
LORM: Supporting Low-Overhead P2P-based Range-Query and
Multi-Attribute Resource Management in Grids

Haiying (Helen) Shen, Amy Apon Cheng-Zhong Xu
Dept. of Computer Science and Engineering Dept. of Electrical & Computer Engineering

University of Arkansas, Fayetteville, AR 72701 Wayne State University, Detroit, MI 48202
{hshen,aapon}@uark.edu czxu@wayne.edu

Abstract

Resource management is critical to the usability and
accessiblity of grid computing systems. Conventional
approaches to grid resource discovery are either cen-
tralized or hierarchical, and these prove to be ineffi-
cient as the size of the grid system increases. The
Peer-to-Peer (P2P) paradigm has been applied to grid
systems as a mechanism for providing scalable range-
query and multi-attribute resource management. How-
ever, most current P2P-based resource management ap-
proaches support multi-attribute range queries at a high
cost. They either depend on multiple P2P networks with
each P2P network responsible for a single attribute, or
they keep the resource information of all attributes in a
single node. This paper presents a low-overhead range-
query multi-attribute P2P-based resource management
approach, LORM. Unlike other P2P-based approaches,
it relies on a single P2P network and allocates resource
information to different nodes based on resource at-
tributes and values. Moreover, it has high capability to
handle the large-scale and dynamic characteristics of
resources in grids. Simulation results demonstrate the
efficiency of LORM in comparison with other resource
management approaches in terms of resource manage-
ment overhead and resource discovery efficiency.

1 Introduction

Grid systems integrate computers, clusters, storage
systems, instruments, and in general, can provide a
highly available infrastructure for large scientific com-
puting centers. Grids make possible the sharing of ex-
isting resources such as CPU time, storage, equipment,
data, and software applications. Some grid computing
systems are used for complex scientific applications that
are time critical and comply with strict Quality of Ser-
vice (QoS) rules. In many grid systems, resources are

highly dynamic and vary significantly over time. There-
fore, scalable and efficient resource management is crit-
ical to providing usability and accessibility for large-
scale grid computing systems.

The resources required by applications are often de-
scribed by a set of attributes (multi-attribute queries)
such as available computing power and memory. A
fundamental service of resource management is to lo-
cate resources across multiple administrative domains
according to the attribute inputs. Traditional approaches
to the task of resource location are to maintain either
a centralized server or a set of hierarchically organized
servers that index resource information. However, a cen-
tralized approach does not scale to a large number of
grid nodes across autonomous organizations. Hierarchi-
cal approaches provide better scalability and failure tol-
erance by introducing a set of hierarchically organized
servers and by partitioning resource information across
different servers. However, they do not adapt well to the
dynamic nature of grids, and support efficient commu-
nication between nodes for resource management.

Recently, the Peer-to-Peer (P2P) paradigm has been
applied to grid systems for solving large-scale and dy-
namic resource management. P2P-based resource man-
agement approaches can be classified into two cate-
gories: 1) unstructured P2P approaches, and 2) Dis-
tributed Hash Table (DHT)-based approaches. The for-
mer depends on message flooding or random-walkers
as the primary mechanism for searching for resources.
Flooding mechanism results in a large volume of mes-
sages. Random-walkers reduce flooding by some extent,
but it cannot guarantee successful resource locations. In
contrast, the constrained length of the search path and
the deterministic search results of DHTs make them very
effective in large scale and dynamic resource manage-
ment in grids. However, most DHT-based approaches
support multi-attribute range queries by relying on mul-
tiple DHT networks with each DHT responsible for a
single attribute. There is a high cost to maintaining a

number of DHT networks. Some other DHT-based ap-
proaches keep the resource information of all values for
a specific attribute in a single node. This approach has
high cost for resource searching due to the large size of
the resource information directory. Moveover, it over-
loads nodes that maintain a huge amount of information
and process resource queries.

To reduce the high overhead, we propose a DHT-
based resource management approach with Low-
Overhead, Range-query and Multi-attribute (LORM)
features for grids. Unlike most current P2P-base re-
source management approaches, it is built on a single
DHT called Cycloid [1]. Instead of collecting resource
information of all values of an attribute in a single node,
LORM lets each node be responsible for information of
a specific attribute within a value range by taking advan-
tage of the hierarchical structure of Cycloid. It has high
efficiency by achieving balanced distribution of resource
management overhead.

The remainder of this paper is structured as follows.
Section 2 presents a concise review of representative re-
source management approaches for grid systems. Sec-
tion 3 describes the DHT-based LORM resource man-
agement approach, focusing on its resource management
framework and resource management algorithm. Sec-
tion 4 analyzes the performance of LORM in both a
static environment and a dynamic environment, includ-
ing a comparison using a variety of metrics, and ana-
lyzes the factors affecting resource management perfor-
mance. Section 5 concludes the paper and provides re-
marks on possible future work.

2 Related Work

There are many resource management approaches in
grid systems. Some approaches are based on central-
ized or hierarchical client/server models. For example,
Globus toolkit [2] uses an LDAP-based directory service
named MDS [3] for resource registration and lookup.
Systems such as Condor-G [4] and Nimrod/G [5] use
the Globus toolkit to integrate with a grid computing
environment for resource management. However, cen-
tralized approaches have inherent drawback of a single
point of failure, and the centralized server(s) can become
a registration bottleneck in a highly dynamic environ-
ment. To cope with these problems, a P2P middleware
overlay can be used for resource management. These ap-
proaches can be classified into two categories: unstruc-
tured P2P-based approaches [6–10] and DHT-based ap-
proaches [11–16]. Iamnitch et al. [6] and Talia et al. [7]
propose organizing the MDS directories in a flat, dy-
namic P2P network; Mastroianni et al. [8] and Puppin et
al. [10] propose clusters with supernodes, Marzolla et

al. [9] propose a tree structure, and Hu et al. [17] pro-
posed an overlay based service discovery mechanism
in grid. However, flooding, random walkers searching
methods in unstructured P2Ps prevent these approaches
from achieving high scalability. Moreover, the indeter-
ministic search results in unstructured P2Ps cannot pro-
vide a guarantee of the desired resource result. As a
successful model that achieves scalability, robustness,
and deterministic data location, DHT has been widely
adopted for resource discovery in grids.

Chen [18] and Spence [13] use a DHT overlay to effi-
ciently manage dynamic grid computing resources. Re-
cently, two important issues investigated in these sys-
tems are range queries and multi-attribute resource dis-
covery. Range queries look for resources specified by a
range of attribute values (e.g., a CPU with speed from
1:2GHz to 3:2GHz). Current approaches to achieve
multi-attribute range query mainly can be classified into
three groups: (1) those that adopt one DHT for each at-
tribute, and process multi-attribute range queries in par-
allel in corresponding DHTs [12, 14, 16, 19] (2) those
that pool together resource information of all values for
a specific resource attribute in a single node [15]; (3)
those that map the resource attribute and value in a re-
source information separately to one DHT, and process
a query by searching them separately [11, 20]. The first
group comes at a high maintenance overhead for multi-
ple DHTs. The second group overloads directory nodes
for maintaining resource information and processing re-
source query. Moreover, large directories lead to inef-
ficiency in resource searching. The third group brings
about inefficiency in resource information reporting and
searching, and it produces more maintenance overhead
for resource information by doubling resource informa-
tion. In this paper, we will take advantage of the Cy-
cloid [1]’s hierarchical structure to use a single DHT
to realize multi-attribute range-query resource manage-
ment with low overhead.

(x, 50)

b: (5, 200)

(x, 800)

(x,1000)

(x, 1200)

(x, 2047)

(x, 500)

a: (3, 200)

c: (8, 200)

d: (10, 200)

(x,1800)

Figure 1. Cycloid partial routing links.

3 Range-Query and Multi-Resource Re-
source Management

3.1 Cycloid Overview

This section provides an overview of Cycloid DHT
overlay networks followed by a high-level view of
the LORM architecture. Cycloid is a lookup efficient
constant-degree overlay. It achieves a time complex-
ity of O(d) per lookup request by using O(1) neigh-
bors per node, where n=d · 2d nodes and d is dimen-
sion. Each Cycloid node is represented by a pair of
indices (k, ad−1ad−2 . . . a0), where k is a cyclic index
and ad−1ad−2......a0 is a cubical index. The cyclic in-
dex is an integer, ranging from 0 to d − 1 and the cu-
bical index is a binary number between 0 and 2d − 1.
The nodes with the same cubical index are ordered by
their cyclic index mod d on a small cycle, which we
call cluster. The largest cyclic index node in a clus-
ter is called the primary node of the nodes at the clus-
ter. All clusters are ordered by their cubical index mod
2d on a large cycle. Figure 1 shows the partial rout-
ing links of a 11-dimensional Cycloid, where x indi-
cates all possible cyclic index which ranges from 0 to
10. The Cycloid DHT assigns keys onto its ID space
by the use of a consistent hashing function. For a given
key, the cyclic index of its mapped node is set to its hash
value modulated by d and the cubical index is set to the
hash value divided by d. A key will be assigned to a
node whose ID is closest to its ID. If the target node
of a key’s ID (k, ad−1 . . . a1a0) is a participant, the key
will be mapped to the node with same ID. If the target
node is not a participant, the key is assigned to the node
whose ID is first numerically closest to ad−1ad−2 . . . a0

and then numerically closest to k. The consistent hash-
ing [21] produces a bound of O(log n) imbalance of
keys between nodes, where n is the number of nodes
in the system. Cycloid exhibits a more balanced dis-
tribution of key loads between the nodes. The bal-
anced key load distribution helps LORM to prevent re-
source information imbalance, which is a severe prob-
lem in most grids centrally or hierarchically adminis-
tered for resource management. Cycloid has APIs in-
cluding Insert(key, object), Lookup(key).
The APIs facilitate the collection of resource informa-
tion and provide resource search functionality. For more
information about Cycloid, please refer to [1]. Un-
like most resource management approaches that depend
on multiple DHTs for range-query and multi-attribute
resource management, LORM relies on a single Cy-
cloid with constant maintenance overhead. The goal of
LORM is to address multi-attribute and range query re-
source discovery with low overhead and high efficiency.

3.2 Low-overhead Range-Query and Multi-
Attribute Resource Management

This section introduces the framework of LORM
based on Cycloid and related algorithms. The resource
management problem is complicated by the heterogene-
ity of resources in terms of available CPU time, mem-
ory, available storage, network bandwidth, processing
power, available software, and so on. Usually, the re-
sources required by applications are described by spec-
ifying a set of attributes such as available computing
power and memory. It is a challenge for a resource man-
ager to effectively locate resources across widely dis-
persed domains based on a list of predefined attributes.

Currently, most approaches solve the multi-resource
management problem using multiple DHTs with each
DHT responsible for an attribute. To locate resources
specified by several attributes, the resource manager
uses multi-attribute queries and presents each query for
a resource to the appropriate DHT and then concatenates
the results in a database-like “join” operation. However,
the construction and maintenance of multiple DHTs are
costly, especially in dynamic environment. For exam-
ple, suppose that there are q types of resource attributes.
All together q DHTs are used. Although one node does
not necessarily have all attributes, it is included in all
DHTs. The number of figure tables that a node main-
tains is q. Each figure table, for overall n nodes, contains
log n entries. Therefore, each node needs to maintain
q × log n neighbors. To address this problem, we pro-
pose LORM. In LORM, each node only needs to main-
tain seven neighbors in this example.

A computing resource has a specific value for
each attribute, for example, “OS name=Linux”, “CPU
speed=1000MHz”, and “Free memory=1024MB”.
Without loss of generality, we assume that each re-
source is described by a set of attributes with globally
known types and values or ranges or string description.
For example, Memory≥2 or OpSys ==“IRIX”. We de-
fine resource information as information about available
resources and resource queries. We use the function
πa to denote the value (range) or string description
of a particular attribute a. Load information of a
resource requester j is represented in a set of 3-tuple
representation: < a, πa, ip addr(j) >. The available
resource information of node i is represented in the
form of < a, δπa, ip addr(i) >, in which ip addr(i)
denotes the IP address of node i, and δπa is the πa of
its available resource. Usually, the operation in resource
management is to pool together information of available
resources in a number of repository nodes, and direct
resource requests to those nodes, which return the
locations of desired resources to the requesters. The

repository nodes that get the information of available re-
source are called directory nodes, and the set of resource
information stored in them is called a directory.

Resource Hash
CPU 50
Memory 150
Disk 450
External memory 700
Software package 1000
Web service 1200
Bandwidth 1850
Database 2000

Figure 2. Re-
sources hash
values.

CPU

b: (3,5]

Software
package

Web
service

Database

Disk

a: (0,3]

c: (5,8]

d: (8,10]

Bandwidth

Memory

External
memory

e: (8.2]

f: (2,5]g: (5,8]

Figure 3. Resource in-
formation allocation in
LORM.

A Cycloid consists of a number of clusters, which
constitute a large cycle. LORM lets each cluster be
responsible for the information of a type of attribute,
and divides the information to nodes within the cluster
based on resource value. The question is, how to
achieve this objective efficiently? Recall that in a
Cycloid ID, the cubical indices differentiate clusters,
and the cyclic indices indicate different node positions
in a cluster. Based on the Cycloid topology, LORM
uses cubical indices to represent different resource
attributes a such as “Memory size” and “OS name”,
and uses cyclic indices to represent different resource
values πa such as “2” or string description of resource
such as “IRIX”. Specially, LORM assigns each piece
of resource information a Cycloid ID (πa%d, Ha).
Its cubical index Ha is the consistent hash function
value of the resource attribute. Its cyclic index πa%d
is the resource value or the consistence hash value of
string description mod d. A node reports its available
resources to the system periodically using the Cycloid
interface Insert(rescID, rescInfo). Based
on the key assignment policy in Cycloid, in which a
key is assigned to a node with closest ID to key’s ID,
the information of the same attribute will be mapped
to the same cluster. Within each cluster, each node is
responsible for the information of a resource whose
cyclic index falls into the key space sector it supervises.
For example, for the resources and their hashed values
listed in Table 2, the resource information will be
stored in the Cycloid in Figure 1 as in Figure 3. In the
clusters responsible for memory and CPU, each node
is responsible for the resource information in its range
as illustrated. For instance, the resource information
of node i <mem, 2G, ip addr(i)> has resource ID

(2%11,Hmem)=(2,200), and it will be routed to and
stored in node a. To simplify the description, we
use the following notation: let A denote the set of
attributes in the overall schema of the application. AQ

denotes the set of attributes in a query Q. A node uses
Lookup(rescID) to query for resources, and the
query is routed to the directory node for the desired
resource. A multi-attribute query Q is composed of
a set of sub-queries on single attributes AQ, and the
sub-queries are processed in parallel. For example,
when a node k needs a multiple-attribute resource, say
1.8GHz CPU and 2GB memory, it sends requests
Lookup(1.8%d,Hcpu,<cpu,πcpu,ip addr(k)>)
and
Lookup(2%d,Umem,<mem,πmem,ip addr(k)>),
which will be resolved in parallel. The queries will
arrive at node a and node e, which reply to the re-
quester node k with the requested resource information
< mem, δπmem,ip addr(i) > where δπmem = 2,
and < cpu, δπcpu, ip addr(j) > where δπcpu = 1.8.
The requester node then concatenates the results in a
database-like “join” operation based on ip addr. The
results are the ip addr of nodes which have desired
resource by the requester. For range queries such
as cpu≥1.8GHz and memory≥2GB, in addition to
responding with satisfied resource information in their
own directories, node a and e forward the resource
queries to their immediate successors in their own
clusters. The successors check their own directories,
response satisfied resource information to the requester,
and forward the queries to their immediate successors
in their own clusters. This process is repeated until
a successor has no satisfied resource information.
If the requested resource range is less than a value,
then nodes forward queries to their predecessors. If
the queries have lower and upper bounds such as
1GHZ≤cpu≤1.8GHz and 1GB≤memory≤2GB, the
queries will be forwarded in both directions. Compared
to other DHT-based approaches, this approach reduces
the searching scope from n to d. Algorithm 1 shows the
pseudocode in LORM resource management. Cycloid
has a self-organization mechanism to maintain its
structure, which helps LORM to handle dynamism.
With this mechanism, instead of relying on specific
nodes for resource information, resource information is
always stored in a node responsible for the ID region
where the information ID locates, even in dynamic
situation, and the Lookup(rescID) requests will
always be forwarded to the node that has the required
resource information.

Algorithm 1 Pseudo-code for the operation of node i in
LORM resource management.

1: / /periodically report resource information of its available
resources with attributes A={a1, a2 ... am}

2: for each a in {a1, a2 ... am} do
3: get consistent hash values of attribute a: Ha,
4: get the value or the consistent hash value of string de-

scription: δπa%d
5: get the rescID=(δ πa%d, Ha)
6: use DHT function:

Insert(rescID,<a, δπa, ip addr(i)>)
7: end for
8:
9: / /to request resources using a multi-attribute range-queriy,

Q={(a1, πa1), (a2, πa2) . . . (am, πa)}
10: for each a in {(a1, πa1), (a2, πa2) . . . (am, πa)} do
11: get consistent hash values of attribute a: Ha,
12: get the value or the consistent hash value of string de-

scription: πa%d
13: get the rescID=(πa%d, Ha)
14: use DHT function:

lookup(rescID,<a, πa, ip addr(i)>)
15: end for
16:
17: / /after receive response of resource requests
18: concatenates ip addr, get the results ip addr(j),

ip addr(k) . . .
19: ask resources from node node j, k . . . in parallel

4 Performance Evaluation

This section presents the performance evaluation of
LORM. As we mentioned in Section 2, there are mainly
three approaches for grids resource management de-
pending on DHTs. We use Mercury [14], SWORD [15],
MAAN [11] to represent each of the approaches, and
compare LORM with them. Mercury maps resource
value to each DHT with each DHT responsible for an
attribute. SWORD maps attribute in a flat DHT, MAAN
maps attribute and value separately to a flat DHT, and
LORM maps attribute and value to two levels in a hier-
archical Cycloid. To be comparable, we use Chord for
attribute hub in Mercury, and we replace Bamboo DHT
with Chord in Sword.

We have designed and implemented a simulator in
Java for the evaluation of LORM, Mercury, Sword and
MAAN. The dimension is 8 in the Cycloid, and 11 in
Chord, and each DHT has 2048 nodes. We assume there
are 200 resource attributes, and each attribute has 500
values. We used Bounded Pareto distribution function to
generate resource values owned by a node and requested
by a node. In the experiment, when a node needs to re-
quest resources, it chooses resource attributes randomly.

4.1 Maintenance Overhead

In DHT overlays, each node needs to maintain a num-
ber of neighbors in its routing table. Therefore, the rout-
ing table size or the number of outlinks a node main-
tains constitutes a large part of the DHT overlay main-
tenance overhead. Figure 4(a) plots the outlinks main-
tained by each node in different resource management
approaches. It shows that Mercury has dramatically
more outlinks per node than others. Recall that Mer-
cury has multiple DHTs with each DHT responsible for
each resource attribute, so that each node has a routing
table for each DHT, and it has a total number of outlinks
equal to the routing table size times the DHT number.
It means that in Mercury each node needs much higher
overhead to maintain its outlink than others. The exper-
iment results further show that the outlinks of SWORD
and MAAN increase with network size, while LORM
keeps the result fixed at 7. It is because SWORD and
MAAN are built on Chord whose routing table size is
log n. Their outlinks per node grow exponential as n in-
creases. LORM is built on Cycloid, which is a constant-
degree DHT regardless of the network size. The results
illustrate that LORM has significantly less maintenance
overhead, and much higher scalability compared with
Mercury.

In addition to the outlinks, a directory node also
needs to maintain resource information. It is desir-
able to distribute the information among nodes evenly
so that the information maintenance overhead as well
as resource management load can be distributed among
nodes to avoid bottlenecks. The directory size is a met-
ric of the resource information distribution. Figure 4(b)
plots the average and the 1th and 99th percentiles of di-
rectory sizes. Observations can be made from the figure.
First, the average size of MAAN is twice of others. Re-
call that MAAN separate resource attribute and value,
and stores their information separately. As a result, its
total resource information is doubled. Second, MAAN
and SWORD exhibit significantly larger variance than
Mercury and LORM. MAAN and SWORD classify re-
source information to directory nodes based on resource
attribute. As there are 200 resource attributes, the in-
formation are accumulated in 200 nodes among 2048
nodes, leading to a very large directory size in some
nodes while 0 size in others.

On the other hand, Mercury use a DHT for each
attribute, and classifies resource information based on
value in each DHT. The widespread value ranges help
to distribute resource information evenly. LORM is
based on Cycloid. It lets different clusters responsi-
ble for resource information based on resource attribute
and further allocates information to a node based on its

0

500

1000

1500

2000

2500

100 600 1100 1600 2100

Number of nodes

O
u

tli
n

ks
 m

a
in

ta
in

e
d

 b
y

e
a

ch
 n

o
d

e

Mercury
SWORD
MAAN
LORM

(a) Outlinks per node with Mercury

0

100

200

300

400

500

600

100 200 300 400 500
Values per attribute

D
ire

ct
o

ry
 s

iz
e

Mercury
SWORD
MAAN
LORM

(b) Directory size

Figure 4. Overhead in different resource management approaches.

0

100

200

300

400

500

600

700

Mercury SWORD MAAN LORM

R
e

sp
o

n
se

 la
te

n
cy

 p
e

r
re

so
u

rc
e

 q
u

e
ry

 (
se

c.
)

Routing
Directory searching

(a) Processing time

0

1

2

3

4

5

6

7

SWORD LORM

R
e
sp

o
n
se

 la
te

n
cy

 p
e
r

re
so

u
rc

e
 q

u
e
ry

 (
se

c.
)

Routing
Directory searching

(b) Processing time of SWORD & LORM

0
1
2
3
4
5
6
7
8
9

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Node join/leave rate

A
ve

ra
g

e
 lo

g
ic

a
l h

o
p

s
p

e
r

re
so

u
rc

e
 q

u
e

ry

Mercury
SWORD
MAAN
LORM

(c) Performance with dynamism

Figure 5. Efficiency of different resource management approaches.

range. Cycloid’s more balanced key load distribution
helps LORM achieve balanced information distribution.
Therefore, Mercury and LORM can achieve more bal-
anced distribution of load due to resource information
maintenance and resource management operation. Since
that each node in Mercury has dramatically more out-
links to maintain, LORM is the best with regards to over-
head and load distribution.

4.2 Efficiency of Resource Management

An experiment was designed to evaluate the effi-
ciency of different resource management approaches.
We randomly chose 100 nodes and let each node send 10
resource queries. We varied the attribute numbers from
1 to 10 with 1 increase in each step. Figure 6(a) plots
the total logical hops for resource queries with the num-
ber of attributes. We can observe that MAAN has higher
results than LORM, and LORM has higher results than
SWORD and Mercury. The higher hop count of Cycloid
is due to its time complexity of lookups. Chord has a
time complexity of O(log n) per query, and Cycloid has
a time complexity of O(d) per query. Because MAAN
has two queries for each requested resource, resource
attribute and range, it doubles the logical hops for each
resource query.

For range resource query, after the destination node
is reached, other nodes need to be probed for the re-
sources in the specified range. We define the sum of
destination nodes and probed nodes as visited nodes.
This metric represents resource location efficiency. The
more visited nodes, the less efficiency. Figure 6(b) plots
the number of visited nodes versus the number of at-
tributes. We can observe that Mercury and MAAN
have tremendously more visited nodes than SWORD
and LORM. Recall that Mercury and MAAN accumu-
late resource information based on attribute value, which
spreads along the entire DHT ID space. They may need
to probe nodes along a very long ID space. On the other
hand, SWORD accumulates resource information based
on node attribute name. All information of a specified
attribute name is in the destination, and no nodes need
to be probed. LORM stores resource information of a
specified attribute name in a cluster, and only nodes in
the cluster should be probed. As a result, SWORD and
LORM have much less cost for range query than Mer-
cury and MAAN. However, SWORD achieves it at a
cost of high information maintenance overhead in direc-
tory nodes, and high directory searching cost. To verify
this, we record the directory size of each visited node,
and show the sum of the sizes in Figure 6(c) to show the
directory searching cost. We can observe that SWORD

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10
Number of attributes

T
o

ta
l l

o
g

ic
a

l h
o

p
s

fo
r

m
u

lti
-a

tt
rib

u
te

re

so
u

rc
e

 q
u

e
ry

Mercury
SWORD
MAAN
LORM

(a) Logical hops per query

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 10
Number of attributes

T
o

ta
l v

is
ite

d
 n

o
d

e
s

Mercury
SWORD
MAAN
LORM

(b) Visited nodes

0

1000000

2000000

3000000

4000000

5000000

6000000

1 3 5 7 9

Number of attributes

D
ir

e
ct

o
ry

 s
e

a
rc

h
in

g
 c

o
st

Mercury
SWORD
MAAN
LORM

(c) Directory searching cost

Figure 6. Searching cost in different resource management approaches.

has higher searching cost than LORM due to its large di-
rectory. Although LORM needs to probe nodes in a clus-
ter, because of balanced information distribution, it still
has less directory searching cost than SWORD. We can
also observe that MAAN and Mercury have significantly
higher cost, and MAAN has higher cost than Mercury.
It is because a large number of nodes need to be probed
in MAAN and Mercury. The doubled directory size in
MAAN leads to its higher searching cost. Considering
that the number of visited nodes is significantly larger
than the routing hops, we can conclude that LORM is
most efficient in terms of the total searching cost for re-
source queries.

Cost aside, speed of resource query response latency
is another important metric to measure the efficiency
of a resource management approach. We assume that
each node communication takes 0.2 second, and each
directory searching takes 0.01 second times the direc-
tory size. Figure 5(a) and (b) show response latency
for all resource queries. We can observe that Mercury
and MAAN take significantly longer response latency
than SWORD and LORM, and the latency of MAAN
is longer than Mercury. It is shown that Mercury and
MAAN take the same time for routing, and MAAN has
longer directory searching latency than Mercury. They
have the same routing latency is because all queries for
all attributes are processed in parallel. However, MAAN
has larger directory size due to the doubled resource in-
formation, leading to longer latency for directory search-
ing. From Figure 5(b), we can see that LORM has a
shorter response latency than SWORD, though it has
longer latency for routing. It is because Cycloid has
a little longer query routing path length than Chord,
and LORM needs to probe nodes in a cluster for range
queries while SWORD does not need to probe nodes.
However, LORM has more balanced resource informa-
tion distribution, while SWORD accumulate informa-
tion of a specified attribute to a single node, so LORM
has less directory searching latency than SWORD. The

results show that LORM is most efficient in resource
query processing and response.

4.3 Dynamism-Resilient Resource Manage-
ment

The results show that LORM achieves high perfor-
mance along with cost reduction and efficiency in com-
parison to Mercury, SWORD and MAAN in a static situ-
ation. This section evaluates the efficiency of the LORM
in dynamic environment. In this experiment, there are
10000 resource requests. The item join/departure rate is
modeled by a Poisson process with a rate R of 0.4. That
is, there is one item join and one item departure every 2.5
seconds. Node interarrival rates range from 0.1 to 0.5,
with 0.1 increment in each step. Results show that there
are no failures in all test cases. Figure 5(c) shows the
average number of logical hops of lookup operations in
different resource management approaches as the node
join/leave rate R changes. We can see that the measured
number of hops in dynamism is very close to the results
in Section 4.2 and does not change with the rate R. The
results show that with the help of the DHT maintenance
mechanism, LORM can solve resource queries in a dy-
namic environment.

5 Conclusions

Grids employ distributed computational and storage
resources to solve large-scale problems in science, en-
gineering, and commerce. Resource management is a
critical issue for grid systems in which applications are
composed of hardware and software resource. This pa-
per presents a DHT-based Low-overhead Range-query
Multi-resource manager, LORM, which is built on Cy-
cloid DHT. Unlike most previous resource managers
which depend on multiple DHTs with each DHT re-
sponsible for a resource, LORM relies on a single DHT
with constant maintenance overhead to achieve multi-

resource management with low overhead. It avoids bot-
tlenecks by achieving a balanced distribution of load
due to resource information maintenance as well as re-
source management operation itself. Furthermore, Cy-
cloid’s structure helps LORM to deal with dynamic node
changes and variation of resource availability. Simu-
lation results show the superiority of LORM in com-
parison with a number of other representative resource
management approaches in terms of overhead cost and
efficiency of range-query and multi-attribute resource
management. In grids, resources are geographically dis-
tributed and owned by different organizations. Hence,
we plan to further explore and elaborate upon the LORM
design to discover resources based on node locality.

Acknowledgments

This research was supported in part by U.S. Acxiom
Corporation and NSF grant MRI-0421099.

References

[1] H. Shen, C. Xu, and G. Chen. Cycloid: A scal-
able constant-degree P2P overlay network. Perfor-
mance Evaluation, 63(3):195–216, 2006.

[2] I. Foster and C. Kesselman. Globus: a metacom-
puting infrastructure toolkit. HPCA, 2:115–128,
1997.

[3] I. Foster C. Kesselman G. Laszewski W. Smith
Fitzgerald, S. and S. Tuecke. A directory ser-
vice for configuring high-performance distributed
computations. In Proc. of HPDC, pages 365–375,
1997.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: a computation management
agent for multiinstitutional grids. In Proc. HPDC,
2001.

[5] D. Abramson, J. Giddy, and L. Kotler. High perfor-
mance parametric modelling with Nimrod/G: killer
application for the global grid? In Proc. of IPDPS,
2000.

[6] A. Iamnitchi and I.T. Foster. A peer-to-peer
approach to resource location in grid environ-
ments. In J. Schopf J. Weglarz, J. Nabrzyski and
M. Stroinski, editors, Grid Resource Management.
Kluwer, 2003.

[7] D. Talia and P. Trunfio. In L. Grandinetti, editor,
Grid Computing: The New Frontier of High Per-
formance Computing, Advances in Parallel Com-
puting. Elsevier Science, 2005.

[8] C. Mastroianni, D. Talia, and O. Verta. A super-
peer model for building resource discovery ser-
vices in grids: Design and simulation analysis. In
Proc. of EGC, pages 132–143, 2005.

[9] M. Marzolla, M. Mordacchini, and S. Orlando. Re-
source discovery in a dynamic grid environment.
In Proc. of DEXA Workshop, pages 356–360, 2005.

[10] D. Puppin, S. Moncelli, R. Baraglia, N. Tonelotto,
and F. Silvestri. A grid information service based
on peer-to-peer. In Proc. of Euro-Per, pages 454–
464, 2005.

[11] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN:
A multi-attribute addressable network for grid in-
formation services. Journal of Grid Computing,
2004.

[12] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. In Proc. of
P2P, 2002.

[13] D. Spence and T. Harris. Xenosearch: Distributed
resource discovery in the XenoServer open plat-
form. In Proc. of HPDC, pages 216–225, 2003.

[14] A. R. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury: Supporting scalable multi-attribute range
queries. In Proc. of ACM SIGCOMM, pages 353–
366, 2004.

[15] D. Oppenheimer, J. Albrecht, D. Patterson, and
A. Vahdat. Scalable wide-area resource discovery.
Technical Report TR CSD04-1334, EECS Depart-
ment, Univ. of California, Berkeley, 2004.

[16] S. Ratnasamy, J. M. Hellerstein, and S. Shenker.
Range queries over DHTs. Technical Report IRB-
TR-03-009, Intel Corporation, 2003.

[17] C. Hu, Y. Zhu, J. Huai, Y. Liu, and L. Ni. S-
Club: An Overlay Based Efficient Service Discov-
ery Mechanism in CROWN Grid. KAIS, 2006.

[18] S. Chen, X. Du, F. Ma, and J. Shen. A grid resource
management approach based on P2P technology.
In Proc. of HPC Asia, 2005.

[19] D. Talia, P. Trunfio, J. Zeng, and M. Högqvist. A
DHT-based Peer-to-Peer framework for resource
discovery in grids. Technical Report TR-0048, In-
stitute on System Architecture, CoreGRID - Net-
work of Excellence, 2006.

[20] M. Cai and K. Hwang. Distributed aggregation al-
gorithms with load-balancing for scalable grid re-
source monitoring. In Proc. of IPDPS, 2007.

[21] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and Panigrahy R. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web.
In Proc. of STOC, pages 654–663, 1997.

