. We de-
fine average ID space responsible by a node as I, and useIi

to represent the I of nodei.
Let Xi be the indicator variable for the event that node

i probes nodej for indegree expansion. Ifj is chosen byi,
then i has a backward finger to nodej, which increments
j’s outdegree with a outlink toi. Our purpose is to find
out the upper bound of

∑
i X represented byX. We as-

sume that Cycloid nodes also probe their successors and pre-

13

decessors for indegree expansion. Recall that no node ap-
pears more than once in another node’s routing table or suc-
cessor and predecessor lists in DHT networks. The prob-
ability that nodej is chosen to have an outlink pointing
to i is 1

Ji
. The probability that nodej is within a/2 num-

ber of i’s successors or predecessors isaI + 2Ij . Let’s as-
sume that nodei probesmi IDs. Then, the probability is
expressed asP (|IDj − IDi| ≤ max{0,mi − Ji}I) =
max{0,mi − Ji}I + 2Ij · P (mi > Ji), where P repre-
sents probability.

In the case thati ∈ Oj , whenJi ≥ mi, E[Xi] = mi
1
Ji

;
whenJi < mi, E[Xi] = Ji

1
Ji

+ (mi − Ji)I + 2Ij . In the
case thati 6∈ Oj , whenJi ≥ mi, E[Xi] = 0 and whenJi <
mi, E[Xi] = (mi − Ji)I + 2Ij .

Therefore,E[Xi] =
min{Ji,mi} 1

Ji
+ max{0,mi − Ji}I + 2IjP (mi > Ji)

i ∈ Oj ;
max{0,mi − Ji}I + 2IjP (mi > Ji)

i 6∈ Oj ∧ i 6= j.

Thus,
E[X] =

∑
i∈R E[Xi]

=
∑

i∈Oj
(min{Ji,mi} 1

Ji
+ max{0,mi − Ji}I +

2IjP (mi > Ji)) +
∑

i 6∈Oj∧i 6=j(max{0,mi − Ji}I +
2IjP (mi > Ji))

=
∑

i∈Oj
(min{Ji,mi} 1

Ji
) (1)

+
∑

i∈R∧i 6=j(max{0,mi − Ji}I + 2Ij ·P (mi > Ji)) (2).
In the following, we will determine the upper bound for

equation (1) and (2) respectively.∑
i∈Oj

(min{Ji,mi} 1
Ji

) (1)

=
∑

i∈Oj
(min{Ji,mi} 1

η2ki
),(Ji = η2ki)

=
∑

i∈Oj
(min{Ji,mi} 1

η2kj−1
), (ki = kj−1)

= 1

η2kj−1

∑
i∈Oj

min{Ji,mi}.

By theorem 3.2,maxi∈Oj
Ii = maxi∈Oj

ciγcγl

νmin
for

nodesi ∈ Oj , Hence the above term:
≤ 1

η2kj−1 η2kj maxi∈Oj Ii

= 2maxi∈Oj

ciγcγl

νmin

≤ 2γcγlcmax

νmin

Next we will find out the upper bond for the equation
(2). We defineImax as the longest ID space interval re-
sponsible by a node. Average spacing for a node is1/n and
the bound of imbalance of space interval is2−O(log n) =
O(1/n) [13, 15], thus the longest space interval of a node
is 1/n + O(1/n). Considering the estimation error factor,
Imax = γn/n + γnO(1/n) w.h.p.∑

i∈R∧i 6=j(max{0,mi−Ji}I +2Ij ·P (mi > Ji)) (2)
=

∑
i∈R∧i 6=j(max{0,mi − η2ki}I + 2Ij · P (mi > Ji))

≤ Imax

∑
i∈R∧i 6=j(mi − η2ki + 2)

= Imax[2(n− 1) +
∑

i∈R∧i 6=j(mi − η2ki)]

≤ Imax[2(n− 1) + nγcγl

νmin
− η

∑
i∈R∧i 6=j 2ki]

= Imax[2(n− 1) + nγcγl

νmin
− ηn(2d′−1)

d′]

≤ [γn/n + γnO(1/n)][O(n) − n(2d′−1)
d′], (Imax =

γn/n + γnO(1/n))

= γnO(1
n)[O(n)− n(2d′−1)

d′]

= γn[O(1)−O(2d′

d′)]

= O(1)−O(2d′

d′)

Combing the above results, we get the upper bound of a
nodei’s outdegree is:
2γcγlcmax

νmin
−O(2d′

d′) + O(1)

B. Proof of Exponential Improvement in
Lookup Efficiency

We definebi(t) as the number of servers withi spare ca-
pacities at time t;mi(t) as the number of servers with at
mosti spare capacities at time t;pi(t) = di(t)/d as the frac-
tion of servers ofi spare capacity; andsi(t) = mi(t)/d as
the fraction of servers with at mosti spare capacities. Such
that,pi = si − si−1. In anempty system, which corresponds
to one with no customers,sc = 1, andsi = 0 for i < c. A
fixed pointπ is a pointp in which dsi

dt = 0.
The rate of spare capacity change in a node depends on

whether it has more or fewer thanT spare capacities. In
the following, we calculatedsi

dt in the casei ≥ T − 1 and
i < T − 1 respectively. An arriving query occupies theith

capacity of a server if one ofb events happen: first, its first
choice hasi + 1 spare capacities; second, its first choice has
≤ T−1 spare capacities and its second choice hasi+1 spare
capacities;· · · , its first b-1 choices have≤ T − 1 spare ca-
pacities and itsbth choice hasi+1 spare capacities. So that,
there areλn(pi+1+sT−1pi+1+s2

T−1pi+1+· · ·+sb−1
T−1pi+1)

servers whose spare capacities change fromi + 1 to i dur-
ing dt. Meanwhile,dpi servers change their spare capacities
from i to i + 1. As a result, we get:

dsi

dt = λ(pi+1 + sT−1pi+1 + s2
T−1pi+1 + · · · +

sb−1
T−1pi+1)− pi, i ≥ T − 1,

dsi

dt = λ[(si+1 − si)(1 + sT−1 + s2
T−1 + · · ·+ sb−1

T−1)]−
(si − si−1), i ≥ T − 1, pi = si − si−1,

dsi

dt = λ(si+1 − si)
sb

T−1−1

sT−1−1 − (si − si−1), i ≥ T − 1.

Wheni < T − 1, the number of queries arriving overdt
is λbdt, and that for an query being forwarded to a server
with i + 1 spare capacity isbidt = d(si − si−1)dt. Conse-
quently,dsi

dt = 1
b · · ·

dmi

dt = λ(sb
i+1 − sb

i)− (si − si−1)
The differential equations for the QFM wheni < T = 1

considering a node with b specific neighbors is:
dsi

dt = λ(sb
i+1 − sb

i)− (si − si−1), i < T − 1.
We get the differential equations for QFM:

14

dsi

dt
=


λ(si+1 − si)

sb
T−1−1

sT−1−1 − (si − si−1)
c ≥ i ≥ T − 1 (3);

λ(sb
i+1 − sb

i)− (si − si−1)
i < T − 1 (4).

Lemma B.1 The QFM withd ≥ 2 has a unique fixed point
with

∑−∞
i=c−1 si < ∞ given by


si = (λ−A)Ac−i−1

A−1 + Ac−i, A = λ
sb

T−1−1

sT−1−1

T − 1 ≤ i ≤ c;

si = λ
bT−i−1−1

b−1 · sbT−i−1−1
T−1

i < T − 1.

Proof With the conditiondsi

dt = 0 for all i, we derive the
value ofsi includingsT−1 whenc ≥ i ≥ T −1 with sc = 1.

We summer the equation (3) over all ifc ≥ i ≥ T − 1,

and getsc−1 = λ− A + Asc, assumingA = λ
sb

T−1−1

sT−1−1 . By

induction:sc−2 = (λ − A)(1 + A) + A2 · · · , we getsi =

(λ−A)Ac−i−1
A−1 + Ac−i, A = λ

sb
T−1−1

sT−1−1 , c ≥ i ≥ T − 1.
By summing the equation (4) over alli ≤ T − 1 with

s−∞ = 0, we can derive thatsT−2 = λsb
T−1. By induc-

tion: sT−3 = λsb
T−2 = λ(λsb

T−1)
b = λ

b2−1
b−1 sb2

T−1 · · ·

we getsi = λ
bT−i−1−1

b−1 · sbT−i−1−1
T−1 (i < T − 1).

We use
∑−∞

i=c−1 si < ∞ to ensure that the sum converges
absolutely.

Theorem B.1 The fixed point for the QFM decreases dou-
bly exponentially.

Proof For a small threshold, the behavior of (4) is very sim-
ilar to that of the STSM, which was proved doubly exponen-
tially decrease in [22, 23].

To proveπi decreases doubly exponentially we need to
prove thatπT−j−1 = λ(πb

T−j) for all j ≤ T − 1. To prove
the latter, we need to prove thatπT−2 = λ(πb

T−1), which
was proved for equation (4) in [22, 23]. Withdsi

dt = 0 at the
fixed point, we get

λπb
i+1 − πi = λπb

i − πi−1 for i ≤ T − 2.
Such that, the theorem is proved ifπT−2 = λ(πd

T−1).
From equation (3) we have
λ[(πT−πT−1)(1+πT−1+π2

T−1+· · ·+πb−1
T−1)]−(πT−1−

πT−2) = 0
πT−2−λπb

T−1 = (1+λ)πT−1−λπT (1+πT−1+π2
T−1+

· · ·+ πb−1
T−1) + λ(π2

T−1 + π3
T−1 + · · ·+ πb−1

T−1) (5)
Hence, if the right hand side of equation (5) is 0, the the-

orem is proved.
At the fixed point in (3) forc− 2 ≤ i ≤ T − 1, we get
λ[(πi+2 − πi+1)(1 + πT−1 + π2

T−1 + · · · + πb−1
T−1)] =

πi+1 − πi

We summing the left and right hand sides of the above
equations for all values of i and get

λπc(1+πT−1 +π2
T−1 + · · ·+πb−1

T−1)−λπT (1+πT−1 +
π2

T−1 + · · ·+ πb−1
T−1) = πc−1 − πT−1

With πc = 1 andπc−1 = λ, we getλ(1+πT−1+π2
T−1+

· · · + πd−1
T−1) − λπT (1 + πT−1 + π2

T−1 + · · · + πb−1
T−1) =

λ− πT−1,
(1+λ)πT−1 = λπT (1+πT−1 +π2

T−1 + · · ·+πd−1
T−1)+

λ(π2
T−1 + π3

T−1 + · · ·+ πb−1
T−1)

As a result, the right hand of equation (5) is 0 and the the-
orem is proved.

Theorem B.2 For any fixed time spotT , the time a query
waits before being forwarded during the time interval[0, T]
is bounded andb-way (b ≥ 2) forwarding yields an expo-
nential improvement in the expected time for a query queu-
ing in a server.

Proof By equation (4), we can get that in the case wheni <
T−1, an incoming query arriving on a node at time t lets the
node hasi spare capacity with probabilitysi+1(t)b − si(t)b,
and this query becomes the(c − i)th query in the process
waiting queue of the server. So that the expected waiting
time of the query is

∑−∞
i=T−2(c − i)(si+1(t)b − si(t)b) =

(c− T + 2)sb
T−1 +

∑−∞
i=T−2(s

b
i (t))

By equation (3), we can get that in the case wheni ≥
T − 1, the expected waiting time of a query is

∑T−1
c−1 (c −

i)(A/λ)(si+1(t) − si(t)) = (A/λ)(
∑T

i=c si − (c − T +

1)sT−1), A = λ
sb

T−1−1

sT−1−1 . By Lemma B.1, att → ∞,
the QFM converges to the fixed point. So that the ex-
pected waiting time for a query in a server can be made
(A/λ)(

∑T
i=c((λ−A)Ac−i−1

A−1 +Ac−i)−(c−T +1)sT−1)+

(c− T + 2)sb
T−1 +

∑−∞
i=T−2(λ

bT−i−b
b−1 sbT−i−b

T−1) + o(1).
In QFM, the time a query waits on a node wheni ≥ T−1

is less than the time wheni < T − 1 because in the former
case the query is processed by a light node. The above bound

can be enlarged to
∑−∞

i=c sb
i =

∑−∞
i=c−1 λ

bc−i−b
b−1 . Then we

can apply the proved result of exponential time improvement
in [22, 23] to QFM.

Theorem B.3 For any fixed time spot T, the maximum con-
gestion of a node in an QFM over the interval[0, T] is ex-
ponentially improved w.h.p.

Proof It was proved in [22] that the most load in an ini-
tially empty STSM of over[0, T] is exponentially improved.
Since maximum congestion is the most load divided by the
node’s fixed load, it results in exponentially improved max-
imum congestion of a node.

15

