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Abstract 
  A proximity search looks for similar complex 
documents such as images, sounds, DNA sequences 
that share two or more separately matching terms 
within a specified distance from within a large 
collection. Retrieving those similar complex documents 
are of great importance to many applications. To 
achieve an efficiency query process, many different 
access methods have been proposed. Token list based 
proximity search has been proved to be a good 
alternative method to the LSH for a large massive 
database proximity search. However, single-token 
based method leads to a high overhead in the results 
refinements process to achieve a required similarity. In 
this paper, we investigate how the multi-token list 
affects the performance of database proximity search. 
Numerous experiments have been conducted and the 
results show that two-token adjacent token list can 
achieve the best query performance in multi-token list 
based proximity search.   
 
1. Introduction 
 
A database of complex objects aims at storing such 
objects and to provide a mean to access them 
according to their content [1]. Besides finding exactly 
information, people also have great interests in looking 
for proximity information which contain certain key 
words.  
For example, when a user input a sequence of 
keywords in the GOOGLE, the search engineer will 
return the results with highest similarity to the results 
with least similarity in an arranged sequence. In the e-
bay website, in addition to returning the things the 
buyer desired to buy according to the inputted 
keywords, the search engine will also return the goods 
relative to the keywords which the buyer might be 
interested. In the bio-informatical field, since the 
completely identical DNA sequences are very hard to 

find, the scientists are also very interested in the 
similar DNA sequences which can be used for further 
research. Even in the image and speech processing 
field, the image and speech documents are represented 
by high-dimensional color histograms and a large 
number of their MFCC coefficients [2, 3, 4]. These 
data points are stored within the database in order to 
search the documents have some specific content [1].  
To retrieval the desired results efficiently, many 

different access methods have been proposed. 
Sequential search which is a brute force search 
algorithm scans the data file to evaluate if the data 
points are within the query. Although this method is 
the reference for all access methods, it is not efficient 
in a massive database with complexity of O(n) for a 
single query.  Other search methods [5][6][7][8][9]  
rely on a hierarchical partitions of the database D. This 
partition is provided by most of the tree-based index 
structures such as B-tree, Kd-tree, R-tree and LSD-tree 
so that the search algorithm may quickly filter out the 
regions that do not overlap with the query. Therefore, 
they are supposed to perform more efficiently than the 
brute-force sequential scan which read the whole data 
file. However, it has been shown that in high-
dimensional data spaces (>20), all these methods tends 
to perform worse than the sequential scan due to the 
curse of dimensionality that is either the running time 
or the space requirement grows exponentially in 
dimension [10]. Clustering-based access methods [11, 
12, 13, 14, 15] aim at clustering the database in order 
to group the data points and accessing only the clusters 
that are likely to contain the nearest neighbors of the 
query points. While such methods may be very 
efficient at query time, usually clustering methods 
need cluster the whole database and therefore can not 
be dynamically updated. Furthermore, clustering very 
large database has an unaffordable cost.      
T. Li in [16] proposed a token list based searching 

scheme (TLS) that improve LSH [15] based searching 



scheme. By classifying records based on token list, 
TLS shortens query time, reduces memory 
consumption and also works for different dimensional 
data sets. TLS stores all the unique tokens contained in 
the records into a token list. Then it groups records 
according to their tokens. When query a record, TLS 
directly map the query to the groups which have the 
query record’s tokens. Their experiment results show 
that the token list scheme is more efficient than LSH-
based searching scheme.  
Based on the work in [16] which use one-token based 

token list for information searching in a massive 
customer data integration (CDI) , we analysis how the 
Multi-token based token list affects the performance of 
the proximity search in multi-dimensional massive 
database. The multi-token based token list is an 
ordered list in which each entry store a composed 
multi-token consists several key words of one record, 
in contrast to previous one key word per token. In this 
paper, n-token or multi-token based token list refers to 
the token list in which each entry contains a token 
consists of several key words of each record. The 
experiments show that given a certain similarity 
requirement, the multi-token based token list achieves 
a higher performance than the single token based token 
list.  Especially, the two-token based multi-token based 
token list can achieve the highest query performance.   
 
2. Relative Works 
 

In the past few years there have been numerous 
studies on the problem of finding the nearest neighbor 
of a query points in a high-dimensional (at least three) 
space focusing mainly on the Euclidean space: given a 
database if n points in a d-dimensional space, find the 
nearest neighbor of a query point.  

Linear search compares a query record with each 
record in the database once at a time. However, this 
method is inefficient since it leads to O(n) time latency 
for each query. Another approach uses the distance 
information to deduce k-dimensional points for records 
so that Vector Space Model multidimensional [5] 
indexing method can be used. R. F. S. Filho in [18] 
proposed an Omni search strategy and generalizes the 
concept of searching data based on some anchor points. 
The triangular inequality is used to limit the number of 
distance computation during the search. Since the base 
of the anchors is not defined, most access methods 
based on this strategy define their own anchor 
selection algorithm.   

Bentley et al. proposed a k-dimension tree (kd-tree) 
data structure [6] that is essentially a hierarchical 
decomposition of space with long dimensions. Kd-tree 

is effective in a low dimensional space, but its 
searching performance degrades at dimensions larger 
than two. Panigrahy in [17] managed to improve kd-
tree search algorithm that iteratively perturbs the query 
point and traverses the tree. Balanced Box-
decomposition trees (BDD-trees) [7] are extensions of 
kd-trees with additional auxiliary data structures for 
approximate nearest neighbor searching. It recursively 
subdivides space into a collection of cells and 
measures the distance between a cell and a query point 
to determine whether the point to determine whether 
the points in the cell should be options in the kd-tree 
searching. These approaches map each record to a kd 
point and try to preserve the distances among the 
points. However, it is difficult to decide the value of k 
such that the mapping between each domain object to a 
k-dimensional point can accurately represent the 
similarity between objects.  

LSH is a method of performing probabilistic 
dimension reduction of high-dimensional data. It is 
used for resolving the approximate and exact near 
neighbors in high-dimensional spaces. It uses a special 
family of locality sensitive hash functions. The main 
idea of the LSH is to use the hash functions to hash 
high-dimensional points into a number of values, such 
that the points close to each other in their high-
dimensional space will have similar hashed values. 
The points are classified based on their hashed values. 
Consequently, the near neighbors of a query point can 
be retrieved by locating the points with the similar 
hashed values. Previous research on LSH in p-Stable 
distribution shows that LSH has a number of 
drawbacks. First, it requires a large memory to achieve 
fast query. Second, it needs refinement to achieve high 
accuracy, which leads to long processing latency. 
Third, LSH employs the vector model to get a record’s 
identifier, which forms all tokens to a multi-
dimensional identifier, which lead to a lot of 0s and 
only a few 1s. Therefore, this sparsity leads to high 
memory consumption and long refinement time. 
T. Li [16] proposed a Token list based searching 
scheme (TLS) which builds a token list to collect all 
the unique tokens in the records. Then, TLS maps each 
record to the token list according to its component 
tokens, and records the record’s index at each token in 
the list. In searching, TLS maps a query to the token 
list based on the query record’s token and retrieve all 
the record’s index stored in it. Although, TLS can 
shorten query time, reduce memory consumption and 
also work for different dimensional data sets. However, 
since each token in the token list records the indexes of 
all the records that have it as keyword. For a record has 
a considerable number of keywords, it will take a long 
time in the refinement process to arrange the results in 



a ordered way. Meanwhile, although the one token 
based token list search can retrieve all the records 
sharing even one common keyword, it is not likely that 
in the real application, user will interest in the records 
that share only one similarity. Therefore, in this paper, 
a multi-token list based searching scheme has been 
proposed to further reduce the query time and 
refinement time of one-token based searching scheme.  

 
3. Multi-Token List Based Searching 
Scheme  
Definition 1:  A record is a string array that consists of 
a series of key words. Each key word is called a single-
token. For example, A record   
Ann Johnson | 16 | Female | 248 Dickson Street  
Consists of key words (token) as  “Ann Johnson”, 
“16”, “Female”, “248 Dickson Street”. 
Without specification, the single-token in this paper 
refer to individual keyword.  
 

Definition2: A multi-token or n-token refer to a token 
consist of n keywords. For example, a 2-token based 
token is “Ann Johnson 16”, “Ann Johnson Female” in 
previous example.    
 
In the Multi-token List based searching scheme 
(MTLS), all the source records are parsed into single-
tokens stored in a token list. These single-tokens are 
mutual-concatenated into n-token. Each n-token in 
token list contains the information about which record 
it belong to (the record contain it as keywords). In the 
target record searching process, each query record is 
also parsed and concatenate into n-tokens as source 
records do. For each n-token, the relative files are 
retrieved according to the token list. In order to 
efficiently retrieve the data, the Multi-tokens are 
hashed into integers and store in a hash table for 
efficiently n-token query and store. The data structure 
of the Multi-token is <hashcode, List<Record 
Indexes>>.    
       
3.1 Token list construction  
 Since in the single token based token list search, each 
token is likely to retrieval a large number of records. In 
these retrieved records, many of them shares only one 
similarity with the query record which the users may 
not be interested. Moreover, the further refinement on 
the retrieved results to get rid of the overlapping 
information and arrange them in a specified order leads 
to considerable overheads. The basic idea of MTLS is 
to rebuild a Token List in which each entry of the list 
is occupied by a Multi-Token (n-token). The Multi-
Token is formed by combining several keywords of 

each record in a permutation way to get all the possible 
combination of the keywords in each record. Then 
these multi-tokens serve as new tokens for the 
proximity searching. 
The Multi-token (n-token) based data searching 
reduces the number of retrieved records by increase the 
similarity limitation to n. It seems that the refinement 
time can be greatly reduced, which lead to a 
sequentially decrease of query time. However, we must 
notice that, with the increase number of n, the 
permutation time to get the target multi-token will 
increase in the order of O(n!). Therefore, there are 
must be a tradeoff in the selection of token size n. In 
next sections, this problem will be explored.     
 
3.1.1 One token based list construction  
An example is used to explain the MTLS information 
searching process. Assume that the records in a 
database are as follows: the index of record id1 is 1; the 
index of record id2 is 2; the index of record id3 is 3; the 
index of record id4 is 4. 

id1: Ann Johnson | 16 | Female | 248 Dickson Street  
id2: Ann Johnson | 20 | Female | 168 Garland 
id3: Mike Smith | 16 | Male | 1301| Hwy 
id4: John White | 24 | Male | Fayetteville | 72701 

In order to construct a one token based token list, after 
parsing each record into several single-tokens, these 
single-tokens are inserted into a token list. For some 
identical single tokens, only one of them will be stored 
in the list as a representation, but the record index 
stored in the rest of single tokens will be inserted into 
that represented one. Table 1 show an example of one 
token based token list. 

 
Table 1: An example of one token based token list 

 
3.1.2 Two token based list construction  
For each record, we still parse it into tokens. For 
example, the tokens in record 1 is “Ann Johnson”, 
“16” , “Female”, “248”, “Dickson Street”. Then we 
concatenate every two of the tokens in this record and 
insert it into the token list, that is, “Ann Johnson 16”, 
“Ann Johnson Female”, “Ann Johnson 248 Dickson 
Street”, “16 Female”, “16, 248 Dickson Street”, 
“Female 248 Dickson Street” and so on.  



Table 2 shows an example of a two-token based token 
list about record 1 and record 2 in previews example. 

 
Comparing Table 1 with Table 2, we can find that 
although Table 2 just depicts the two-tokens of record 
1 and record 2, the size of the 2-token based list is 
already much larger than the 1 token based list even 
use 4 records. It is because for a record with m key 
words, the number of n-token is:  
        ( 1) ...( 1)n

mP m m m n= − − +i i   
It is intuitively that the n-token based token list will be 
very long. Therefore, in order to retrieve the n-token in 
the token list with high efficiency as single-token do, a 
hash table was used to map the n-token list to the hash 
table. That is, if for every token queries, we can go to 
hash table grasp it directly with time complexity of 
O(1). The details will be explained in section 3.2.  
 
3.1.3 Multi-token based list construction  
The construction of Multi-token based list is based on 
two-token based list construction. Algorithm 1 shows 
the pseudo-code of Multi-token based list construction 
For a large amount of records need to build a token list, 
the computer read a record v[i] at one time and parse 
them into several tokens. If we want to build a n-token 
based token list, then we concatenate every n tokens in 
v[i]. If the new created n-token does not inserted into 
the tokenlist before, then insert it. Otherwise, drop it. 
After checking all the new created n-token, the 
computer read the next record v[i+1]. 
 
3.2 Token list Hashing Scheme  
Because of the tremendous number of tokens in a 
massive data base, the length of the token list is very 
long. In order to efficiently answer these queries, i.e. in 
the minimum amount of time in the order of O(1), the 
multi-tokens are hashed into a hash table for efficiently 
store and retrieve.   
For each multi-token t[j] in source record v[i], the 
multi-tokens are hashed into integers and stored in to 
hash table. After storing the multi-token into the hash 

table, its relative record index should also been linked 
with t_code.  
 
3.3 Multi-token based query. 
 The record retrieval process is similar to the 
token list construction process.  
For each query record, we parse it into several token. 
Then every n of these token are concatenated together 
with different order to form a n-token. For every n-
token, we hash them into integers, and try to find it in 
the hash table.  The hash table will retrieve the record 
indexes relative to the hash values if it contains them.    
 
4 Performance Evaluation  
 We conducted experiments for the following methods: 

(1) MTLS with one token, denoted as MTLS-1; 
(2) MTLS with two tokens, denoted as MTLS-2; 
(3) MTLS with three tokens, denoted as MTLS-3. 
The testing data is synthetically generated personal 

data which contains many attributes such as name, 
gender and address. The total number of source 
records is 10,000. We randomly picked 97 records as 
query records. We compared the performance of 
MTLS-1, MTLS-2 and MTLS-3 in terms of sorting 
token time, query time, percentage of similar records 
in the located records and the percentage of similar 
records returned. The following matrices are tested: 
• Time for sorting tokens of source records. It is the 

time for collecting the unique tokens of source 
records, and making all the combinations by 
picking certain number of unique tokens. Short 
sorting token time means that less time is spent on 
setting system before query start. 

• Total query time. It is the time for retrieving the 
similar records of queries. It shows the efficiency 
of a prospecting searching method. Good 
similarity searching scheme should achieve fast 
query speed. 

• Percentage of true positives. True positive is the 
located record which is similar as query. If the 
located record is not similar as query, it named as 
false positive. Efficient prospecting searching 
method should have high percentage of true 
positives. 

• Percentage of similar records returned. It shows 
how much percentage of similar records in the 
source records can be returned. Efficient 
prospecting searching method should locate as 
many similar records as possible. 
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Figure 1. Total query time. 

 
Figure 1 show the query time of different methods. 

From the figure we can see that MTLS-1 has longest 
query time, and MTLS-2 has fastest query speed than 
other methods. Query time consists of the time for 
sorting tokens of query records and time for searching 
hash table. The time for sorting tokens of query 
records is the time for getting all the unique tokens of 
query records, and generating the combinations of the 
query tokens. Time for searching hash table is the time 
for retrieving the similar records of query base on 
different combinations of the query token. From Figure 
1 we can notice that sorting query tokens takes much 
less time than searching hash table in all the methods. 
Because each query record only contains about 10 
tokens, it is easy to generate combination of the query 
tokens. However, when searching hash table according 
to the combination of query tokens, MTLS needs to 
find the location of all the records contain the 
combination and filter the searching results due to 
some records may have duplicated copies in the 
searching results. Because there are more records have 
one common token with query record than the records 
have two or more common tokens with query record, 
searching hash table time of MTLS-1 is longer than 
other methods. Compare MTLS-2 with MTLS-3, 
MTLS-2 has less searching hash table time than 
MTLS-3. If a record has 10 tokens, there are 90 
combinations for two tokens and 720 combinations for 
three tokens. Therefore, MTLS-2 has to look up hash 
table for 90 times. MTLS-3 has to look up hash table 
for 720 times that is eight times more than MTLS-2, 
which leads to long searching hash table time. With the 
increase of the number of token combinations, the time 
for sorting query tokens increases. Therefore, MTLS-2 
can achieve short query time and it is more efficient 
than MTLS-1 and MTLS-3. We also did experiment 
with different amount of query records as shown in 
Figure 2. The result of Figure 2 confirms that MTLS-2 
achieves fastest query speed in all three methods. 
Because of the increases of the number of query 
records, the total query time is getting longer and 
longer. The query time increasing rates of MTLS-2 
and MTLS-3 are slower than MTLS-1. When the 

number of query records is less than 3,000, the query 
time of MTLS-3 even longer than MTLS-1. Therefore, 
MTLS-3 only works well with large number of query 
records. 
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Figure 2. Total query time with different numbers of 

query records. 
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Figure 3. Total processing time. 

 
Figure 3 presents the total processing tome of 

MTLS-1, MTLS-2 and MTLS-3. Total processing time 
includes of the time for sorting token of source records 
and query time. From Figure 3 we can see that sorting 
tokens of source records takes most of the total 
processing time. With the increase of the number of 
token combinations, the time for sorting tokens of 
source records increases. MTLS-3 has the longest 
sorting token time. If a record has ten tokens, MTLS-1 
can make 10 token combinations for the record; 
MTLS-2 can generate  90 combinations; MTLS-3 
produces 720 combinations which is the most 
combinations in the thress methods. Therefore, the 
sorting token time of MTLS-3 dramatically higher than 
other methods. The long sorting tokens of source 
records leads to long total processing time. 
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Figure 4. Percentage of true positives. 

 



Figure 4 shows the percentage of true positives in 
the located records. From Figure 4 we can observe that 
all the records located by MTLS are similar as queries. 
MTLS generates all the combinations for the tokens of 
source records, and it assigns a unique hash code for 
each token combination. When searching a query, 
MTLS looks up the hash table base on the query token 
combincation. Therefore, MTLS only return the 
records have the same token combinations with query.  
 
5. Conclusions 
Proximity search is of great importance for many 
applications in our daily life. Token list method has 
been proved to have a better performance than Locality 
Sensitive Hash methods in multi-dimensional massive 
database. However, the single-token based token list 
search may lead to high overhead in the results 
refinements. And it is not likely that the return record 
sharing similarity of one to the query record will 
interest the user. Therefore, in order to optimize the 
token list based proximity search method, in this paper, 
we investigate how the token size affects the query 
time and query accuracy in the proximity search by 
building different multi-token lists according to multi-
token size. The experience results show that two-token 
based token list proximity search can reach the best 
query performance in terms of the query accuracy and 
query time.  
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