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Abstract—File replication is a widely used technique for
high performance in peer-to-peer file sharing systems. A file
replication technique should be efficient and meanwhile facilitates
efficient file consistency maintenance. However, most traditional
methods don’t consider node available capacity and physical
location in file replication, leading to high overhead for both file
replication and consistency maintenance. This paper presents a
proactive low-overhead file replication scheme, namely Plover.
By making file replication among physically close nodes based
on node available capacities, Plover not only achieves high
efficiency in file replication but also supports low-cost and timely
consistency maintenance. It also includes an efficient file query
redirection algorithm for load balancing between replica nodes.
Simulation results demonstrate the effectiveness of Plover in
comparison with other file replication schemes. It dramatically
reduces the overhead of both file replication and consistency
maintenance compared to other schemes. In addition, it yields
significant improvements in reduction of overloaded nodes.

I. INTRODUCTION

Over the past years, the immerse popularity of the Internet
has produced a significant stimulus to peer-to-peer (P2P) file
sharing systems. A recent study [1] shows that more than
75% of Internet traffic is generated by P2P applications. The
percentage of such traffic in the total aggregate traffic on
the Internet has increased significantly and become almost
pervasive [2]. The median object size of these P2P systems is
4MB which represents a thousand-fold increase over the 4KB
median size of typical web objects. Furthermore, the access to
these objects is highly repetitive and skewed towards the most
popular ones. Such objects can exhaust the capacity of a node,
even under a low price of storage. If a node receives a large
volume of requests for an object at one time, it becomes a hot
spot, leading to delayed response. File replication techniques
to replicate a hot file to some other nodes have been widely
used to avoid such hot spots by distributing the file query load
among a number of nodes.

In addition to file replication, an effective consistency
maintenance method is also highly demanded by P2P systems.
Without effective replica consistency maintenance, a P2P
system is limited to providing only static or infrequently-
updated file sharing. On the other hand, newly-developed P2P
applications need consistency support to deliver frequently-
updated contents, such as directory service, online auction, and
remote collaboration. Therefore, a file replication technique
should be efficient and farseeing enough to facilitate low-
overhead and timely file replica consistency maintenance.

However, the two issues of file replication and file consis-
tency maintenance have been typically addressed separately,
despite the significant interdependency of file consistency
maintenance on file replication. Most traditional file replication
methods in structured P2P systems determine replica nodes
based on node IDs [3–6] or query path [7–10]. ID-based meth-
ods determine replica nodes based on the relationship between
the node ID and the file’s ID, and path-based methods choose
replica nodes in the file query path from the file requester to
the file provider. Both groups of methods concentrate on flash
crowds elimination and query efficiency by assuming replica
nodes have available capacity for replicas. This assumption
will make the problem of hot spots even more severe since
replica nodes may be overloaded nodes. These methods also
make file replication without considering node locality, which
is a vital factor for efficiency of file replication and consistency
maintenance.

This paper presents a proactive low-overhead file replica-
tion scheme, namely Plover. Plover not only achieves high
efficiency in file replication but also supports low-overhead
and timely consistency maintenance. It makes file replication
among physically close nodes based on node available capac-
ities. With node available capacity consideration, it avoids ex-
acerbating the hot spot problem by choosing nodes which have
sufficient capacity for the replicas. In addition, it determines
the number of file replicas based on node available capacity
which eliminates unnecessary replicas, resulting in less con-
sistency maintenance overhead. With locality consideration,
it enables the file replication and consistency maintenance
to be conducted among physically close nodes, leading to
considerable reduction of overhead. Plover further adopts
lottery scheduling method to achieve file query load balance
between replica nodes.

The rest of this paper is structured as follows. Section II
presents a concise review of representative file replication
approaches for structured P2P systems. Section III presents
the Plover file replication scheme, corresponding consistency
maintenance method and query redirection algorithm. Sec-
tion IV shows the performance of Plover in comparison of
representative file replication schemes in terms of a variety
of metrics. Section V concludes this paper with remarks on
possible future work.



II. RELATED WORK

Driven by tremendous advances of P2P file sharing systems,
numerous file replication methods have been proposed for
structured P2P systems. One group of file replication methods
determines replica node based on IDs [3–6]. In PAST [3],
each file is replicated on a set number of network nodes
whose IDs match most closely to the file’s ID. The number is
chosen to meet the availability needs of a file, relative to the
expected failure rates of individual nodes. It has load balancing
algorithm for non-uniform storage node capacities and file
sizes. CFS [4] stores blocks of a file and spreads blocks evenly
over the available servers to prevent large files from causing
unbalanced use of storage. It uses distributed hash function to
replicate each block on servers immediately after the block’s
successor on the Chord ring in order to increase availability.
LessLog [5] determines the replicated nodes by constructing
a lookup tree based on IDs to determine the location of the
replicated node. In HotRoD [6], hot arcs of peers are replicated
and rotated over the identifier space.

Another group of file replication methods [7–10] chooses
replica nodes based on file query path. Stading et al. [7]
proposed Backslash system, in which a node pushes cache to
one hop closer to requester nodes when overloaded. LAR [8]
let overloaded nodes replicate at the query initiator and create
routing hints on the reverse path. CUP [9] and DUP [10] cache
metadata along the lookup path with consistency support.

The rigid ID-based or path-based replica node determination
may make the overloaded problem even more severe, since
the replica nodes chosen might not have enough available
capacity for a replica. Although PAST employs load balancing
algorithm, and CFS adopts file division, these strategies come
at a price of extra overhead and complexity. In addition to the
node available capacity, these file replication schemes don’t
take locality into account. Fessant et al. [11] indicated that
geographical clustering is present and can be leveraged in
order to yield significant performance improvements. Based
on this principle, this paper presents the Plover file replication
scheme. By considering node available capacity and locality,
Plover not only achieves high efficiency in file replication but
also proactively avoids extra overhead and facilitates efficient
file consistency maintenance.

III. PLOVER: PROACTIVE LOW-OVERHEAD FILE

REPLICATION

Plover realizes locality-aware file replication through build-
ing a supernode network which clusters physically close nodes.
In general, supernodes are nodes with highly capacity and fast
connections. For simplicity, we define a node with capacity
greater than a predefined threshold as supernode; otherwise
a regular node. Plover assembles all supernodes into a self-
organized structured P2P for file replication. The supernode
network can also serve other purposes such as load balancing
and express routing.

Before we present the details of the supernode network
construction, let us introduce a landmarking method to rep-
resent node closeness on the Internet by indices. Landmark
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Fig. 1. Supernode structured P2P.

clustering has been widely adopted to generate proximity
information [12]. It is based on the intuition that nodes
close to each other are likely to have similar distances to
a few selected landmark nodes. We assume m landmark
nodes that are randomly scattered in the Internet. Each node
measures its physical distances to the m landmarks, and use
the vector of distances < d1, d2, . . . , dm > as its coordinate in
Cartesian space. Two physically close nodes will have similar
landmark vectors. Hilbert curve [12] is further used to map
m-dimensional landmark vectors to real-numbers. That is,
Rm �−→ R1, such that the closeness relationship among the
points is preserved. We call this number Hilbert number of
the node.

Plover directly uses a node’s Hilbert number as its logical
node ID, and let supernodes and regular nodes act as the
nodes and keys in the top-level supernode structured P2P
respectively. The supernode network can be any type of
structured P2P such as Chord [13] and Cycloid [14]. With
the key assignment protocol that a key is stored in a node
whose ID is the closest to the key, a regular node is assigned
to a supernode whose ID is closest to the node’s ID; that
is, regular nodes are connected to their physically closest
supernode since node ID represents node physical location
closeness. As a result, the physically close nodes will be in
the same cluster or in nearby clusters with supernodes. In the
case when a number of supernodes have the same Hilbert
numbers, one supernode is chosen and others become its
backups. The consistent hashing for key assignment protocol
requires relatively little re-association of regular nodes to
dynamically designated supernodes as nodes join and leave the
system. As a result, nodes in one cluster are physically close
to each other, close clusters/supernodes in logical ID space
are also physically close to each other, and the application-
level connectivity between the supernodes in the top-level
supernode network is congruent with the underlying IP-level
topology.

To find a supernode responsible for an ID, a regular node
forwards a query to its supernode, which uses structured
P2P routing algorithm on supernode network. Structured P2P
protocols dealing with node and item joins and departures can
be directly used to handle supernode and regular node joins
and departures in the supernode network. When a supernode
or regular node joins the supernode structured P2P, it must
know at least one node, and uses the supernode network



routing algorithm to find its place. Algorithm 1 and 2 show
the pseudocode of node join and departure in the supernode
network respectively. The algorithms help to maintain the
mapping between regular nodes and supernodes in dynamism.

Figure 1 shows an example of supernode structured P2P
in Chord. By taking advantage of Hilbert number and key
assignment protocol, physically close nodes are grouped into a
cluster with a supernode and all supernodes constitute Chord.
Each supernode functions as a node in a flat Chord. If n40
wants to join in the pCluster, n40 asks its known node n2
to find the supernode with ID closest to 40, which is n45. If
n40 is a supernode, n45 moves n41 to n40. The maintenance
of supernode network is the same as that of Chord. If n40
is a regular node, it becomes a client of n45. If a node, say
n45, wants to leave the system, it moves n41 to n34, and n50
to n63. If n41 wants to leave the pCluster, it only need to
disconnect its link to n45.

Plover replies on the supernode network for locality-aware
file replication. Specifically, each overhead node reports the
information of its hot files, and each lightly loaded node
reports its available capacity C − L to its supernode peri-
odically, where C is a node’s capacity and L is its actual
load. As a result, the information of physically close nodes
gather together in the supernode. The supernode conducts node
mapping with node capacity consideration for file replication,
and notify overloaded nodes to replicate files to lightly loaded
nodes.

During the mapping, a node is chosen as a replica node
for a file only if it has sufficient capacity for the file, which
avoids exacerbating hot spot problem. In addition, nodes with
higher available capacity have higher priority to be replica
nodes, which helps to reduce unnecessary node replicas. The
load caused by file access should be measured by the number
of bits transferred during a time unit. Therefore, the load is
determined by file size and file popularity. File popularity can
be measured by file visit rate which is the number of visits
during a certain time period, say one second. Let Vi,k denote
the visit rate of file k in node i, Li,k denote its load and
Si,k denote its size. Then, Li,k = Si,k × Vi,k. For instance, a
supernode needs to find a replica node for a hot file with V =
3. If there are three options i, j and k, which can afford load of
3 visit rate, 2 visit rate and 1 visit rate of this file respectively.
Then, node i will be selected as replica node for this file.
Therefore, providing higher available capacity nodes higher
priority to be replica nodes can reduce redundant replicas, and
hence help to reduce file consistency maintenance overhead.

All hot files in a cluster may not be resolved in their cluster.
As mentioned earlier, the distances between a supernode and
its successors or predecessors in the supernode network rep-
resent their physical distances. The distances between a node
and its sequential nodes are usually smaller than distances
between the node and randomly chosen nodes in the entire
ID space. Therefore, for locality consideration, a supernode
probes its physically nearby supernodes by probing its suc-
cessors or predecessors in sequence for unresolved hot files.
The supernode structured P2P enables nodes to communicate

TABLE I
SIMULATED ENVIRONMENT AND ALGORITHM PARAMETERS.

Parameter Default value
System utilization 0.5-1
Object arrival location Uniform over ID space
Number of nodes 4096
Node capacity Bounded Pareto: shape 2

lower bound:25000, upper bound: 25000*10
Supernode threshold 50000
Number of items 20480
Existing item load Bounded Pareto: shape: 2,

lower bound: mean item actual load/2
upper bound: mean item actual load/2*10

and conduct file replication between physically close nodes. It
not only enhances the efficiency of file replication but also
file consistency maintenance. File replication may generate
load imbalance among nodes. The load balancing algorithm
in [15] is adopted into Plover to handle the load imbalance
problem. Due to space limit, please refer to [15] for details.

File consistency maintenance. Plover eliminates the need
for a specific file consistency maintenance method such
as [9, 10, 16, 17] and facilitates efficient file consistency
maintenance. Currently, most file consistency maintenance
methods build a structure for each file. In this case, there
is no unnecessary update message sent to non-replica nodes,
but structure maintenance costs overhead. On the other hand,
push/pull or flooding method doesn’t need structure mainte-
nance, but more overhead is needed for propagation and some
non-replica nodes may get update messages. To combine the
advantages of both methods, Plover specifies a threshold T for
the number of replica nodes. If the number of replica nodes
of a file is larger than T , supernode builds a tree structure
consisting of the replica nodes and it functions as the tree
root. For a file update, Plover lets each node send its update
message to its supernode, which will further broadcast the
message to the file replica nodes if there is no tree structure
for the file. Otherwise, supernode forwards the message to
its children in the tree, and the message will be propagated
downwards along the tree. Plover facilitates low-overhead and
timely consistency maintenance as update messages travel
along short physical distances.

Query redirection for load balance. If an overloaded node
receives a file request, it will forward the request to one of
the file’s replica nodes. A question is how to choose the
replica node so that the query load can be distributed based
on node available capacity. An efficient query redirection algo-
rithm should effectively allocate query load to replica nodes
in balance. Plover adopts lottery scheduling [18] for query
redirection. Lottery scheduling is a method that efficiently
implements proportional-share resource management. In the
scheduling, nodes has tickets, and its allocated resource is
proportional to the number of tickets that they hold. Plover
regards the visit rate of a file as tickets. The number of tickets
a replica node holds equals to the visit rate it is responsible
for. The overloaded node selects a replica node by picking
a ticket from the replica nodes at random and chooses the
replica node that holds this winning ticket which is randomly
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Fig. 2. CDF of total load distribution of replicated file.
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Fig. 3. Total replicas.

generated. The visit rate ratios among replica nodes is the
expected ratios of load that are responsible for.

IV. PERFORMANCE EVALUATION

We designed and implemented a simulator in Java for
evaluation of the Plover based on Chord supernode structured
P2P. There are mainly two classes for file replications: ID-
based and path-based, and PAST [3] and LAR [8] are rep-
resentative of each class. We compared the performance of
Plover with PAST, and LAR in Chord in terms of locality-
aware file replication performance, load balance performance
and file consistency maintenance cost. In the experiment, we
set the number of replicas of a file equals to its visit rate
in PAST. Table I lists the parameters of the simulation and
their default values. We used node utilization to represent the
fraction of its capacity that is used, which is L/C, and used
system utilization to represent the fraction of the system’s total
capacity that is used, which equals to

∑n
i=1 Li/

∑n
i=1 Ci.

We used a transit-stub topology generated by GT-ITM [19]:
“ts5k-large”. “ts5k-large” has 5 transit domains, 3 transit nodes
per transit domain, 5 stub domains attached to each transit
node, and 60 nodes in each stub domain on average.

A. Locality-aware File Replication

In this section, we will show the effectiveness of Plover to
achieve locality-aware file replication between physically close
nodes. Figure 2 shows the cumulative distribution function
(CDF) of total load of replicated files with system utilization
approaches to 1 in “ts5k-large”. We can see that Plover is
able to replicate 95% of total load of replicated files, while
LAR replicates about 30% and PAST replicates only about
20% within 10 hops. Almost all replications in Plover are
within 15 hops, while LAR and PAST scheme replicate only
80% of the total file load within 15 hops. The results show
that Plover replicates most files in short distances but LAR
and PAST replicate most file in long distances. The more file
replicated in the shorter distance, the higher locality-aware
performance of a file replication scheme. The results indicate
that Plover performs superiorly than LAR and PAST with
regards to locality-aware file replication either when nodes
are from several big sub domains or when nodes are scattered
in the entire Internet.

B. Capacity-aware File Replication

Figure 3 shows the total number of file replicas versus
system utilization. We can observe that LAR generates dra-
matically more replicas than PAST, which produces much

more replicas than Plover. Figure 4 plots the maximum 99.9th
percentile node utilizations of different schemes. It illustrates
that the utilization rate of LAR is higher than PAST, and that
of PAST is higher than Plover. In addition, the rate of Plover
is around 1. The results imply that LAR and PAST incur much
more overloaded nodes, while Plover can keep nodes lightly
loaded.

Recall that PAST and LAR don’t consider node available
capacity during file replication. LAR makes replications along
the lookup path once a node is overloaded, and PAST de-
termines the number of replicas based on file availability.
Determining the number of file replicas without node avail-
able capacity consideration will result in unnecessary file
replication. For instance, if a hot file has 3 visit rate load
and a node has available capacity to handle the 3 visit rate
load, then one replica is enough and the file does not need
to be replicated in three nodes. Though PAST uses load
balancing afterwards, it will generate extra overhead. The
neglect of node available capacity in file replication leads to
more replicas, more overloaded nodes, and extra overhead for
load balancing and file consistency maintenance. In contrast,
Plover proactively takes into account node available capacity
during file replication. It not only avoids unnecessary file
replication, but also avoids exacerbating the hot spot problem
by choosing nodes with enough available capacity as replica
nodes. Thus, it outperforms LAR and PAST by controlling the
overloaded nodes and extra overhead for load balancing and
file consistency maintenance.

C. Low-overhead File Consistency Maintenance

File consistency maintenance cost constitutes a major por-
tion of structured P2P system overhead. The cost is directly
related with message size and physical path length of the
message travelled; we use the product of these two factors
of all file update messages to represent the cost. It is assumed
that the size of a update message is 1 unit. In the experiment,
we updated every file once. Figure 5 plots the file consistency
maintenance cost of Plover, PAST and LAR in “ts5k-large”.
From these figures, we can see that the cost increases with
system load, LAR needs dramatically higher cost for file
consistency maintenance than the others, and Plover incurs the
least cost. There are two reasons for the results. First, LAR
makes replication of each file along its lookup path length,
while PAST replicates file based on its availability. With node
capacity consideration, Plover generates less replicas. Second,
because LAR and PAST neglect locality in file replication, they
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render significantly high cost for file update since messages
travel long physical distances. In contrast, Plover proactively
considers locality in file replication, such that the update
messages only travel among physically close nodes. Its short
physical distance for update messages and less number of
replicas result in low-overhead and timely file consistency
maintenance.

V. CONCLUSIONS

File replication and file consistency maintenance are in-
dispensable parts in structured P2P file systems. Currently,
these two issues are typically addressed separately, despite
significant interdependency of file consistency maintenance
on file replication. A growing need persists with regards to
integrating the two techniques for high performance. This pa-
per presents a proactive low-overhead file replication scheme
called Plover. Unlike existing file replication methods, by
taking node available capacity and physical locality into ac-
count, Plover not only achieves highly efficient file replica-
tion, but also proactively facilitates efficient file consistency
maintenance. It makes file replication among physically close
nodes based on node available capacity. Thus, it reduces file
consistency maintenance overhead due to short communication
distances and less file replicas. It also includes an efficient file
query redirection algorithm for load balance in replica nodes.
Simulation results demonstrate the effectiveness of Plover in
comparison with other file replication schemes. We plan to
explore the methods that help to fully exploit file replication
for efficient lookups.
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