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Abstract

File consistency maintenance in P2P systems is a tech-
nique for maintaining consistency between files and their
replicas. Most traditional consistency maintenance meth-
ods depend on either message spreading or structure for
update propagation by pushing. Message spreading gen-
erates high overhead due to redundant messages, and can-
not guarantee that every replica node receives an update.
Structure-based pushing methods reduce the overhead but
cannot guarantee timely consistency in churn. Moreover,
most methods are unable to consider physical proximity
to improve efficiency. To further reduce update overhead,
enhance guarantee of consistency, and take proximity into
account, this paper presents a geographically-aware Wave
method (GeWave). Depending on adaptive polling in a dy-
namic structure, GeWave avoids redundant file updates by
dynamically adapting to time-varying file update and query
rates, and ensures the consistency of query results even in
churn. Furthermore, it conducts update propagation be-
tween geographically close nodes in a distributed manner.
Simulation results demonstrate the efficiency of GeWave in
comparison with other representative consistency mainte-
nance schemes. It dramatically reduces the overhead and
yields significant improvements on efficiency and scalabil-
ity of file consistency maintenance schemes.

1. Introduction

Over the past years, the immense popularity of Internet

has produced a significant stimulus to peer-to-peer (P2P)

file sharing systems. A recent survey [18] shows more than

75% of Internet traffic is generated by P2P file sharing sys-

tems. The percentage has increased significantly as P2Ps

become more and more popular. To improve P2P system

performance, file replication and caching are widely used.

Shared files are replicated on several nodes to improve sys-

tem reliability and availability. Moreover, query results are

always cached along the routing path to reduce the query

latency of subsequence queries.

Although files in some P2P file sharing systems (i.e.

KaZaA [9] and Morpheus [13]) are always consistent, other

P2P systems (i.e. OceanStore [10] and Publius [28]) permit

users to modify their files, leading to inconsistency between

a modified file and its replicas. On the other hand, with

the tremendous development of P2P applications, newly-

developed P2P applications require frequent content up-

dates, such as trust management [33], remote collaboration,

bulletin-board systems, and e-commerce catalogues. There-

fore, file consistency maintenance to maintain the consis-

tency between a file and its replicas is essential to improve

service quality of existing P2P applications, and to meet

the basic requirement of newly-developed P2P applications.

Without effective consistency maintenance, a P2P system is

limited to providing only static or infrequently-updated file

sharing.

Due to the large-scale and churn of P2P systems,

a highly-scalable and churn-resilient consistency mainte-

nance method is highly demanded. In addition, the method

is also required to have: (1) consistency guarantee of query

results; (2) low overhead; (3) fast update propagation.

Centralized scheme is a straightforward way to maintain

replica consistency. However, it lacks of scalability and

suffers from single-point of failure. Some current decen-

tralized consistency maintenance methods rely on message

spreading [6, 11]. They generate very high overhead be-

cause of overwhelming number of messages. Furthermore,

they cannot guarantee that all replica nodes can receive the

update. To reduce their overhead, other decentralized meth-

ods depend on a structure [12, 2, 15, 31] to propagate up-

dates by pushing. These methods produce less update mes-

sages, but node failures will break the structure intactness,

and hence lead to unsuccessful update propagation. Up-

date failure aside, these methods generate high overhead

for structure maintenance, especially in churn. In addition,



most methods don’t consider physical proximity in file up-

date processing, though message transmission between geo-

graphically (physically and geographically are interchange-

able terms in this paper) close nodes can improve update

efficiency in terms of propagation overhead and speed.

To improve the consistency guarantee, enhance the ef-

ficiency, and reduce the overhead of current methods,

this paper presents a geographically-aware Wave method

(GeWave). In GeWave, each replica node has a polling fre-

quency for its replica that ensures the consistency of the

replica when requested. GeWave builds structure, in which

a node’s parent has higher polling frequency, and is geo-

graphically close to it. Nodes update their files by polling

their parents in a top-down fashion. Due to its wavy pattern

among geographically close node, we name this method as

geographically-aware wave. GeWave structure is resilient

to P2P churn and the creation and deletion of replica nodes.

In most current methods, all replica nodes get informed

soon after a file is updated. The ultimate goal of consis-

tency maintenance is to guarantee that query results are not

out-of-date. Therefore, rather than trying to achieve strong

consistency of replicas, GeWave novelly aims to achieve the

consistency of query results by avoiding unnecessary up-

dates. A significant feature of GeWave is that it achieves an

optimized tradeoff between overhead and fidelity of consis-

tency guarantees. Specifically, GeWave owns the following

distinguishing features.

(1) Consistency guarantee. It uses adaptive polling to

ensure that all replica nodes get updates, and to en-

hance the consistency guarantee of query results even

in churn.

(2) Low overhead. It avoids redundant file updates by

dynamically adapting to time-varying file update and

query rates, and it generates much less overhead for

structure maintenance.

(3) Fast update. It speeds up updates by conducting up-

date propagation between geographically close nodes.

(4) High scalability. It conducts consistency maintenance

in a decentralized manner, and a node receives update

directly without relay nodes.

(5) Churn-resilient. It ensures that a replica node can al-

ways get an update even in churn.

The rest of this paper is structured as follows. Sec-

tion 2 presents a concise review of representative file repli-

cation and consistency maintenance approaches. Section 3

and Section 4 present the overview and detailed design of

GeWave consistency maintenance scheme. Section 5 shows

the performance of GeWave in comparison with other ap-

proaches. Section 6 concludes this paper.

2. Related Work

Replication and caching have been widely deployed in

P2P systems [14, 16, 5, 21, 25, 7, 4, 23, 24, 17, 8, 21, 3].

Most of these systems resort to a centralized method to

maintain consistency, which is not scalable for P2P systems.

For higher scalability, a number of file consistency mainte-

nance methods have been proposed. One class of methods is

based on message spreading. Lan and et al. [11] proposed

to use flooding-based push for static files and polling for

dynamic files. In hybrid push/poll algorithm [6], flooding

is substituted by rumor spreading to reduce communication

overhead. A replica node randomly selects a set of replica

nodes and forwards the message to them with a probabil-

ity. When a new node joins or a node gets connected again,

it contacts online replica nodes to poll updated content.

However, hybrid push/poll scheme only offers probabilis-

tic guarantee of replica consistency. While suitable for un-

reliable P2P systems with churn, spreading-based category

generates high propagation overhead due to redundant up-

date messages. It cannot guarantee that an update reaches

every replica node. In addition, not considering proximity

prevents it from achieving higher efficiency.

Another class of methods is pushing based on struc-

tures. Li and et al. [12] presented a scheme that forms the

replica nodes into a proximity-aware hierarchical structure

(UMPT): the upper layer is P2P and a node in the lower

layer attaches to a physically close node in the upper layer.

An update tree is built dynamically when the upper layer

propagates update messages. Though it takes proximity

into account, clusters of physically close nodes are frag-

ile in churn, which may lead to update propagation fail-

ures. Moreover, periodical message exchange for cluster

maintenance leads to high overhead. SCOPE [2] builds a

replica-partition-tree for each key based on its original P2P

system. It keeps track of the locations of replicas and then

propagates updates. CUP [15] and DUP [31] propagates an

update along a routing path. In FreeNet [3], an update is

routed to other nodes based on key closeness.

However, structure-based pushing methods also have a

number of problems. First, they still generate redundant

messages. Some non-replica nodes as in SCOPE, and some

replica nodes that don’t necessarily need updates due to ab-

sence of queries still receive update messages. Second, de-

centralized pushing cannot guarantee all replica nodes get

the update with node departures and failures, hence can-

not always ensure the consistency of query results. Third,

proximity unawareness in some methods prevents further

improvement in consistency maintenance efficiency.

The consistency of web proxy caching is studied in

[27, 30, 26]. In their context, the proxies are always avail-

able. Thus, these methods are not applicable for a P2P

dynamic environment. GeWave shares similarity with the



work in [26, 11, 19] in terms of polling employment. How-

ever, GeWave improves consistency guarantee in churn. It

considers physical proximity to improve consistency main-

tenance efficiency. More importantly, rather than polling

a single file owner, GeWave conducts consistency mainte-

nance in a decentralized manner, thus achieving higher scal-

ability.

3. Overview

In this section, we present a brief overview of GeWave,

deferring a detailed description to the next section.

GeWave employs polling for consistency maintenance

mainly due to four reasons. First, polling helps reduce re-

dundant updates. Since the ultimate goal of consistency

maintenance is to offer up-to-date files, a node only needs to

guarantee the updated status of its replica when responding

to a query. Thus, a node does not necessarily need to update

its replica soon after each update. Rather, it can poll the up-

date based on its query rate. Instead of passively accepting

updates, polling enables a node to actively adjust its update

rate to reduce unnecessary updates. Second, pushing does

not provide a way for a node to know whether its replica

is up-to-date when the replica is queried. Active polling

allows a replica node to hold the query during polling un-

til it is certain that the replica is up-to-date, thus enhanc-

ing the fidelity of consistency guarantees of query results.

Third, polling facilitates to enhance consistency guarantee

in churn. Instead of passively waiting for updates which

may lead to update failures due to node failures and depar-

tures, a node can actively poll to get timely update. Fourth,

unlike decentralized pushing in which an update usually

passes through a number of relay nodes before it reaches

a replica node, polling enables an update be transmitted di-

rectly to a replica node, thus helping to guarantee timely

update of all replicas.

In GeWave, each replica node has a periodical polling

time interval for its replica, denoted by TTR. GeWave

forms replica nodes of a file into a structure based on their

TTR values and their physical locations. An example of

GeWave structure is shown in Figure 1. The root node is the

file owner, and the replica nodes are organized in ascending

order of their TTR levels from the top to the bottom. That

is, the polling rate of nodes in the dth level is faster than that

of nodes in the (d + 1)th level. The children are physically

close to their parents. In each level, a node connects to its

predecessor and successor, and is relatively physically close

to them.

The file update is conducted in the fashion of a wave.

After the original file is updated, the nodes in the first level

will poll the file owner for updates before their replicas are

queried. Later, the nodes in the second level will poll the

nodes in the first level before their replicas are queried, and

so on. Therefore, a file’s updating is like a wave from the

top to the bottom between geographically nodes. By this

way, GeWave is distinguishing in terms of a number of

features: (1) Relying on polling with query rate consider-

ation rather than updating all replicas once a file changes,

GeWave significantly reduces the updates and overhead,

and meanwhile provides enhanced consistency guarantee

of replicas when queried. (2) Depending on active polling

rather than pushing, GeWave lets a replica node respond

to a query only when the replica is up-to-date, which im-

proves the guarantee that all query results are current. (3)

Polling within geographically close nodes dramatically im-

proves the efficiency of consistency maintenance. (4) Rely-

ing on decentralized polling instead of centralized polling,

GeWave achieves high scalability by distributing the over-

head among replica nodes. (5) Compared to structured-

based pushing methods, polling avoids update failures due

to node departures and failures, and helps to ensure file con-

sistency even in churn.

For simplicity, we assume that only the file owner can

modify the file, or replica nodes are allowed to modify file

but need to notify the file owner. The techniques for file

replication are orthogonal to our study in this paper.

4. The Design of GeWave

4.1. Adaptive Polling

GeWave uses adaptive polling in which a replica node

polls another node having an updated file to determine if its

replica is stale. GeWave is developed based on the work

in [19] that considers the scenario where replica nodes di-

rectly poll the file owner for update. We describe the polling

method in the following.

The polling method lets a replica node dynamically vary

its polling frequency based on the update rate of the file,

i.e. frequently modified files are polled more often than rel-

atively static files. A time-to-refresh (TTR) value is asso-

ciated with each replica that represents the time between

two successive polls. The polling begins using a TTR value

of �. It then uses a linear increase multiplicative decrease
(LIMD) algorithm [26] to adapt the TTR value (and hence,

the polling frequency) to the file update rate. This approach

gradually increases the TTR value as long as there is no

staleness, and reduces TTR value on detection of staleness.

Thus, it probes the file owner for the rate at which the file

changes, and sets the TTR value accordingly.

The ultimate objective of file consistency maintenance is

to ensure a replica is not outdated when requested. There-

fore, it is not necessary to update all file replicas once a file

is changed. A consistency maintenance method is effective

as along as files are up-to-date when requested. Even when

a file changes frequently, if a replica node hardly receives
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queries for the file or hardly queries for the file, it is a over-

head waste to poll for consistency maintenance. Based on

this, the polling method takes file query rate into account

to further reduce the overhead of consistency maintenance.

We use Tquery to denote the time interval between two suc-

cessive queries.

A node combines file query rate into consideration for

TTR determination. That is:

TTR =
{

Tquery TTR ≤ Tquery

TTR TTR > Tquery.

For more details of the TTR determination, please refer

to [19].

Polling helps GeWave enhance the consistency guaran-

tee of query results. If a node receives a request during

file polling process, the node holds the request until it re-

ceives the update message. By this way, GeWave provides

enhanced guarantee that all query results are current even in

churn.

Poll-based GeWave distributes the burden of consistency

maintenance among individual nodes. In structure-based

pushing and message spreading based methods, an update

usually passes a number of relay nodes before arriving at a

distant replica node. In contrast, using direct node-to-node

communication, GeWave enables distant nodes to achieve

consistency and is less sensitive to churn, network size and

P2P structure. Typically, the polling method of GeWave

has an advantage that it avoids providing stale file by ac-

tive polling. In contrast, in push-based methods, a replica

node passively receives update message, which increases

the possibility of providing an outdated file, especially in

a dynamic environment where nodes join, leave and fail.

4.2. Geographically-aware Wave

All replica nodes polling a file owner for consistency

maintenance may overload the file owner, leading to de-

layed update message response. We propose a TTR-based

and proximity-aware GeWave structure to conduct file con-

sistency maintenance in a decentralized manner. Moreover,

GeWave structure guides update messages to travel between

physically close nodes to significantly improve the consis-

tency maintenance efficiency.

Before we present the details of the GeWave structure,

let us introduce a landmarking method to represent node

closeness on the Internet by indices. Landmark cluster-

ing has been widely adopted to generate proximity infor-

mation [29, 20]. We assume m landmark nodes that are

randomly scattered in the Internet. Each node measures its

physical distances to the m landmarks, and uses the vec-

tor of distances < d1, d2, . . . , dm > as its coordinate in

Cartesian space. Two physically close nodes have sim-

ilar landmark vectors. We use space-filling curves [1],

such as Hilbert curve [29], to map m-dimensional landmark

vectors to real-numbers, called Hilbert numbers. That is,

Rm �−→ R1, such that physically close nodes will have

similar Hilbert numbers. We use Hi to denote the Hilbert

number of node i.
A GeWave structure is built dynamically based on the

node geographical location and polling rate. It takes the file

owner as its root, and constitutes nodes into different levels

based on polling rate levels; nodes in the upper levels having

high polling frequency than those in the lower levels. It

connects geographically close nodes to enhance file update

efficiency. An updated is propagated in the fashion of top-

down wave between geographically close nodes.

A GeWave structure has L levels, which is determined

by a file owner according to actual file query rate and esti-

mated number of replica nodes. For instance, if the possible

TTR is within [0,100] seconds and L = 10, then the nodes

with TTR in [0,10) will be on level 1, the nodes with TTR
in [10,20) will be on level 2, and so on. We use LTTR to de-

note a node’s TTR level. L should be an appropriate value.

If L is too large, it will adversely affect the effectiveness of

the GeWave structure for file updating. If it is too small, it

may lead to load imbalance.

As shown in Figure 1, the root node is the file owner, and

the replica nodes are organized in ascending order of their

TTR levels from the top to the bottom. That is, the first

level nodes are the nodes that have the least TTR, and the



TTR level of the dth level nodes is smaller than that of the

(d + 1)th level nodes. In addition to children, most nodes

have three links: a parent link and two neighbor links (i.e.

predecessor and successor). The root node does not have

a parent link and the first node and last node in each level

only have one neighbor. The parent and neighbors of a node

are physically close to it. For example, nodes A, B and C
are physically close nodes, and node A is relatively close to

its neighbors H and O. During file updating, after A polls

the file owner, B polls A for update, and after that, C polls

B for update.

The parent assignment algorithm in GeWave guarantees

with high probability that a child’s parent always has up-

to-date file before the child polls it for update, and children

are physically to their parent. Communication between ge-

ographically close nodes reduces the bandwidth consump-

tion, and improves efficiency. From the perspective of the

entire GeWave structure, the update process is modelled as

a wave from the top to the bottom. Such a decentralized

pattern significantly improves the scalability of the polling

method.

4.3. Construction and Maintenance of
GeWave Structure

In the following, we introduce how to build and maintain

the GeWave structure in terms of the creation, departure and

failure, and mobility of replica nodes.

Replica node creation. A file owner collects the TTR
and H of its replica nodes into its directory when creat-

ing replicas. When a file owner creates replica node i, it

compares node i’s file query rate and the file’s update rate

to determine node i’s TTR, and then its TTR level in the

GeWave structure. Assume node i’s TTR level is d, the

file owner finds node i’s parent in its directory, whose H is

closest to Hi in the group of LTTR = d − 1. In addition,

the file owner finds node i’s predecessor and successor in

the d level nodes using Hi. Its predecessor and successor

may have the same H as itself, since nodes may have the

same H . If node i is the first node or the last node in level

d, it only has one neighbor. The file owner sends the infor-

mation of the parent and neighbors to node i. Node i then

begins periodically polling its parent at its TTR.

Recall that a child’s parent is its physically closest node

in the upper level. After node i joins in the GeWave struc-

ture in the d level, some nodes in the level d + 1 may

be physically closer to node i than to their current par-

ents. Therefore, node i contacts its neighbors, which trans-

fer their children to node i that are closer to node i. For

example, in Figure 1, before node O joins in the GeWave

structure, node V is connected to node D. After node O
becomes a replica node, since V ’s Hilbert number is closer

to O’s, i.e. V locates physically closer to O, node V will be

transferred to O.

Replica node departure and failure. A node leaves the

GeWave structure when it leaves the P2P system, or it is no

longer a replica node of the file. Moreover, a node could fail

or depart without warning. In both cases, GeWave structure

needs to be reorganized.

When a file owner removes file replica in node i, node

i leaves the GeWave structure as a voluntary leaving node.

Before a node leaves, it needs to notify its neighbors. Upon

receiving a departure notifications, the leaving node’s pre-

decessor and successor become neighbors. In addition, the

leaving node transfers its children to its neighbors based

on the closeness of Hilbert numbers. For example, before

node O leaves, it moves node V to D. To save overhead for

structure maintenance, GaWave does not rely on periodical

“keep-alive” message exchange to deal with node failure.

It replies on backup owner-polling method. Specifically,

GeWave sets a certain period of time T . If a leaving node

has not received response from its neighbors during T after

sending out departure notifications, it contacts the root for

its new neighbors, then notifies the neighbors and transfers

its children before leaving.

To handle the problem of node failures, GeWave also

replies on backup owner-polling method. If a node does

not get response from its parent within T after polling, it

assumes that its parent has left or failed, and resorts to

the backup method in which it polls the file owner for up-

date message, and meanwhile locates a new parent. Thus,

GeWave does not need periodical message exchange to keep

nodes’ links up-to-date for structure maintenance, which

brings about high overhead. Dynamic GeWave structure

construction and recovery makes GeWave highly resilient

to churn, while still proving high guarantee of consistency.

Replica node mobility. A node’s TTR is not constant,

thus its position in the GeWave structure should change cor-

respondingly. A simple method to cope with node mobility

is to execute a leave operation followed by a join operation.

However, relying on root for position location in join opera-

tion may overload the root. GeWave deals with node mobil-

ity in a decentralized manner. If node i’s TTR is increased,

it first executes a leave operation. It then traverses upwards

along the up links until reaching the level of its new TTR.

Then, it traverses in the horizontal direction based on its

Hilbert number, until arriving at the position where its suc-

cessor’s H is no less than itself, and its predecessor’s H is

no larger than itself. The process for TTR decrease is the

same except that node i first traverses along the one of its

child links.

To avoid being overloaded in dealing with node fail-

ures, a root can have a number of backups. Specifically,

it chooses a number of nodes in level 1, whose polling rates

are the highest. It copies its directory with collected TTR
and H information to those nodes. When its load reaches



αC (α < 1), where α is a percentage factor and C is its ca-

pacity, it transfers requests to its backups in a round-robin

fashion.

Summary. In GeWave structure, each node always has a

physically closest parent whose polling frequency is faster

than it. This ensures that a node can get an update at a low

overhead. Each node also has relatively physically close

neighbor(s) whose polling rate is at the same level as it-

self. This helps to enhance the efficiency of structure main-

tenance when replica nodes join and leave.

Unlike traditional centralized polling in which a file

owner is responsible for all update responses, GeWave dis-

tributes the update overhead among the replica nodes. It

also dramatically improves consistency maintenance effi-

ciency in terms of overhead and speed since the update

messages are transferred between physically close nodes.

GeWave is distinguished from the current tree-based file

consistency maintenance methods [12, 2] in that it reduces

structure maintenance overhead in churn by avoiding peri-

odical message exchange. In addition, it has high capacity

to deal with churn by resorting file owner polling. In con-

trast, in a tree structure, when a parent leaves, its children

cannot get timely update messages until the tree is repaired.

5. Performance Evaluation

We designed and implemented a simulator in Java for

evaluation of the GeWave based on Chord [22] with 4096

nodes. We compared the performance of GeWave with

SCOPE [2], UMPT [12] and Push/poll [6] methods, in

terms of proximity-aware performance, consistency main-

tenance cost, and the capacity to deal with churn. In UMPT,

we set the number of nodes in a cluster to 16. We assumed

four types of file: highly mutable, very mutable, mutable

and immutable. The percentage of the files in each cate-

gory and their update rates were (0.5%, 0.15 sec), (2.5%,

7.5 sec), (7%, 30 sec) and (90%, 100 sec). The file query

rate of each replica file was randomly generated at the rate

of 0-500 seconds per query. We varied the number of replica

nodes from 500 to 4000 with step size of 500.

We used transit-stub topology generated by GT-

ITM [32]: “ts5k-large”. It has 5 transit domains, 3 transit

nodes per transit domain, 5 stub domains attached to each

transit node, and 60 nodes in each stub domain on average.

“ts5k-large” is used to represent a situation in which Chord

consists of nodes from several big stub domains. To account

for the fact that interdomain routes have higher latency, each

interdomain and intradomain hop counts as 3 and 1 hops of

latency units respectively.

5.1. Proximity-aware Performance

Figure 2(a) shows the cumulative distribution function

(CDF) of the percentage of total update messages versus

physical distance in “ts5klarge”. We can see that GeWave
and UMPT are able to transmit around 90% of total mes-

sages within 10 hops, while SCOPE and Push/poll move

only up to 30% within 10 hops. Almost all messages in

GeWave and UMPT travel within 15 hops, while 80% mes-

sages in SCOPE and Push/poll travel within 15 hops. The

results show that most messages in GeWave and UMPT
travel in short distances, while most messages in SCOPE
and Push/poll travel in long distances. The more messages

travelling in the shorter distances, the higher proximity-

aware performance of a consistency maintenance method.

The results indicate that proximity-aware schemes GeWave
and UMPT are efficient in guiding update messages to

travel between physically close nodes. Hence, they lead to

faster and low-overhead update propagation.

5.2. Consistency Maintenance Cost

Figure 2(b) illustrates the average number of messages

per replica node for an update operation of a file. Messages

for structure building are also included. From the figure, we

can see that the Push/poll scheme has the highest number

of update messages. It is because a replica node may re-

ceive multiple update messages from several other replica

nodes. SCOPE leads to messages less than Push/poll, but

twice more than that of UMPT. This is mainly because

SCOPE constructs a tree with all nodes in the system,

while UMPT builds a tree only with replica nodes of a file.

Therefore, more messages are needed for tree construction

in SCOPE. GeWave produces the least average number of

messages. Recall that GeWave reduces messages for updat-

ing infrequently-queried file. Thus, GeWave is more cost-

effective than others in terms of the number of update mes-

sages.

5.3. Performance in Churn

This experiment tests the capability of different consis-

tency maintenance methods to deal with churn in P2P sys-

tems. In the experiment, the number of replica nodes was

set to 4000, the percentage of failed replica nodes was var-

ied from 5% to 35% with step size of 5%, and the failed

nodes were randomly chosen.

Communication cost constitutes a main part of file con-

sistency maintenance overhead. The cost is directly related

with message size and physical path length of the message

travelled. We use the product of these two factors of all mes-

sages to represent the communication cost. It is assumed

that the size of a message is 1 unit. Figure 3(a) shows the
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Figure 2. Performance of file consistency maintenance schemes.

communication cost versus the percentage of failed replica

nodes. We can see that the communication cost increases as

the percentage of failed replica nodes increases in all meth-

ods except Push/poll. The failures of replica nodes have lit-

tle effect on Push/poll due to its message spreading. How-

ever, its communication cost is still much higher than other

schemes due to its message spreading. We can also observe

that GeWave and UMPT incur much less communication

cost than SCOPE and Push/poll. SCOPE and Push/poll do

not take proximity into account in update propagation, re-

sulting in long message travel distances. Moreover, con-

siderably more messages further increase communication

cost. In contrast, GeWave and UMPT consider proximity by

guiding update message to travel between physically close

nodes.

In addition to the proximity, churn is another factor af-

fecting the communication cost. SCOPE and UMPT use

periodical message exchange for structure maintenance,

which generate more much messages. In addition, they

need more messages for structure recovery, leading to the

increase of the messages. GeWave incurs much fewer mes-

sages than SCOPE and UMPT. Unlike SCOPE and UMPT
that need periodical message exchange, and need multiple

messages for structure recovery in a node failure, GeWave
only needs one more polling. Re-polling is the reason that

GeWave incurs slightly higher messages as failed replica

nodes increase. Thus, less messages in GeWave helps to fur-

ther reduce its communication cost. Consequently, GeWave
outperforms others in terms of communication cost.

If a replica is not updated timely, file requesters may

receive stale files. The total number of file requests was

set to 4000. Figure 3(b) depicts the number of up-to-date

files received by requesters versus the percentage of failed

nodes. It shows that SCOPE and UMPT lead to less num-

ber of up-to-date files received than others. This is because

they rely on tree structure for update propagation, and if a

node fails, all the node’s children cannot get the update mes-

sage in time. Since SCOPE constitutes all nodes rather than

only replica nodes in a tree, more replica nodes will not re-

ceive update timely than UMPT. In contrast, GeWave and

Pull/push do not depend on a structure. They use polling

and message spreading respectively that are highly resilient

to churn. We can also observe that the number of up-to-

date files received in Pull/push is marginally lower than

GeWave. In GeWave, when a replica node receives a re-

quest during polling, it can wait until it receives the update

message before it replies to the requester. If a node’s parent

leaves, the node can poll the file owner for update message

instantly. Therefore, it always enhances consistency of files

when queried. However, depending on message spreading,

Pull/push cannot ensure that every replica node receives an

update. Furthermore, the high churn-resilience of Pull/push
is outweighed by its high cost of redundant update mes-

sages. The figure also demonstrates that GeWave still re-

turns some stale files though the number of stale files is

very small. This is due to the reason that some files may

suddenly change, but replica nodes still poll update based

on their usual change rate.

6. Conclusions

Traditional file consistency maintenance methods rely-

ing on structure-based pushing lead to high cost for struc-

ture construction and maintenance, and they cannot guar-

antee consistency in P2P churn. Other methods depending

on message spreading gain high churn-resilient capacity at

the cost of redundant messages. Furthermore, most cur-

rent methods do not take physical proximity into account.

In addition, decentralized push cannot guarantee timely up-

date of all replicas due to indirect communication. In this

paper, we propose a GeWave file consistency maintenance

scheme that conducts consistency maintenance efficiently.

Without relying on a static structure, GeWave is highly re-

silient to P2P churn by adaptive polling with direct node-to-

node communication. It avoids unnecessary file updates by

dynamically adapting to time-varying file update and query

rates. Furthermore, it transmits update messages in a de-

centralized manner between physically nodes. Simulation

results demonstrate the effectiveness of GeWave in com-

parison with other consistency maintenance approaches. Its

low overhead, high efficiency and churn-resilience are par-

ticularly attractive to the deployment of large-scale and dy-

namic P2P file sharing systems.
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Figure 3. Performance of file consistency maintenance schemes with churn.
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