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Abstract

DHT networks based on consistent hashing functions
have an inherent load uneven distribution problem. The ob-
jective of DHT load balancing is to balance the workload
of the network nodes in proportion to their capacity so as to
eliminate traffic bottleneck. It is challenging because of the
dynamism nature of DHT networks and time-varying load
characteristics.

In this paper, we present a hash-based proximity cluster-
ing approach for load balancing in heterogeneity DHTs. In
the approach, DHT nodes are classified as regular nodes
and supernodes according to their computing and network-
ing capacities. Regular nodes are grouped and associ-
ated with supernodes via consistent hashing of their physi-
cal proximity information on the Internet. The supernodes
form a self-organized and churn resilient auxiliary network
for load balancing. The hierarchical structure facilitates
the design and implementation of a locality-aware random-
ized load balancing algorithm. The algorithm introduces
a factor of randomness in the load balancing processes in
a range of neighborhood so as to deal with both the prox-
imity and dynamism. Simulation results show the superior-
ity of the approach, in comparison with a number of other
DHT load balancing algorithms. The approach performs
no worse than existing proximity-aware algorithms and ex-
hibits strong resilience to the effect of churn. It also greatly
reduces the overhead of resilient randomized load balanc-
ing algorithms due to the use of proximity information.

1 Introduction

Distributed hash table (DHT) network is a content-

addressable overlay network that maps files to each net-

work node based on a consistent hashing function. Due to

its salient feature of robustness, DHT network has received

much attention in the past several years. Early studies have

resulted in numerous DHT networks with various routing

characteristics [14, 9, 11, 19, 13]. A downside of consis-

tent hashing is uneven load distribution. In theory, consis-

tent hashing produces a bound of O(log n) imbalance of file

keys between nodes, where n is network size. In addition,

factors like non-uniform file size, time varying file popular-

ity, and node heterogeneity in capacity make the load bal-

ance problem even more severe in practice.

The objective of DHT load balancing is to balance the

workload of the nodes in proportion to their capacity so as to

eliminate traffic bottleneck. The workload of a node can be

measured in terms of metrics like file size and traffic volume

incurred in the access to the files. Load balancing in DHT

networks remains challenging because of their two unique

features: dynamism and proximity. In addition, DHT net-

works are often highly heterogeneous. This requires a load

balancing solution not only to distribute the application load

(e.g. file size, access volume), but also the load balancing

overhead among the nodes in proportion to their capacities.

There are recent studies devoted to the DHT load balanc-

ing problem [14, 5, 20, 7, 12]. “Virtual nodes” [14, 5, 20]

and “item movement” [7] are two general approaches for

load balancing in heterogeneous DHTs. They focus on the

distribution of application load between the network nodes

in proportion to their capacities. Rao et al. [8] and God-

frey et al. [5] proposed randomized load balancing algo-

rithms for load reassignment in DHTs with churn. The algo-

rithms treat all nodes equally in random probing for lightly

(or heavily) loaded nodes, without consideration of node

proximity information in load balancing. Zhu and Hu pre-

sented a proximity-aware algorithm to take into account the

node proximity information in load balancing [20]. The al-

gorithm is based on an additional network constructed on

top of Chord. Although the network is self-organized, it

needs extra cost for reconstruction after every load transfer,

and the algorithm is hardly applicable to DHT with churn.

In [12], Shen and Xu proposed locality-aware random-

ized (LAR) load balancing algorithms to deal with both of

the proximity and dynamic features of Cycloid-structured



DHTs. It introduces a factor of randomness in the probing

process in a range of proximity to handle the effect of churn.

Cycloid is a constant-degree DHT based on the network

topology of cube-connected-cycle. Its hierarchical structure

facilitates the implementation of the LAR algorithms.

This paper applies the concept of proximity-aware ran-

domization to general DHT networks. It distinguishes be-

tween supernodes and regular nodes according to the nodal

capacities and constructs an auxiliary supernode network

for load balancing. The novelty of the approach lies in

the construction of the auxiliary network. Existing prox-

imity clustering approaches often designate static gateways

or routers of regular nodes as their supernodes. In contrast,

we cluster the nodes and associate them to supernodes by

consistent hashing of their physical proximity information.

Supernodes are designated dynamically according to their

capacities and consistent hashing incurs little re-association

of regular nodes to the supernodes as nodes join and leave

the system. The auxiliary supernode network can be phys-

ical or virtual. It facilitates the design and implementation

of efficient and churn-resilient load balancing algorithms.

The rest of this paper is structured as follows. Section 2

presents a concise review of representative load balancing

approaches for DHT networks. Section 3 details hash-based

proximity clustering to construct a auxiliary network to fa-

cilitate load balancing with churn, proximity and hetero-

geneity considerations. Section 4 presents how locality-

aware randomized load balancing algorithm implements on

the auxiliary network. Section 5 shows the performance of

the hash-based proximity clustering approach for load bal-

ancing in terms of a variety of metrics in Chord with and

without churn. Finally, Section 6 concludes this paper with

remarks on possible future work.

2 Related Work

DHT networks have an inherent load balancing problem due

to the use of consistent hashing functions for key Id range

partitioning. Node heterogeneity in P2P networks makes

the load balancing problem even more severe. To alleviate

the problem, Stoica et al. [14] proposed an abstraction of

“virtual servers,” in which each real node runs Ω(log n) vir-

tual severs, and the keys are mapped onto virtual servers so

that each real node is responsible for O(1/n) of the key Id

space with high probability. The “virtual server”-based ap-

proach for load balancing is simple in concept, but it incurs

large space overhead and compromises lookup efficiency.

Brighten et al. [6] addressed the problem by arranging a

real server for virtual Id space of consecutive virtual Ids.

This reduces the load imbalance from O(log n) to a con-

stant factor. Karger and Ruhl [7] coped with the “virtual

server” problem by arranging for each real node to acti-

vate only one of its O(log n) virtual servers at any given

time. The real node occasionally checks its inactive virtual

servers and may migrate to one of them if the distribution of

load in the system has changed. Most recently, Bienkowski

et al. [2] proposed a node leave and re-join strategy to bal-

ance the key Id intervals across the nodes.

Initial key Id space partitioning is insufficient to guaran-

tee load balance, especially in DHTs with churn. It is of-

ten needed to be complemented by dynamic load reassign-

ment. Rao et al. [8] proposed three schemes to rearrange

load based on different capacities of nodes. Their basic idea

is to move load from heavy nodes to light nodes by random-

ized probing. Based on this work, Godfrey et al. [5] devel-

oped churn resilient algorithm (CRA) for dynamic DHTs

with churn. In this work, when a node’s fraction of capacity

used exceeds a predetermined threshold, its excess virtual

nodes will be moved to light nodes immediately without

waiting for next periodic balancing.

An alternative to “virtual server” migration is “item

movement.” Karger and Ruhl [7] proved that the “virtual

server” method could not be guaranteed to handle item dis-

tributions where an key Id interval of length p has more than

a ω(pl) fraction of the load (l represents the maximum num-

ber of virtual locations of each node). As a remedy, they

proposed an item moving scheme, in which every node oc-

casionally contacts a random other node and move items

between the nodes for load balancing.

Note that the load re-assignment schemes assumed a goal

of minimizing the amount of load moved. It neglects the ef-

fect of load moving distance, a main attributing factor to the

bandwidth requirement for load balancing. One of the early

work to utilize the proximity information to guide load bal-

ancing is due to Zhu and Hu [20]. They suggested to build a

k-ary tree structure on top of a DHT overlay, and use prox-

imity information to map physically close heavy and light

nodes. Load information will be propagated from tree leaf

nodes upwards along the tree. When the total length of in-

formation reaches a certain threshold, the tree node would

execute load rearrangement. However, the tree construction

and maintenance are costly, especially in DHTs with churn.

Without timely fixes, the tree will be destroyed, degrading

load balancing efficiency. Besides, the tree needs to be re-

constructed every time after virtual server transferring.

Shen and Xu proposed locality-aware randomized load

balancing algorithms to take advantage of the hierarchical

structure of Cycloid to cope with both dynamism and prox-

imity [12]. This paper applies the concept of proximity-

aware randomization for load balancing in general hetero-

geneous DHTs. A key component is proximity clustering

that distinguishes between regular nodes from neighboring

high capacity supernodes and builds a self-organized churn-

resilient hierarchical structure to take advantage of the net-

work heterogeneity and make use of the proximity informa-

tion in load balancing.



3 Hash-based Proximity Clustering

In general, supernodes are nodes with highly capacity and

fast connections and regular nodes are nodes with low

capacity and slower connections. Supernode network in

DHTs is an auxiliary expressway for fast routing between

the supernodes. Each supernode operates as a server to

its associated regular nodes. The supernode networks pro-

posed in [4, 18] take proximity into account by clustering

physically close nodes in one group. They take static gate-

ways (or routers) as supernodes. Network tools for finding

gateway, such as traceroute, are too heavy-weight and in-

trusive for use by large scale applications, because it gener-

ates excessive load on the network. Xu et al. [16] proposed

to use landmark clustering to generate proximity informa-

tion. The proximity information of physically close nodes

is stored in the same or nearby nodes. Based on the prox-

imity information, supernodes are connected in an auxiliary

expressway for fast routing. Their expressway construction

is constrained by the logical overlay topology. For a supern-

ode, its direct neighbors are limited to those supernodes in

the desired portion of its Id space. The resultant partially

connected expressway does not make full use of hetero-

geneity and proximity. Propagating information in the ex-

pressway about node join and leave, and the network condi-

tion changes may lead to high maintenance cost. Our prox-

imity clustering approach bears resemblance to landmark

clustering, in that the nodes are partitioned in groups ac-

cording to landmark proximity information. But our hash-

based proximity clustering approach constitutes all supern-

odes into a self-organized and churn-resilient DHT for load

balancing. The interconnections between the supercodes

and their associated regular nodes can be defined by their

routing tables. We distinguish the interconnections in two

forms: physical and virtual. A physical cluster, denoted by

pCluster, is a structure in which each node is connected to

its physically closest supernode and all supernodes form a

DHT. A virtual cluster, denoted by vCluster, is a structure in

which each node is connected to logically closest supernode

in their Id space.

Before we present the details of the auxiliary networks,

let us introduce a landmarking method to represent node

closeness on the Internet by indices. Landmark clustering

has been widely adopted to generate proximity informa-

tion [10, 16]. It is based on the intuition that nodes close

to each other are likely to have similar distances to a few

selected landmark nodes, although details may vary from

system to system. In DHTs, the landmark nodes can be se-

lected by overlay itself or the Internet. We assume m land-

mark nodes that are randomly scattered in the Internet. Each

node measures its physical distances to the m landmarks,

and use the vector of distances < d1, d2, . . . , dm > as its

coordinate in Cartesian space. Two physically close nodes

will have similar landmark vectors.

We use space-filling curves [1], such as Hilbert curve as

in [16], to map m-dimensional landmark vectors to real-

numbers, such that the closeness relationship among the

points is preserved. This mapping can be regarded as filling

a curve within the m-dimensional space till it is completely

fills the space. We partition the m-dimensional landmark

space into 2mx grids of equal size (where m refers to the

number of landmarks and x controls the number of grids

used to partition the landmark space), and number each

node according to the grid into which it falls. We call this

number Hilbert number of the node. The Hilbert number

indicates physical closeness of nodes on the Internet. The

smaller the x, the larger the likelihood that two nodes will

have same Hilbert number, and the coarser grain the physi-

cal proximity information.

3.1 Physical Clustering

pCluster consists of clusters, and all nodes are physically

close to each other within each cluster. Each cluster has a

supernode, together with a group of regular nodes, and the

supernode operates as a server to the others.

In pCluster, a supernode DHT is constructed on top of

the original DHT. We directly use a node’s Hilbert number

as its logical node Id and let supernodes act as nodes and

regular nodes as keys in the top-level supernode DHT. The

top-level supernode DHT can be any type of DHT such as

Chord, Pastry or CAN, with a variant of consistent hashing

key assignment protocol. By the protocol, a key is stored in

a node whose Id is the closest to the key. A regular node is

assigned to a supernode whose Id is closest to the node’s Id;

that is, regular nodes are connected to their physically clos-

est supernode since node Id represents node physical loca-

tion closeness. As a result, the physically close nodes will

be in the same cluster or nearby clusters. In the case when a

number of supernodes have the same Hilbert numbers, one

supernode is chosen and others become its backups. The

consistent hashing for key assignment protocol requires rel-

atively little re-association of regular nodes to dynamically

designated supernodes as nodes join and leave the system.

We use a “proximity-neighbor selection” technique as

described in [3, 15] to build each supernode’s routing ta-

ble in the supernode DHT. That is, it selects the routing

table entries pointing to the physically nearest among all

nodes with Ids in the desired portion of the Id space. Since

Hilbert numbers represent node physical location closeness,

the top-level supernode DHT in pCluster preserves supern-

ode physical proximity in logical Id space. As a result,

nodes in one cluster are physically close to each other, close

clusters/supernodes in logical Id space are also physically

close to each other, and the application-level connectivity

between the supernodes in the top-level supernode DHT is

congruent with the underlying IP-level topology.



Algorithm 1 Pseudo-code for node n joining in pCluster

containing node n’.

n.join(n’){
1: Id=n.Hilbertnum;

2: //find the supernode closest to n
3: s=n’.find supernode(n.Id);

4: if its capacity<a predefined threshold then
5: //n is a regular node, taking s as its supernode
6: supernode=s;

7: supernode.addto clientlist(n);

8: else
9: //n is a supernode

10: if n.Id==s.Id then
11: s.addto backuplist(n);

12: else
13: //join in supernode DHT, initialize neighbors
14: predecessor=nil;

15: //find its successor
16: if s.Id%2d >n.Id%2d then
17: successor=s;

18: else
19: successor=s.successor;

20: end if
21: end if
22: end if
23: }

To find a supernode responsible for an Id, a regular node

forwards a query to its supernode, and the routing algo-

rithm on supernode DHT is the same as the DHT routing

algorithm. DHT protocols dealing with node and item joins

and departures can be directly used to handle supernode and

regular node joins and departures in pCluster. When a node

joins the pCluster, it must know at least one node, and uses

pCluster routing algorithm to find its place in pCluster. To

maintain the mapping between regular nodes and supern-

odes, when a supernode s joins the pCluster, regular nodes

previously assigned to s’s successor or predecessor now be-

come assigned to s if s is closer to them than their current

supernodes. When s leaves the pCluster, all of its assigned

regular nodes are reassigned to s’s successor or predeces-

sor based on their closeness to its regular nodes. No other

changes in assignment of regular nodes to supernodes need

occur. Algorithm 1 and 2 show the pseudocode of node join

and departure in pCluster, respectively.

Figure 1(a) shows an example of pCluster in Chord. By

taking Hilbert numbers as their Id and key assignment pro-

tocol, physically close nodes are grouped into a cluster with

a supernode and all supernodes constitute Chord. Each su-

pernode functions as a node in a flat Chord. If n40 wants

to join in the pCluster, n40 asks its known node n2 to find

the supernode with Id closest to 40 based on routing algo-

rithm, which is n45. If n40 is a supernode, n45 moves n41

to n40. The maintenance of supernode DHT is the same as

Algorithm 2 Pseudo-code for node n leaving pCluster.

n.leave(){
1: if n is a regular node then
2: notify(supernode);

3: else
4: //n is a supernode
5: if backuplist.size>0 then
6: s=backuplist.getone();

7: //transfer supernode information to a backup
8: s.clientlist=clientlist;

9: s.backuplist=backuplist;

10: else
11: //no backup supernode, transfer regular nodes
12: for i = 0 up to clientlist.size do
13: client=clientlist[i];

14: if predecessor is closer to client than successor then
15: move client to predecessor;

16: else
17: move client to successor;

18: end if
19: end for
20: end if
21: end if
22: }

that of Chord. The joining execution does not make the rest

of the network aware of n40. It is the responsibility of sta-

bilization to build routing table and other links for n40, and

update other supernode routing tables. If n40 is a regular

node, it becomes a client of n45. If a node, say n45, wants

to leave the system. According to Algorithm 2, it moves

n41 to n34, and n50 to n63. The routing tables which have

n45 will be updated in stabilization. If n41 wants to leave

the pCluster, it only need to disconnect its link to n45.

Node failure is an important problem in DHT since it

leads to intact topology and deprecate DHT performance.

As in flat DHT, pCluster uses stabilization to deal with su-

pernode failures in the top-level supernode DHT. In Chord,

each supernode refreshes its routing table entries and pre-

decessor periodically to make sure they are correct. We use

lazy-update to handle the influence of a supernode failure

on its regular nodes. Each regular node probes its supernode

periodically. If a regular node n does not get a reply from its

supernode s after a certain time period T, n assumes s fails,

it uses pCluster node join protocol to connect to another su-

pernode again. For example, if n41 does not get reply from

n45 after T, by joining algorithm, it will connects to n32.

To use pCluster for load balancing, each node periodi-

cally reports its load information to its supernode. As a re-

sult, the load information of physically close nodes gather

together in the supernode. For example, Nodes n61 and

n62 report their load information to n63 periodically, which

does load rearrangement, and notify heavy nodes to move

excess load to light nodes.
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Figure 1: Example of proximity-aware DHTs.

3.2 Virtual Clustering

Physical clustering constructs a top-level supernode DHT

in the routing tables of the nodes. In contrast, virtual clus-

tering constructs a perception of supernode DHT, vCluster,

by recording the proximity information in the original DHT

network. That is, vCluster assigns regular nodes to their

logically closest supernodes in Id space as usual. Although

nodes in the same cluster are not necessarily physically

close, physically close nodes will report their load informa-

tion to a same or logically close supernode in the load bal-

ancing process. Algorithms 3 and 4 show the pseudocode

of node join and departure in vCluster, respectively. They

ensure that a regular node always connects to the supernode

whose Id is closest to its Id. Like pCluster, vCluster also

use lazy-update to handle supernode failure. Without an ad-

ditional structure, vCluster does not need any other extra

construction and maintenance cost.

A question is how to gather load information of physi-

cally close nodes into a same supernode. Recall that, in a

DHT, an object with a DHT key is allocated to a node by the

interface of put(key,objet). In Chord, the object is as-

signed to the first node whose Id is equal to or follows the

key in the Id space. If two objects have similar keys, then

they are stored in close nodes in Id space. Because Hilbert

numbers represent node physical proximity, if nodes put

their load information to the DHT with their Hilbert num-

ber as the key by put(HilbertNum,loadInfo), load

information of physically close nodes with similar Hilbert

numbers will reach the same node or nearby nodes. And

the nodes further forward the information to their supern-

odes. Figure 1(b) shows an example of vCluster in Chord.

In the example, regular node n1, n10 and n30 send their

load information to the DHT with their Hilbert number 56

as destination. The information will first arrive at n60, and

then is forwarded to n63. The n63 does load rearrangement

between physically close nodes n1, n10 and n30.

3.3 pCluster versus vCluster

Both pCluster and vCluster facilitate locality-aware load

balancing. They achieve the goal in different ways. In

Algorithm 3 Pseudo-code for node n joining in vCluster

containing node n’.

n.join(n’){
1: //get successor using Chord joining algorithm
2: n.joinChord(n’)

3: if n is a regular node then
4: //get the supernodes of its successor and predecessor
5: suc supernode=successor.supernode;

6: pre supernode=successor.predecessor.supernode;

7: //find a closer supernode
8: if pre supernode is closer to n than suc supernode then
9: supernode=pre supernode

10: else
11: supernode=suc supernode

12: end if
13: supernode.addto clientlist(n);

14: else
15: //n is a supernode
16: successor.supernodejoin forwardnotify(n);

17: successor.predecessor.supernodejoin backwardnotify(n);

18: end if
19: }
20:

21: //n get supernode n’ join notification
22: n.supernodejoin backwardnotify(n’){
23: if n is a regular node then
24: if n is closer to n’ than supernode then
25: supernode=n’

26: supernode.addto clientlist(n);

27: predecessor.supernodejoin backwardnotify(n’);

28: end if
29: end if
30: }
31:

32: n.supernodejoin forwardnotify(n’){
33: the same as supernodejoin backwardnotify, except that the

last instruction should be:

successor.supernodejoin forwardnotify(n’);

34: }

Algorithm 4 Pseudo-code for node n leaving vCluster.

n.leave(){
1: if n is a supernode then
2: //transfer regular nodes to their closest supernode
3: suc s=find supernode forward();

4: pre s=find supernode backward();

5: for i = 0 up to clientlist.size do
6: client=clientlist[i];

7: if client is closer to suc s than pre s then
8: client.supernode change notify(suc s);

9: else
10: client.supernode change notify(pre s);

11: end if
12: end for
13: end if
14: }



pCluster, the load information of the nodes with same

Hilbert number h is gathered in a supernode whose Hilbert

number is closest to h. In vCluster, the load information

will be gathered in a supernode whose Id is closest to h.

Therefore, in the case that node n reports its load informa-

tion to supernode s, s is n’s physically closest supernode in

pCluster; in vCluster, s is not n’s physically closest node,

and it may be even far away from n because of the incon-

sistence between logical topology and underlying physical

topology. Similarly, after a supernode completes load re-

assignment, its notification to transfer load may also need

to travel a long distance in vCluster. As a result, the com-

munication cost of pCluster load balancing would be less

than vCluster load balancing. This advantage of pCluster

load balancing is gained at the cost of supernode DHT con-

struction and maintenance. In a conclusion, pCluster load

balancing can save communication cost in load balancing

and speedup load balancing. In contrast, vCluster can save

storage space and cost for supernode DHT construction and

maintenance.

4 Locality-Aware Randomized Load
Balancing

Proximity clustering facilitates the design and implemen-

tation of efficient and churn resilient load balancing algo-

rithms. A general method for load balancing is to gather

node load information in a number of rendezvous nodes,

which arrange load movement from heavy nodes to light

nodes based on their own load information firstly and then

based on the load information combined with that of other

rendezvous nodes by probing. To consider either of proxim-

ity or churn DHT feature in load balancing will depredate

performance in the other feature. To take into account prox-

imity, a node needs to contact its specific physically close

nodes. It is not flexible enough to handle churn since phys-

ically close nodes are always changing. It is known that

simple randomized load balancing scheme is a good method

to deal with churn as it does not depend on DHT or auxil-

iary network maintenance, but it cannot ensure that the con-

tacted nodes are physically close nodes. In [12], Shen and

Xu proposed locality-aware randomized (LAR) algorithms

in a Cycloid network, by taking advantage of Cycloid’s in-

herent hierarchical structure. The basic idea of the paper

is to let nodes to contact randomized nodes within a range

of proximity and achieve a tradeoff between proximity and

dynamism.

In the following, we present an implementation of the

algorithm in general DHT networks, with the support of

pCluster and vCluster from proximity clustering. LAR al-

gorithms run in two phases. First, regular nodes report their

load information to certain supernodes. Recall that with the

help of the auxiliary network, the load information of physi-

cally close nodes gather together in a supernode or close su-

pernodes. Second, the supernodes arrange load movement.

Each supernode has a pair of sorted donating lists (DSL)

and starving lists (SSL). The DSL is used to store load in-

formation of light nodes and the SSL is used to store load

information of heavy nodes. A supernode firstly arranges

load movement between its own DSL and SSL, which is

called local load balancing. The supernode then probes an-

other supernode and arranges load movement between their

SSLs and DSLs, which is called global load balancing.

LAR introduces a factor of randomness in the probing

process in a range of proximity in global load balancing to

deal with DHT proximity and dynamism. In DHTs, each

node has a routing table and neighbor list, such as suc-

cessor list in Chord, and leaf sets in Pastry, Tapestry and

Cycloid, for query routing. Supernode s in supernode n’s

routing table is generally physically closer to n in pCluster,

and logically closer to n in vCluster than a randomly chosen

supernode in the entire network. Based on this principle,

in global load balancing, a supernode randomly contacts

other supernodes in its routing table and neighbor list first,

in order to move load between relative closer nodes. After

all neighbors are probed, the supernode randomly contacts

other supernodes in the entire Id space.

5 Performance Evaluation

We designed and implemented a simulator in Java for

evaluation of the LAR based on pCluster (pLAR) and

vCluster (vLAR) on Chord DHT and compare their perfor-

mance with churn resilient algorithm (CRA) [5], and KTree

method [20]. CRA can deal with DHT churn by randomized

probing in load balancing and KTree is a proximity-aware

load balancing method that maps physically close heavy

nodes and light nodes for load transfer. We compared the

different load balancing schemes in Chord without churn

in terms of proximity-aware load balancing achievement,

load balancing cost, and also compared the resilience of the

schemes in Chord with churn. In CRA, we set 16 directo-

ries as in [5]. We set the load information size threshold for

load balancing in each KTree node as 15. For simplicity, we

define a node with capacity greater than a predefined thresh-

old as supernode; otherwise a regular node. Table 1 lists the

parameters of the simulation and their default values. In the

following, node utilization represents the fraction of its tar-

get capacity that is used, and system utilization represents

the fraction of the system’s total target capacity that is used.

We use two transit-stub topologies generated by GT-

ITM [17]: “ts5k-large” and “ts5k-small” with approxi-

mately 5,000 nodes each. “ts5k-large” has 5 transit do-



Table 1: Simulated environment and algorithm parameters.

Parameter Default value
System utilization 0.5-1

Object arrival location Uniform over Id space

Number of nodes 4096

Node capacity Bounded Pareto: shape 2
lower bound:25000, upper bound: 25000*10

Supernode threshold 50000

Number of items 20480

Existing item load Bounded Pareto: shape: 2,
lower bound: mean item actual load/2
upper bound: mean item actual load/2*10

mains, 3 transit nodes per transit domain, 5 stub domains

attached to each transit node, and 60 nodes in each stub do-

main on average. “ts5k-small” has 120 transit domains, 5

transit nodes per transit domain, 4 stub domains attached

to each transit node, and 2 nodes in each stub domain on

average. “ts5k-large” has a larger backbone and sparser

edge network (stub) than “ts5k-small.” “ts5k-large” is used

to represent a situation in which DHT overlay consists of

nodes from several big stub domains, while “ts5k-small”

represents a situation in which DHT overlay consists of

nodes scattered in the entire Internet and only few nodes

from the same edge network join the overlay. To account

for the fact that interdomain routes have higher latency, each

interdomain hop counts as 3 hops of units of latency while

each intradomain hop counts as 1 hop of unit of latency.

5.1 Proximity-Aware Load Balancing

In this section, we will show how pCluster and vCluster

help LAR to achieve high proximity-aware performance.

Figure 2(a) and (b) show the cumulative distribution func-

tion (CDF) of total moved load of each load balancing

scheme with system utilization approaches to 1 in “ts5k-

large” and “ts5k-small” respectively. We can see that in

“ts5k-large,” pLAR, vLAR and KTree are able to transfer

95% of total moved load within 10 hops, while CRA moves

only about 15% within 10 hops. Almost all load move-

ments in pLAR, vLAR and KTree are within 15 hops, while

CRA scheme moves only 75% within 15 hops. The results

show that pLAR, vLAR, KTree move most load in short

distances while CRA move most load in long distances.

From Figure 2(b), we can have the same observations as in

“ts5k-large,” although the performance difference between

schemes is not so significant as in “ts5k-large.” The more

load moved in the shorter distance, the higher proximity-

aware performance of a load balancing scheme with less

load balancing cost. The results indicate that proximity-

aware load balancing schemes pLAR, vLAR and KTree per-

form better than CRA with regards to proximity-aware per-

formance. The results of pLAR and vLAR are comparable

to KTree means that pLAR and vLAR are as efficient as

KTree to guide heavy nodes to transfer load to physically

close light nodes either when nodes are from several big sub

domains or when nodes are scattered in the entire Internet.

5.1.1 Breakdown of Load Movement Cost

In general, a load balancing process needs to gather node

load information in a number of rendezvous nodes, which

arrange load movement. Figure 3 shows the breakdown of

total moved load in percentage of the moved load in local

or in global load balancing phase. We find that most load is

moved in the local phase. The LAR algorithm takes proxim-

ity into account in global load balancing phase. The hash-

based proximity clustering facilitates it to achieve better

performance in both local and global load balancing phases.

The figures show that CRA moves more load in local bal-

ancing phase than pLAR and vLAR. It has 16 rendezvous

nodes, and our simulation results show that pLAR has 60

and vLAR has 90 rendezvous nodes. Less rendezvous

nodes means more load information gathered in a node, and

more excess load can be solved in local load rearrangement.

However, it comes with the cost of proximity-aware perfor-

mance depredation because excess load may be assigned

to a remote node caused by coarse grain load information.

Though rendezvous node number has only a small effect on

load balance achievement as claimed in [5], this number has

significant impact on proximity-aware load balancing.

5.1.2 Communication Cost

In addition to load movement cost, communication cost

constitutes a main part of load balancing overhead. The

cost is directly related with message size and physical path

length of the message travelled; we use the product of these

two factors of all exchanging messages to represent the cost.

It is assumed that the size of a message asking and replying

for load information is 1 unit. Figure 4(a) and (b) plot the

communication cost of pLAR, vLAR, KTree and CRA in

“ts5k-large” and “ts5k-small” respectively. From these fig-

ures, we can see that the communication cost increases with

the system load, and that of KTree is much more higher than

the others. We also find that pLAR incurs much less com-

munication cost than vLAR and CRA.

Note that the load information communication cost is

due to information reporting (to rendezvous nodes) and

node probing in global load balancing phase (or informa-

tion propagation in KTree), Figure 5 gives breakdown of the

cost when the system is heavily loaded. The figure shows

that the reporting cost of vLAR, KTree and CRA are almost

the same. The high communication cost of KTree is caused

by load information indirect propagation in the k-ary tree.

Though a node contacts its physically close nodes for load
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Figure 2: CDF of total moved load distribution of different load balancing schemes.
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Figure 3: Breakdown of total moved load of different load balancing schemes.

balancing, the tree structure requires the load information

to be reported step by step upward to the root. In contrast,

randomized probing in other schemes reduces the cost.

Recall that pLAR enables nodes to report their load in-

formation to their physically closest supernode directly, and

enables a supernode probe its peers in top-level supernode

DHT with short path length; while the load and probing in-

formation has to be routed based on routing algorithm on

the original DHT to reach its destination supernode in other

schemes. Therefore, pLAR costs less in the reporting phase

than vLAR and CRA, and it costs less in the probing phase

than vLAR. Due to the fact that almost all excess load is

solved in local load balancing as shown in Figure 3, CRA

has least probing cost in global load balancing.

In summary, pLAR and vLAR achieve the goal of load

balancing as KTree at much less communication cost.

pLAR incurs less communication overhead than vLAR and

CAR, but the benefit comes with the cost of supernode DHT

maintenance.

5.2 Churn Resilient Load Balancing

Churn in P2P networks gives load balancing schemes a

challenge because it is hard to achieve load balance with

frequent node and item joins and departures. For example,

a node become overloaded if it cannot provide sufficient ca-

pacity for the load transferred by its leaving neighbors; fast

and continuous item joins in a specific node make the node

overloaded; when rendezvous nodes for load rearrangement

suddenly leave or fail, some nodes may cannot shed their

load in time. In addition to using randomized probing to

handle churn like CRA, pCluster and vCluster have mainte-

nance algorithms to deal with churn.

We evaluated the efficiency of the pLAR and vLAR in

dynamic situations with respect to a number of performance

factors. In this experiment, we run each trial of the simula-

tion for 20T simulated seconds, where T is a parameterized

load balancing period, and it was set to 60 seconds in our

test. The item join/departure rate was modelled by a Pois-

son process with a rate of 0.4; that is, there were one item

join and one item departure every 2.5 seconds. We ranged

node interarrival time from 10 to 90 seconds, with 10 sec-

ond increment in each step. The system utilization was set

to 0.8. We adopted the same metrics as in [5].
(1) Maximum load movement factor. Load movement fac-

tor is the total load transferred due to load balancing di-

vided by the system actual load. We measure the factor

after each T and take the maximum of the results over

a 20T period as the maximum load movement factor.

(2) Maximum and average 99.9th percentile node utiliza-
tions. We measure the maximum 99.9th percentile of

the node utilizations after each T and take the maxi-

mum and average of the results over 20T as the maxi-

mum and average 99.9th percentile node utilizations.
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Figure 4: Communication cost of different load balancing schemes.
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Figure 5: Breakdown of total communication cost of different load balancing schemes.

Figure 6 plots the performance due to pLAR, vLAR, KTree

and CRA versus node interarrival time. Figure 6(a) shows

that the maximum load movement factor of each scheme is

kept between 20% and 25%, which means that all schemes

move almost the same system load to achieve load balance.

This result suggests that a better load balancing scheme

should explore how to move the same amount of load in

time under churn. Node utilization is a metric to evaluate

this performance. Figure 6(b) and (c) show that the aver-

age 99.9th percentile node utilizations of pLAR, vLAR and

CRA are around 1.1, the maximum 99.9th percentile node

utilizations are slightly higher than the average and kept no

more than 1.2, but both of them are between 1.6 and 2 in

KTree. Keeping the node utilization close to 1 implies that

on average, pLAR and vLAR can achieve the load balancing

goal of keeping each node light even in churn. The results

of pLAR and vLAR are comparable to CRA implies that

pLAR and vLAR are as efficient as CRA to deal with churn.

In contrast, higher node utilization of KTree means that it is

not resilient enough to cope with churn. In summary, in

the face of rapid arrivals and departures of items of widely

varying load and nodes of widely varying capacity, pLAR

and vLAR achieve load balance fast while moving almost

the same amount of load as other schemes; up to 23% of the

load that arrives into the system. However, KTree cannot

handle churn as effectively as the pLAR, vLAR and CRA.

6 Conclusions

Unlike existing supernode clustering approaches which des-

ignate a static gateway of regular nodes as their supern-

ode, this paper presents a hash-based proximity clustering

approach to construct a self-organized churn-resilient aux-

iliary supernode network for load balancing in heteroge-

neous DHT networks. The auxiliary network can be phys-

ical or virtual. In the physical network pCluster, regu-

lar nodes connect to their physically close supernodes and

periodically report their load information to their supern-

odes. In the virtual network vCluster, regular nodes con-

nect to their logically close supernodes as in the original

proximity-oblivious DHT network; physically close nodes

put their load information together by routing their load in-

formation to a rendezvous supernode or close supernodes.

The auxiliary network facilitates the design and implemen-

tation of locality-aware randomized load balancing algo-

rithms. Simulation results show the superiority of the ap-

proach, in comparison with a number of other randomized

and proximity-aware load balancing algorithms. Benefits

of proximity clustering come at the cost of cluster mainte-

nance. Although pCluster and vCluster are self-organized,

there is still need for minimum maintenance as in DHT net-

works.
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Figure 6: Effect of different load balancing schemes in DHT networks with churn.
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