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Abstract

Locality Sensitive Hashing (LSH) is a method of
performing probabilistic dimension reduction of high-
dimensional data. It is a popular technique for approximate
nearest neighbor search. However, LSH needs large mem-
ory space and long processing time to achieve good per-
formance when searching a massive dataset. In addition,
it is not effective on locating similar data in a very high-
dimensional dataset. This paper proposes a new LSH-based
similarity searching scheme, namely SMLSH. It intelligently
combines a consistent hash function and min-wise indepen-
dent permutations into LSH. SMLSH effectively classifies
information according to the similarity with reduced mem-
ory space requirement and in a very efficient manner. It
can quickly locate similar data in a massive dataset. Ex-
periment results show that SMLSH is both time and space
efficient in comparison with LSH. It yields significant im-
provements on the effectiveness of similar searching over
LSH in a massive dataset.

1. Introduction

Driven by the tremendous growth of information in a
massive dataset, there is an increasingly need for an effi-
cient similarity searching method that can locate desired
information rapidly with low cost. When querying in a
massive dataset, most searching systems generate a high-
dimensional vector for each object and then conduct the k-
nearest neighbors (KNN) searching [15]. However, such a
method is not efficient when the dataset size is very large
and the dimension is very high. Other methods [4] [18] [3]
[21] [17] [14] [16] relying on a tree structure (such as kd-
trees, BDD-trees and vp-trees) require substantial space and
time [5] [19]. Sometimes they are even less efficient than
the linear search approach [12] which compares a query
record with each record in the dataset one at a time. More-
over, all these methods compare a query with records during
the searching process to locate similar records, degrading
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the searching performance.

Locality sensitive hashing (LSH) is a known method
that works faster than the linear search for finding nearest
neighbors for high-dimensional data [8]. Indyk e al. [13]
designed a LSH scheme based on p-Stable distributions,
which can find the exact near neighbor in O(logn) time
latency, and the data structure is up to 40 times faster than
kd-tree [8]. However, the LSH scheme is not effective on
locating similar data in a massive dataset with a very high
dimension space. In addition, it has low efficiency in terms
of memory space and searching speed. An experimental
study shows that the LSH scheme requires many hash ta-
bles in order to locate most nearest neighbors, and some-
times the LSH may require over a hundred hash tables to
achieve reasonable accurate approximations [10]. In addi-
tion, the LSH-based method requires all data records have
vectors with the same dimension, as it regards records as
points in a multi-dimensional space.

We further present a SHA-1 consistent hash function
and Min-wise independent permutation based LSH search-
ing scheme (SMLSH) to achieve highly efficient similar-
ity search in a massive dataset. By intelligently integrating
SHA-1 and min-wise independent permutations into LSH,
SMLSH assigns identifiers to each record and clusters sim-
ilar records based on the identifiers. Rather than comparing
a query with records in a dataset, it facilitates direct and
fast mapping between a query and a group of records. The
main difference with SMLSH and LSH is that SMLSH does
not require all records have the same dimension. LSH needs
distance calculation to prune the false positive results which
are the records located as similar records but actually are
not, while SMLSH does not necessarily to have this refine-
ment step since it incurs much less false positive results. We
investigate the operation of LSH and SMLSH, and compare
their performance by experiment. Experiment results show
that SMLSH enhances LSH’s searching efficiency dramati-
cally.

The rest of this paper is structured as follows. Section 2

introduces LSH based similarity searching scheme and min-
wise independent permutations. Section 3 describes and an-



alyzes the SMLSH searching scheme. Section 4 shows the
performance of SMLSH in comparison with LSH. Section 5
concludes this paper with remarks on possible future work.

2. Related Work

In this section, we introduce LSH, LSH-based similarity
searching method [20], and min-wise independent permu-
tations.

2.1. Locality Sensitive Hashing

LSH is an algorithm used for solving the approxi-
mate and exact near neighbor search in high dimensional
spaces [9] [13] [23]. The main idea of the LSH is to use a
special family of hash functions, called LSH functions, to
hash points into buckets, such that the probability of colli-
sion is much higher for the objects which are close to each
other in their high-dimensional space than for those which
are far apart. A collision occurs when two points are in the
same bucket. Then, query points can get their near neigh-
bors by using the hashed query points to retrieve the ele-
ments stored in the same buckets.

LSH provides a dimension reduction technique which
projects objects in high-dimensional spaces to lower-
dimensional spaces while still preserving the relative dis-
tances among objects. Different LSH families can be used
for different distance functions. Based on LSH on p-stable
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Figure 1. The process of LSH.

distribution [23], a similarity searching method in massive
database has been proposed [20]. Figure 1 shows the pro-
cess of LSH.

First, LSH using Vector Space Model [11] to transform
string records into binary numbers. Each binary number
denote a dimension.

As shown in Figure 1, LSH then produces the hash buck-
ets g;(v)(1 < ¢ < L) by using hash functions h, ;(v) =
L%}H’J for every record, where a is a d dimensional vector
with entries chosen independently from p-stable distribu-
tion and b is a real number chosen uniformly from the range
[0,w]. Finally, record v’s hashed value by Hs hash func-
tion, H,, is stored in final hash tables pointed by the hashed
value by H;.

The records that are in the same rows as a query record
are the prospecting results of the query. To further refine the
results, the Euclidean Space Distance between each located
record and the query is computed, and the record will be
removed from the located record set if the distance is larger
than R, which is a pre-defined threshold of distance.

The following formula is used to compute the Euclidean
Space Distance between x and y.

d(z,y) =z -y =

From the procedure of LSH, we can see that LSH does
not need to search the query in the entire dataset scope. It
shrinks the searching scope to a group of records similar
to the query, and conducts refinement. Given n records
in a dataset, traditional methods based on tree structures
need O(log n) time for a query, and linear searching meth-
ods need O(n) time for query. LSH can locate the similar
records in O(L) time, where L is a constant. It means that
LSH is more efficient in a massive dataset that has rapidly
increasing number of records.

2.2. Min-Wise Independent Permutations

Broder et al. [6] define that 7 C S,, is min-wise inde-
pendent if for any set X C [n] and z € X, when 7 is chosen
at random in F,

Pr(min{n(X)} = m(x)) .

| X
Where Pr is the probability. All the elements of any fixed
set X have an equal chance to become the minimum ele-
ment of the image of X under 7 .

In [7] [13], a family of hash functions F is said to be
a LSH function family corresponding to similarity function
sim(A, B) if for all h € F operating on two sets A and B,
we have:

Prhef[h(A) = h(B)] = Slm(AvB)a

where sim(A, B) € [0,1] is a similarity function.
3. SMLSH Searching Scheme

A massive dataset has tremendous number of keywords,
and a record may contains only a few keywords. As a result,
in LSH, the identifier of a record may have a lot of Os, and
only a few 1s. This identifier sparsity leads to low effective-
ness of Euclidean Space Distance measurement to quantify
the closeness of two records. This is confirmed by our sim-
ulations results that the LSH returns many records that are
not similar to the query even though all expected records
are returned. We also observe that the memory required
for LSH algorithm is mainly used to store the identifiers of
records and the hash tables.



SMLSH reduces the false positive results and meanwhile
reduces the memory for records and hash tables. It does not
require all records have the same dimension. That is, it does
not need to derive a vector for each record from a unified
multi-dimensional space consisting of keywords. Specifi-
cally, it uses SHA-1 consistent hash function to generate an
identifier for each keyword in a record. SHA-1 hash func-
tion is supposed to be collision-resistant [22], so it can be
used to hash keywords into integers. Since SHA-1 distin-
guishes uppercase and lowercase keywords. SMLSH firstly
changes all keywords to uppercase. As shown in the follow-
ing, after changing all the keywords of a record into capi-
tal letters, SMLSH uses SHA-1 to hash all the capital-letter
keywords to a set of integers:

Original record: ANN | EDNA | Shelby | NC | 0541

Uppercase record: ANN | EDNA | SHELBY | NC | 0541

Hashed record: 1945773335 | 628111516 | 2140641940
| 2015065058 | 125729831

Algorithm 1. Pseudo-code for the procedure of SMLSH.

(1) get n groups of m hashed values of a and b

(2) for each k[i] do //k[i] is one of the keywords of a record

(3)  using SHA-1 hash k[i] into hashK[i]

(4)  for each a[p][q] and b[p][q] do

) glplla] = (alpllg] * hashK[i] + blp]lg]) mod prime
(6) if i == 0 then

7 min[p][ql=g[pllq]

8) else if g[p][q] < min|[p][q] then
) min[p][q] = g[pllq]

(10) endif

(11) endif

(12) endfor

(13) endfor

(14) for each hashID[j] do
(15) hashID[j]=0
(16) for each min[j][t] do
(17) hashID[j]"=min[j][t]
(18) endfor
(19) hashID[j]=hashID[j]mod tableSize
(20) inseart the index of the record into the hash table
(21) endfor
end

SMLSH does not like LSH require that all records have
the same dimension. In SMLSH, the length of a record
vector only equals to the number of keywords in itself.
Thus, SMLSH reduces the memory of LSH for vectors.
In SMLSH, the min-wise independent permutations are de-
fined as: m(z) = (az + b) mod prime,
where a and b are random integers, 0 < a < prime and
0 < b < prime. SMLSH makes n groups of m min-wise
independent permutations. Applying the n X m hash val-
ues to a record, we will get n buckets with each bucket
having m hashed values. SMLSH then uses XOR opera-
tion on the values of each bucket to get a final hash value.
Consequently, each record will have n final hashed values,
denoted by hashiD.

hashID; = (min{mi(S")} XORmin{mm,(S")}) mod tableSize,
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Figure 2. Searching process of SMLSH.
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where S’ is a SHA-1 hashed integer set, 1 < ¢ < n.
Algorithm 1 shows the pseudo-code for the procedure of
SMLSH.

For a record searching, SMLSH gets the hashIDs for the
query record based on the algorithm. It then searches the
hash table, exports all the records with the same hashID as
the similar records of the query record. A range also can
be set to enlarge the searching scope. With the range, the
records with hashID[j] that satisfy condition:

| hashID][j] — RhashID |< range

are also checked, where RhashlID is the hashID of a query
record. This method enlarges the searching scope of simi-
lar records, and increase the searching accuracy. Figure 2
shows the searching process of SMLSH.

To enhance the accuracy of returned similar records,
refining can be conducted based on similarity. That is,
the similarity between each returned record and the query
record is calculated, the records whose similarities are less
than a pre-defined threshold are removed from the list.
Given two records A and B, the similarity of B to A is

calculated as follows:
— | AN B |
similarity = ———
| A
For example,
A: Ann | Johnson | 16 | Female
B: Ann | Johnson | 20 | Female

To A, the similarity of B is % = 0.75.
4. Performance Evaluation

We implemented the SMLSH searching system, and
compare it with E2LSH 0.1 of MIT [1]. E2ZLSH 0.1 is a sim-
ulator for the high-dimensional near neighbor search based
on LSH in the Euclidean space. Our testing dataset is a
set of synthetically generated names and addresses obtained
from Acxiom Corporation that imitates the properties of ac-
tual customer data. After each record is transformed to 0/1
binary dataset, the dimension of the record is 20,591. The
number of source records was 10,000. We selected 97 query
records randomly from the source records. We use target
records to denote the records in the dataset that are similar
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to the query record. In the hash function hg;(v) = | 22t |
of LSH, w was set to 4 as an optimized value [2]. The dis-
tance threshold of R was set to 3 in all experiments. In
SMLSH, we changed different m and n to test the result.
At last, m and n were set to 4 and 20.

We compared the performance of SMLSH with LSH in
terms of query time, memory cost and effectiveness in lo-
cating the similar records. We conducted experiments for
the following methods:

(1) LSH, denoted as LSS;

(2) SMLSH with range = 0, denoted as SMLSH-0;

(3) SMLSH with range = 8, denoted as SMLSH-1;

(4) SMLSH with range = 16, denoted as SMLSH-2;
Unless otherwise specified, all these methods don’t have re-
finement phase.

4.1. Query Time

Figure 3 shows the total query time of different meth-
ods with and without refinement. We can see that SMLSH
has much faster query speed than LSH. This is due to two
reasons. First, LSH needs to conduct more hash value cal-
culations than SMLSH. In LSH, there are 2346 groups of
buckets, and 69 hash functions in each group. In SMLSH,
there are 20 groups of buckets, and 4 hash functions in each
group. Therefore, LSH needs to do much more hash value
calculations than SMLSH. Second, LSH does Euclidean
Space Distance computation, which includes multiple op-
erations: addition, subtraction and square calculation to re-
move its false positive results. SMLSH-0, SMLSH-1 and
SMLSH-2 do not need this refinement phase since they gen-
erate much less false positive results.

In Figure 3 We set the similarity threshold for SMLSH
as 0.5. That is, SMLSH will return the records whose simi-
larity to the query record are no less than 0.5. From Figure 3
we can observe that the query time with refinement is more
than that without refinement. It is because the refinement
phase needs time for similarity calculation. With refinement
phase, SMLSH still is much faster than LSH in searching.
The query time of SMLSH-2 is longer than SMLSH-1, and
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that of SMLSH-1 is longer than SMLSH-0. It is expected
since larger range means more hash values needed to be
checked, and more similarity calculations need to be con-
ducted in the refinement phase.

4.2. Memory Cost

Recall that LSH transforms source records to vectors
based on keyword list, and SMLSH uses SHA-1 to get
record vectors. Both of them need memory space for record
vectors and hash tables. Figure 4 shows the memory size
for storing transformed source records and hash tables of
LSH and different SMLSHs. It demonstrates that the mem-
ory consumption for both transformed source records and
hash tables in SMLSH is much smaller than in LSH. It is
due to the reason that SMLSH has much shorter record vec-
tors and hence less storage memory. The vector dimension
of LSH is 20,591, while the average dimension of SMLSH
is 11. Therefore, SMLSH needs less memory for storing
the transformed source records than LSH. There are 2346
groups of buckets in LSH for each record, so there are 2346
hashed values needed to be saved in the hash table for each
record. For 10,000 source records, the hash table should
save 23,460,000 hashed values totally. SMLSH only has 20
groups of buckets for each record, and the total number of
hashed values contained in hash table is 200,000. Conse-
quently, LSH’s hash table size is about 117 times more than
SMLSH’s hash table size. These results verify that SMLSH
can significantly reduce the memory consumption of LSH.

4.3. Effectiveness

In addition to the efficiency in terms of memory con-
sumption and query time. Another important metric for
searching methods is how many target records are missed
in the returned record set. This metric represents the effec-
tiveness of a searching method to locate target results. We
define accuracy as follows:

Total number of target records located

Accuracy =
Y Total number of target records
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and tested the performance of searching methods in terms
of accuracy.

Figure 5 shows the accuracy for each method. We ob-
serve that LSH and SMLSH-2 have higher accuracy than
others, and they can find nearly all of the target records.
However, the accuracy of SMLSH-0 and SMLSH-1 is lower
than LSH and SMLSH-2. Since SMLSH-0 and SMLSH-1
have smaller range scope of the query record to check the
similar records, they may miss some similar records that
have less similarities to the query record. Therefore, with
an appropriate value of range, SMLSH can achieve com-
parable performance as LSH, but at a dramatically higher
efficiency.

Figure 6 plots the number of returned results without re-
finement. An effective method should return fewer false
positive records. LSH and SMLSH-2 returned about 2/3 of
source records before refinement phase. They return much
more records than SMLSH-0 and SMLSH-1. More returned
records reduces the possibility to miss target prospects. This
is the reason why LSH and SMLSH-2 have high accuracy.
SMLSH-0 and SMLSH-1 has less range, they return less
records but with lower accuracy. The results imply that an
appropriate range is very important to the performance of
SMLSH. The range should be set to a value that will lead
to few target prospect misses, and meanwhile will not incur
many returned records.

In order to see the similarity degree of located records to
the query record of SMLSH, we conducted experiments on
SMLSH-0, SMLSH-1 and SMLSH-2. We randomly chose
one record, and changed one keyword to make a new record

Table 1. Whether the original record can be
found.

Similarity SMLSH-0 SMLSH-1 SMLSH-2
1.0 Y Y Y
0.9 Y Y Y
0.8 Y Y Y
0.7 Y Y Y
0.6 N N Y
0.5 N N Y
0.4 N N Y
0.3 N N Y
0.2 N N Y
0.1 N Y Y
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as query record every time. Our purpose is to see if SMLSH
can find the original record with the decreasing degree of
similarity to the query record. Table 1 shows whether the
method can find the original record when it has different
similarities to the query record. “Y” means the method can
find the original record and “N” means it cannot. The figure
illustrates that SMLSH-2 can locate the original record in all
similarity levels, and SMLSH-0 and SMLSH-1 can return
the records whose similarity are greater than 0.6 to the query
record. The reason that SMLSH-2 can locate records with
small similarity is because it has larger scope of records to
check. The results imply that in SMLSH, records having
higher similarity to the query record have higher probability
to be located than records having lower similarity.

Figure 7 depicts the number of returned records versus
the similarity between the query record and the original
record. From the figure, we can see that the change of sim-
ilarity does not affect the number of returned records. Ev-
ery time, each method returns almost the same number of
records. Due to the larger searching scope, SMLSH-2 re-
turns more records than SMLSH-1, and SMLSH-1 returns
more records than SMLSH-0. These results further confirm
the importance to choose an appropriate value of range, to
decrease false positives and meanwhile avoid missing simi-
lar records.



5. Conclusions

Traditional information searching methods rely on lin-
ear searching or a tree structure. They need to compare a
query with the records in the dataset in the searching pro-
cess, leading to low efficiency. This paper first describes a
Locality Sensitive Hashing (LSH) based similarity search-
ing, which is more efficient than linear searching or tree
structure based searching in a massive dataset. However, it
still needs a large memory space for storing source record
vectors and hash tables, and leads to long searching latency.
In addition, it is not effective in a very high-dimensional
dataset. This paper further presents an improved LSH based
searching scheme (SMLSH) that can efficiently and suc-
cessfully conduct similarity searching in a massive dataset.
SMLSH integrates SHA-1 consistent hashing function and
min-wise independent permutations into LSH. It avoids se-
quential comparison by clustering similar records and map-
ping a query to a group directly. Moreover, compared to
LSH, it cuts down the space requirement for storing source
record vectors and hash tables, and accelerates the query
process dramatically. Simulation results demonstrate the ef-
ficiency and effectiveness of SMLSH in similarity searching
in comparison with LSH. SMLSH dramatically improves
the efficiency over LSH in terms of memory consumption
and searching time. In addition, it can successfully locate
queried records. Our future work will be focused on further
improving the accuracy of SMLSH.
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