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Abstract try [21], Tapestry [32], CAN [19], and Cycloid [24]. In

a DHT, each node and key has a unique Id, and a key is

mapped to a node according to DHT definition. The Id
Peer-to-peer (P2P) networks based on consistent hashingspace of a DHT is partitioned among nodes and each of
functions have an inherent load uneven distribution prob- them is responsible for those keys whose Ids are located in
lem. Things are even worse in unstructured P2P systemsits space portion. An important goal in the design of DHTs
The objective of load balancing in P2P networks is to s to achieve a balanced partition of the hash space among
balance the workload of the network nodes in proportion peer nodes. It is often desirable that each node assumes
to their capacity so as to eliminate & bottleneck. It  responsibility for a portion of the hash space that is propor-
is challenging because of the dynamic nature of overlay tional to its power, measured in terms of its processor speed,
networks and time-varying load characteristics. Ran- available bandwidth, aridr storage capacity, and that this
dom choices schemes can balance logéogively while  property is maintained as nodes join and leave the system.
incurring only a small overhead, making such schemes A similar goal is desirable in unstructured P2P networks as
appealing for practical systems. Existing theoretical work well.

analyzing properties of random choices algorithms can not
be applied in the highly dynamic and heterogeneous P2PHowever, consistent hashing [26] produces a bound of
systems. In this paper, we characterize the behaviors ofO(log n) imbalance of keys between nodes, wheiis the
randomized search schemes in the general P2P environ-number of nodes in the system. Things are even worse in
ment. We extend the supermarket model by investigatingunstructured P2P systems, where no commonly-accepted
the impact of node heterogeneity and churn to the load load distribution mechanisms are built in. In addition,
distribution in P2P networks. We prove that by using d-way users may query geographically close nodes and those that
random choices schemes, the length of the longest queubave popular files. These lead to imbalanced distribution
in P2P systems with heterogeneous nodal capacity andof workload among peer nodes. When a node become
node churn for d> 2 is dog logn/logd + O(1) with high overloaded, it can not store any other files or respond to
probability, where c is a constant. user queries any more, whicffects system utilization and
users’ satisfaction. To balance load among peer nodes in
a P2P network, lightly loaded nodes need to be selected to
Keywords: Randomized probing; Peer-to-Peer net-  store files or service queries. Load balancing in P2P net-
works; Load balancing; Heterogeneous and bounded  works is an important topic and many research works have
nodal capacity; Churn. been conducted focusing on it recently [29, 22, 33, 9, 2].

It is well known that simple randomized load balancing
1 Introduction schemes can balance loafileetively while incurring only
a small overhead, making such schemes appealing for prac-

Peer-to-peer (P2P) networks have become, in a short periot!iIcal systems. The paradigm of multiple random choices
of time, one of the fastest growing and most popular In- Was used in [22, 9, 11, 34, 3] Several peer nodes are
ternet applications. An important class of the P2P overlay probed before storing a file to or d|spatch|ng_a user query
networks is distributed hash tables (DHTS) that map keysto the least loaded one. Random choice algorithms are scal-
to nodes of a network based on a consistent hashing funC_able and they require little control messages and data struc-
tion. Representatives of the DHTs include Chord [26], Pas- tures [22, 3]. More importantly, they work in P2P systems



with churn, a situation where a large percentage of nodescapacities. Instead of solving the equations directly, we
join and leave continuously and rapidly, leading to unpre- analyze the lower and upper bounds of state variables at
dictable network size. equilibrium points with reference to those in a special case.
Based on these bounds, we quantify the average response
To theoretically analyze thefectiveness of random choices  delay and the maximum load, and come to the following

schemes in balancing load of distributed systems, re-conclusions ofi-way probing in P2P networks:
searchers have proposed several techniques. Azar et al. [1]

introduced thdayered inductiorapproach, where the ran- i o .

dom choice problem was modeled by balls-and-bins. It pro- 1"€orem 1 For any fixed time interval |, the expected time
vides nearly tight results. Theitness treenethod was used ~ that @ query spends in the dynamic P2P system }N(I)d)ﬂ d

by Cole et al. [6] to handle the random choices problem, 2 denoted by J(4), over interval[0, 1] satisfies thag;

The probability of the certain event can then be boundedis close toa@, for A close to 1, wherer is a constant

by the probability of occurrence of a witness tree. Gener- depending on capacities of peer nodes and the change rate
ally, witness tree arguments involves the most complexity, of the node population.

and they have proved to be the most challenging in terms of

obtaining tight results. Thiuid limit model [16, 17] char- h 5 fixed time | U the | h of th
acterize the system dynamics by constructing a family ofT eorem For_any Ixe tlm_e interval I, the gngt of the
longest queue in the dynamic P2P models with & over

differential equations. This approach is simple and flexible. . . , i .
When the system dynamics can be modeled by this methodfntervaI [0. 1T is doglogn + O(1) with high probability

1 . . g
the diferential equations generally yield accurate numerical (1 ~ O(7)), where c is a constant depending on capacities of
results. peer nodes, d and the arrival rate of queries, and th{&)O

term depends on | and some constants.
However, these theoretical work analyzed a system where

compute nodes have homogeneous and infinite capacitiesl.hese theorems show that two-way randomized probing is

tl\gcr:semi/serhgtogr?o%illjég, gdfﬁgér;g;har?;ﬁgm ZfspsFr)essyjtasymptotlcally superior to the one-way choice approach.
' . y PP ) However, by increasing the number of choices further, ef-
we can not directly argue that the performance bounds de-. . . . S
. : . A ficiency of the search algorithm does not improve signifi-
rived in these work are still valid in the P2P networks. . . - .
cantly. They are consistent with the findings in the super-

:jnort:fhgipeer’a\r’gzia;ailzzee:;?a?);nzapméc S?grr;zV'thgIerag'emarket model [16], where the number of servers are fixed,
P g 9 y ' Pl eir capacities are homogeneous and infinite. Simulation

gagebsoﬂzﬂsgvcz aatlcriﬁggme and they have heterogeneousand experiment results confirm the correctness of our find-
P ' ings. Although the randomized probing algorithms for load

We model dynamic P2P systems, where load queries arrivdalancing are designed and analyzed within the context of
as a Poisson stream at a collectiomgieer nodes, where P2P networks, the results have wide applicability and are of

nis a random variable reflecting nodal churn. Nodes are Nterest beyond the specific applications.

heterogeneous with bounded capacity. For each query, qhe remainder of this paper is organized as follows: The

number ofd nodes are (_:hosen independently and uniformly basic supermarket model is briefly introduced in Section 2.
at random, and query is queued at the node currently con-

. : . .~ Section 3 formulates thé-way randomized probing in P2P
taining the fewest queries. We refer to such multiple choices : . : .
. ) . networks. We investigate the influences of nodal capacity
qguery agd-way probing. Queries arrive to peer nodes at rate

A relative to the node population. They are served accord—in Section 3.1 and nodal churn in Section 3.2. By analyz-
ing to the FIFO protocol, and the service time for a query is ing the equilibrium points of the system, we quantify the

. b . expected time of a query spending in the system and the
exponentially distributed with mean 1. length of the longest queue among peer nodes. Experimen-

We extend the supermarket model [16] to formulate behay- @l results are shown 'in Section 4. 'Section. 5 presents the
iors of the preceding dynamic system in the general case'/atéd work. Conclusions are made in Section 6.

and quantify system properties. We are interested in charac-

terizing the average response delay and the maximum load?2 Basic Supermarket Model

among active nodes. However, quantifying these metrics

in a general P2P system is nontrivial. ItsfiGult to find A joad balancing scheme distributes user requests or storage
closed-form solutions to the fierential equations describ-  |gads among compute nodes and avoids hot spots. In [16],
ing system dynamics, after we remove the restrictions of pitzenmacher presents a supermarket model based on dif-
static system configuration, homogeneous and infinite nodeferential equations to analyze both static and dynamic load



balancing strategies. In this section, we briefly describe this3.1 Heterogeneous and Bounded Node Capacity

model, and in the subsequent sections we will present our

extension of the model to formalize randomized probing al- |, the basic supermarket model, as described in Section 2,
gorithms for load balancing in general P2P systems. servers are modeled as homogeneous with unbounded ca-
pacity. However, in practical P2P systems, peer nodes have

f.:?ggﬁ;kfé dmeond?:oiﬁéyriezgzlrargc'ngs‘;\éog::gaédgg ;sg::limited and diferent storage capacity and processing speed.
1aldistribd Vi ' qu v 'SUn this section, we analyze behaviors of random choice al-

n stream llection of servers. For hr me . o
son stream at a collection of servers. For each request, so orithms for load balancing in P2P networks where nodes

ﬁﬁz}zﬁqt né;”;gﬁ;g:ns\?vrirﬁ rrsea{gcggojrinf;ggnefﬁgdsirx)e/rin ave heterogeneous and bounded capacity. We extend the
y P ' basic supermarket model in two steps: bounding node ca-

and request waits for service at the server currently con- acity in a homogeneous environment (Section 3.1.1) and

;al?rl]ngFttheofewetSt relqueséti.h Requ(.astst.are ?erved accortd_lnﬁmn heterogenizing node capacity (Section 3.1.2). Here we
o the protocol, and the Service ime for a request IS ;o me the static composition of peer nodes. A P2P net-

exponentially distributed with mean 1. Three underlying as- work consists oN nodes. Node churn or dynamic compo-
sumptions were madea) unbounded server capacitiel) ( sition will be studied in S.ection 32

static server configuration, and)(homogeneous servers.
The author derived the average time of a request staying in
the system and the maximum workload of the servers by3.1.1 Homogeneous and Bounded Case
solving the dfferential equations of system states.
In a homogeneous P2P system with bounded nodal capac-
3 Randomized Probing in General P2P Sys- ity we useC to denote the uniform capacity of peer nodes.
tems C is measured as the maximum number of queries that a
node can queue at runtime. When a node receives a query
from a peer, it services the query if there are extra capacity
In large-scale EZP systems, a great number of nodes shargy handie it. Otherwise, it drops this query by its admis-
resources and issue queries to each other. More often thagig controller. Therefore, we adopt the saturation policy as
not, they have heterogeneous configurations of storage casy|iows. A query is turned down when all of tiknodes, se-

pacity and processing speed. In addition, dynamics is ajgcted randomly and independently, are saturated, i.e. their
defining characteristic of P2P networks, with nodes joining 444 equals to their capacity.

and leaving frequently. Load balancing in such large-scale
and dynamic distributed environments is challenging. Ob- | et ni(t) denote the number of nodes queuingueries at
taining the capacity information of all active nodes before timet; m(t) = ZE:i nk(t), i.e. the number of nodes queuing
dispatching jobs to the most lightly-loaded nodes is expen-at leasti queries at time; pi(t) = ni(t)/n be the fraction
sive. Randomized probing is a remedy to this problem. of nodes that have queues of sizes(t) = ij:i p(t) =

) ] ) . _ my(t)/n be the tails of thep;(t). We drop the reference to
By applying randomized probing algorithms, we make dis- i, the notation where the meaning is clear. Ehés more
patch decisions based on the load dynamics of a small NUM+5nvenient to work with than thei. In an empty system
ber of nodes that are selected randomly. In this way, theyhich corresponds to one with no quesy,= 1 ands = 0
number of load query messages that are exchanged is réfyr 1 < j < C. The expected number of queries per node at

duced significantly. The scalability of these algorithms is any timet is Zic_l s(t), and it's finite because each node can
ensured because the number of control messages for eac&ueue at most queries at a time.

decision making is almost constant even when the system

scale expands. However, theoretically analyzing behaviorsThe state of the system at any given time can be represented
of these algorithms in such general cases is challengingpy an finite vectors = [so, s1,...,Sc]. It contains infor-
Nodal heterogeneity and churn may make it intractable. In mation regarding the number of nodes queuing each size of
this section, we extend the supermarket model to formulatequeries. We can derive the maximum load of peer nodes
behaviors of randomized probing algorithms in general P2Pand the average response time of queries, based on the dy-
environments and to quantify system dynamics with regardsnamics of this state information. This resulting model can

to the nodal workload and average response time based olbe considered as a Markov chain on the above state space.
our extended models. Our extension is made in two orthog-

onal dimensions: server capacity (from homogeneous andWe now extend the basic supermarket model to formulate
unbounded case to heterogeneous and bounded case) amahd analyze randomized probing among peer nodes with
node dynamics (from static configuration to dynamic con- homogeneous and bounded capacity. The time evolution
figuration). of the P2P system is specified by the following set difedti



ential equations: Proof: According to the definition of sequent{:e(t)}i‘io,

. for i < C it's clear thatsgy > 5 > ... > &, i.e. a monotone
N ~ Aty = ) = (s -8, for i< decreasing sequence. Let’s first increag®) such that
:_‘1’1(%—1_ %)_ B G.1) S(0) = s-1(0) — ¢, wheree is a small constant. Let

V= maxs(O)-ﬂf%)u%. In the original systens;(t) < s(0)
wheres denotesis/dt. forallt > 0. Then,s(t) < A%t -\, Based on the result
in [15], we conclude thats (t)}iC:0 decreases doubly expo-
nentially for allt=0. Next, we further find the upper and
lower bounds of the equilibrium points. m]

Let us explain the reasoning behind the system (3.1). Con-
sider a P2P network witthN nodes, and determine the ex-
pected change in the number of nodes with at legseries
over a small period of time of lengiift. The probability a
query arrives during this period iENdt, and the probabil-

ity an arriving query is dispatched to a node quelirgl
queries iss?, — &, i.e. all of thed nodes chosen by the new
query are of size at least 1, but not all of size at least

The probability a query leaves a node of sizethis period

is N(s — s;1)dt, fori < C. Because each node can server
no more tharC queries at a time, the probability a query Theorem 3 For A € [0, 1] and d> 2, Ty4(1) < a(logT+(1)),

Sequence{s(t)}iC:0 decreases doubly exponentially to a
fixed point. Let# = [mg, 71, - ,7c] denote the equilib-
rium points of stategs} in system (3.1). We now examine
the expected time a query spends in the homogeneous and
bounded-capacity P2P system.

leaves a node of siz& in this period isN sdt. whereq is a constant dependent only on d and C. Moreover,
Next, we try to find the equilibrium points of (3.1). At the : Ta(1) Cc (3.2)
equilibrium points, the volume of incoming queries equals -1 10gT1(2) ~ log$ logd’ '

to the volume of outgoing queries, i.g.= 0. For a special
cased = 1, system (3.1) becomes stable at states _
Pt Proof: First, we prover; < A5 by induction. For = 0,
=g forlsisC o = /l%hzo = 1. For0< i < k, assumer; < 1%%. Then
) ) fori = k+ 1, let's compare the equilibrium points of (3.1)
We denote the expected time a query spends in the P2Rynq those of the following unbounded-capacity system
system with homogeneous and bounded-capacity nodes by

T4(1). As mentioned before, the probability that an in- { § =AU, - -(s-541), 121 (3.3)
coming query arriving at timeé becomes thdth query =1 '

in the queue iss_1(t)® — s(t)?. Therefore, the expected

time a query that arrives at timespends in the system is ~ Let (%) denote the equilibrium points of (3.3). In [15], it
Ta() = 3, i(s 1) - s = XS s () - C(t). For  was proved that;"= 151 . Then, we only need to prove that

T

d = 1, it's clear that at the equilibrium point, ni < 7 for 0 < i < C, which are as follows. From (3.3), we
o1 . o haver; = i1 According to (3.1)x; = And —n3),

i) = Z §_Cg = 1-(C+1a~+Ca 1<i < C. Becauser;, #j > 0, < An?,. Based on the
£ (L-2)(1-ac+1) assumptionr; < #; for i € [0,k], we getm,y < And <

Airg = 1. Therefore, the equilibrium points < A% for
1< i < C. On the other end, we prove > afr,b wherea =
Az1 andb = 2 - 280 The induction step is as follows:
assumer; > a;“rib for 0 < i < k-1, and then according to
B+l = and | = and | < mc+ And < (1 + Y

' Thus,m > 74l | > ¢4 -at- 729, Becauser = Al |

k-1 = 1+A o
1 &l b 1 oAb b
any = @z VT = any.

Then, we consider the convergence of seque{asp(ja}iczo for
d=>1.

Definition 1 A sequencéx;} is said to decrease doubly ex-
ponentially if and only if there exist positive constants N

a < 1,8 > 1, andy such that fori> N, x < ya”.
from (3.3), we havery > 75 =

Then, we show that every trajectory of the system (3.1) con-

verges to a fixed point. Based on the resulmy‘rib <m <mford<i < C,
we can calculate the upper and lower boundsTgfd).
To() = XL i(ma®® - m)?) = T - Cad =

Corollary 2 Suppose there exists some j such théd)s= c C b C ~
0. Then the sequends;(t)}”, decreases doubly exponen- Yz mi- Thereforeay , 7 di Talt) < Z_‘zlﬂ" When
tially for all t>0, where the associated constants are inde- 4 — 17, i tends to bet”e, wherey is a constant
pendent of t. within [1, g]. Therefore, Tg(2) = 2&1/17%. Because
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Figure 1. Dynamics of query response time and nodal queue length in a simulated P2P network with
homogeneous and bounded-capacity nodes.

(@]
=

1-2¢ we get values Ofm - s converges closely to 1 as time
-1’ goes on. The small deviation from 1 is because the arrival

_ ‘ _ rate of queries! is set to 099 as to simulatd — 1~. The
log(1+ 2% + 2% 4., +2@Dd) = jog(1-1%)-log(1-1)  system is stable and we havefdrent trajectory for dfer-

=0 entd. From this figure, we can measure the expected time

ased on the result in [15], we have (3.2). | that a query stays in the P2P system, Tg.

(L R e I

o

C-

=

We apply Kurtz’s theorem [25] to our randomized probing

Adding a constraint of node capacity makes ifidult t0  model in P2P network to obtain bounds on the maximum
find the closed-form solution to (3.1) with parametéiend load:

d. To analyze the dynamic behaviors of the P2P system

with homogeneous and bounded nodal capacity, we Con_Theorem 4 For any fixed time interval 1, the length of the

ducted simulations to trace the changes of state variable'ﬁ : initiall pop ith h

in example systems. In the example system, we have 4OngeSt queue in an initially empty ; system with homo-
peer nodes, each of which can queue up to 6 queries afeneous and .bounged nodal capacity fo_rzdz_over the

a time, and the arrival rate of querigs= 0.99. The ini- mtglrval [0, 11'is logs Iogdlog log + O.(l) with high prob-

tial system is empty and queries comes and leaves the p2iBbility, where C is the nodal capacity and thgipterm
system following the model described at the beginning of dépends on | and.

this section. Figures 1(a), 1(b) and 1(c) depict the dy-

namics of the nodal queue length when one, two and threeHence in comparing the systems where queries have one
choices are made by random in node search. It's clear thathoice and those hawk > 2 choices, we see that the sec-
asd increases the number of nodes with the longest queuesnd yields an exponential improvement in both the expected
decreases, because incoming queries are more evenly digime in the system and in the maximum observed load for

tributed among nodes for largdr Figure 1(d) presents the suficiently largeN.



3.1.2 Heterogeneous and Bounded Case spends in the system (3.4). Th&g(1) is bounded by:
In Section 3.1.1, we extended the supermarket model to Ta(d) < Ty() < Ta() + S,
analyze the #ect of d-way random probing in balancing
load in P2P systems with homogeneous and bounded nod
capacity. However, in practical P2P networks, participant
nodes generally havefierent configurations. To tackle this
nodal heterogeneity, we extend the preceding model to anprgof:  |In Section 3.1.1, we prove that (3.1) converges
alyze behaviors of peer nodes withffdrent capacities in  goybly exponentially to its equilibrium state;}. We now
face of randomized probing to balance load. derive the solution to (3.4) based ¢m}. Let {m}>, =
{max(r;, s(O))}iC:l. We calculate the remains ofmid_l -m)
forl<i < C. Letr = min{(Anf' ,—m)<,}. Then, we obtain
the solution £7) by iteratively computingr = /lirid_l— m; for
1<i < C, starting withrp = 1.

here (1) is the expected time a query spends in the ho-
ogeneous and bounded-capacity system (3.1) and S is a
constant which equals 87, s(0).

Here, we still consider P2P systems with static composi-
tion. Let's assume a system hbispeer nodes to process
gueries. Their correspondent capacities{atec,, ..., cn},
which are positive and finite. We assumis take nonuni-
form values, otherwise we can analyze the system by apply-it (7.1 is no less than the value of the initial std&(0)}
ing the model presented in Section 3.1.1. Next, we will try (3.4), then{r;} is also the steady state of (3.4j4(1) =
to model and investigate behavior of the P2P system with ¥C, i 7Y = ¥C, #. Thereforefy(2) > Ta(1). If {m)
heterogeneous and bounded nodal capacity by utilizing re-js |ess Itﬁarlsl-(O)}, we haver] < i + s(0). The expected
sults derived in the preceding section. time a query spends in the system satisTigl) < Tq(1) +

. . S, whereS is a constant which equals %C , s(0).
Let c* denote the maximum values in the sequefugg, . q 01 5(00) .

Then, we calculate the residue capacity@s- ci}i“il. We
treat these residue capacity as the initial load of their cor-
responding nodes. Thus, value of the state variafléx
0<i < ctattimet = 0 equalstas(0) =| {cilc; < c*—i} | /N,

i.e. the fraction of nodes bearing initial load (residue ca-
pacity) no less thain When the system runs and queries Theorem 6 For any fixed time interval I, the length of the
coméleave, the area of residue capacity is reserved and loadongest queue in an initially empty P2P system with hetero-
changes in the rest area withih With this transformation, ~ geneous and bounded nodal capacity ford2 over the

Based on Corollary 5, we apply Kurtz’'s theorem to derive
the upper bound of the length of queues in the P2P system
with heterogeneous and bounded nodal capacity.

peer nodes have homogeneous capacity as thatwe can  interval [0, 1] is @W'Og logN + O(1) with high prob-
model the dynamic system by (3.1). The state variables sat-ability, where ¢ is the upper bound of nodal capacity, and
isfy the following equations: the (1) term depends on‘es(0), | and A.
§ = AsL - ) — (s —s4). i<C The result of Theorem 6 is reduced to the one in Theorem 4
S o ) - when the system is homogeneous. This theorem indicates
l{cilci<c'—i}| H (34) . .
s(0)="==F—, i=C that the maximum load of peer nodes fieated by the dis-
s(t) > s(0) tributions of nodal capacity. However, the power of 2-way

) ) randomized probing is still valid in P2P networks with het-
For example, in a small-scale P2P network having four erogeneous and bounded nodal capacity.

nodes, they can accommodate at most 3, 3, 4 and 6
gueries at a time, respectively. Thus, = 6 and their
residue capacities are = {3,3,2,0}, which determines
the initial load of the corresponding nod¢s(0)}>, = N ) )
{1,0.75,0.75,0.5,0,0,0}. The system dynamics can be The composition of a P2P network is dynamic. Compute

modeled by (3.4) and its solution describes the steady state§0des join and leave the P2P system in its lifetime. Guha
of the P2P system. et al. [10] observed that only 30% - 40% supernodes were

online at any given time in a P2P network. Nodal churn
Equations (3.4) are established by exerting constraints onmust be considered when we analyze the behaviors of ran-
the initial values and the range of state variables to (3.1).domized probing to balance load among peer nodes. In this
Their equilibrium states have certain relations. section, we model the dynamic composition of peer nodes

in a P2P network by using a random variable. Then we

investigate the impact of nodal churn to the expect time
Corollary 5 Let T4(1) denote the expected time a query a queue spends in the system and the longest length of

3.2 Node Dynamics
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Figure 2. Dynamics of query response time and nodal queue length in a simulated P2P network with
churn and unbounded-capacity nodes.

100

gueues among peer nodes. To make our analysis tractableRoisson distribution with rate, and existing nodes leave
we first discuss randomized probing in a dynamic P2P net-the system in a Poisson distribution with ratg; relative to
work where nodes have infinite capacity, as in Section 3.2.1.the node populationj,, 1oyt < 1. When a peer node leaves,
Then, peer nodes with bounded capacities are investigatedts original load will be removed from the P2P system. We
assume the probability with which a node leaves the sys-

in Section 3.2.2.

3.2.1 Dynamic Nodes with Unbounded Capacity

tem is uniformly distributed among the existing nodes. As
a result, the number of nodes jdave the P2P system is
AN = (Ain — Aou)nat in a small time intervaht. A new node
can service coming queries when they are dispatched to it.

In Section 3.1, we analyze the properties of randomized
probing in static P2P systems by focusing on the factor of To characterize the system dynamics, we look into the
nodal capacity. In a dynamic P2P system with nodal churn,change of random variabley, the number of nodes that

node composition is not fixed any more. We use a ran- have load at least Its value changes when a query is dis-

dom variablen to characterize the number of peer nodes patched to a node queuimg- 1 queries, or a query is ser-
viced and removed from a node havingueries or such a

node leaves the system. Therefore,

that changes with time. Then, varialwg(t), the number of
nodes whose loads are at legss also random. Their ratio
mi(t)/n denoted bys (t) still describes the fraction of peer

nodes bearing loads that are at ldast

A M

Existing research work [30, 27, 5, 12, 20] on analyzing

churn in P2P systems found that the aryidaparture pro-

tion when the system size becomefisiently large. Thus,

At

O R

Thus, the influence of nodal churn on system behavior is
cesses of peer nodes can be modeled by a Poisson distribuncorporated in the value of random varialoie Because
s = m/n, we haves = (mn - mn)/n?. We use{s}>, and
we assume new nodes join the current P2P network in an as state variables and the state equations characterizing



system dynamics are as follows. 3.2.2 Dynamic Nodes with Bounded Capacity

- = /l(Sfj_l - f) - (1 + /lin)s + (l + /lout)$+1, i>1
n = (/lin - /lout)n
S =1

A more general case is a P2P system that peer nodes ar-
rive/depart at runtime and the participant nodes have het-
erogeneous and bounded capacities. In this section, we con-
struct the state equations to describe the system dynamics
and derive the bounds on length of the longest queue.

(3.5)
with the initial conditions(0) =0, 1 <i <nandn(0)= N
whereN is the number of nodes in the initial system.

The population of the P2P system depends on the valuesl‘et C, Gz, -, Cn denote the capacities of peer nodes in the

of Ain andey. If Ay > Aoy, N tends to increase. On the system. The number of nodeds a random variable. We

. . : . assume(c}i! , follows a Pareto distribution, with a shape
other hand, whenincreases, more queries will arrive at the arameteklc_ The number of nodes bearind load at ldast
system. A similar situation happens whigp < Aoyt. Thus, P ) 9 a

although nodes jojteave the system in runtime, the state m(©), follows the equations:
variables{s}*, can converge to steady state by adjusting

the volume of queries. mo= An[(T2)d - (B)] - [ - B2]
+Ain - Pr{c* —c > i} — Agun™=2, i<
mc* = an(Te2)d — ()] - n — Qoun™, i=c
Corollary 7 Let Tg(1) denote the expected time a query N = (Ain — dou)N,
spends in the system (3.5). Then(dJ is bounded by:
wherec* is a suficiently large value that is greater than any
1+ Ain g1 . . .
0< Ta(d) < /l Ta(), possible value of node capacity. According to the CDF of
1+ Aoy C : -
Pareto distributionPr{c* —c > i} = Pric<c -i} =

N R ) ) _(Cmiy—ke s .. .
where = {4, Ain, doudd and Ta(2) is the expected time a L~ (G,,)" Wherecmin is @ minimum capacity.

guery spends in the homogeneous and infinite-capacity sys- . o .
tem ([16]). By applyings = (mn—mn)/n“, we construct the following

state equations.
Proof: Let§ = 0in (3.5) fori > 1, and we ge,; =

ﬁom[(l + Ain)S — /15?71 + /1#] Td(/_i) = Yin1 i(n'idfl - 77?) = § = ﬂ(# 1 Sd) 1+ Ain)s + (1 + Adou)Si+1
Efjonﬁ. By using induction, we can prove the expression in +Ain[1 - (C ') k], i <¢ - Cmin
the corollary. O § = A, gd) (1+ 2Ain)s + (1 + Aow)Si+1,
_ C* — Cmin <1 < C* _ (3.6)
Figures 2(a), 2(b) and 2(c) depict dynamics of the nodal | & = A(si_; - ) — (1 + An)se, i=¢C
gueue length when one, two and three choices are made n = (in - /lgut)“
by random in node searchdj, = 0.2, Ao,y = 0.1 and §(0) = lala=el - < ¢
A = 099. It's clear that ag increases the number of s() > s(0)
nodes with the longest queues decreases, because incom-
ing queries are more balanced distributed among nodes foyith initial condition s5(0) = 1, 5(0), 1 < i < n(0) set
largerd. Figure 2(d) presents the Valuesﬁl‘% |OLT(3(),1) according to the server configurationtat O.

forasi — 1. We can see they converge closely to 1 as time

goes on. The small deviation from 1 is because the arrivallt’s difficult to calculate closed form solutions to (3.6).

rate of queriesl is set to 099 as to simulatd — 1-. However, it is numerically solvable. Figure 3(a), 3(b) and
3(c) show the dynamics of state variabjg$ in an example

We apply Kurtz’s theorem [25] to our randomized probing system. The system consists of 10 nodes=a0. Their ca-

model in P2P network to obtain bounds on the maximum pacity are within the setdB, 7, ..., 10}, and for each value

load: in the range there are two nodes having that capadity.
Aoyt @and A are 0.2, 0.1 and 0.99 respectively. The capac-

Theorem 8 An |n|t|a”y empty P2P System in Wh|Ch nodes’ |ty of nery joined nodes follows a Pareto diStI’ibutiOﬂ with

arrival/departure follows a Poisson distribution with rate Shape parametég = 2 and the minimum capacityin =

Ainn and A,¢n and nodes have infinite capacity. For any The figures show the system evolves to steady states astime

fixed I, the length of the longest queue in the system fordoes on. We can calcula®() based on values of these

d > 2 over the interva[0, 1] is O(log logn) with high prob- ~ steady states.

ability.
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Figure 3. Dynamics of query response time in a simulated P2P network with churn and heteroge-
neous, bounded-capacity nodes.

4 Experimental Results world where there are machines with capacities that vary
by different orders of magnitude.

) ) To balance load in the P2P network, probes are sent to a
To quantify the performance of random choices schemespmher of peer nodes. Among the responders, the one

in real P2P systems, we conducted simulations on Cy-paying the least load is selected. We refer to this class
cloid [24] P2P network. Cycloid is a constant-degree of randomized load balancing algorithms dsvay prob-
DHT based on the network topology of cube-connected- ing, denoted byLARy, d = 1,2,, We compare the per-
cycle. We use two transit_-stub topologigs gene_rated by GT-formance of 1, 2, 4, and 6-way random probe schemes in
ITM [31]: “tsSk-large” which has 5 transit domains, 3 tran- terms of node probing time and total number of load rear-
sit nodes per transit domain, 5 stub domains attached torangements. From Figure 4 and 5, we can observe that the
each transit node, and 60 nodes in each stub domain on avproping dficiency of the randomized load balancing algo-
erage. Itis used to represent a situation in which Cycloid \jihm LARy,(d > 2), is almost the same as that fbr= 2,
overlay consists of nodes from several big stub domains.,oygh they need to probe more nodes than the latter. Our
To account for the fact that interdomain routes have higher resyts are closely consistent with the performance results

latency, each interdomain hop counts as 3 hops of units ofyt randomized algorithms analyzed in Section 3.1 and 3.2.
latency while each intradomain hop counts as 1 hop of unit

of latency. We assume the object arrival locations are uni-

formly distributed over the Id space. The number of nodes

is 4096 and the number of items is 20480. The capacity5 Related Work

of nodes is modeled by a bounded Pareto distribution with

its shape parameter as 2. The background load caused by

existing items is modeled by a bounded Pareto distributionIin most early DHT structures [26, 14, 13], each node
with its shape equal to 2. Pareto distribution reflects real chooses at random a point in the hash space, typically, the
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unit interval [Q 1), and becomes associated with the points Besides applying randomized probing algorithms to balance
of the hash space closest to the selected point. Assumindoad in P2P networks, researchers also analyzed the charac-
random node departures, this scheme guarantees that the réeristics of random choices theoretically. The main tech-
tio of largest to average node segment siz@(isgn), with nigues used to analyze random choice problems are lay-
high probability [26]. Virtual server approach has been used ered induction, witness trees, and fluid limits viffeliential
to mitigate imbalance of key assignment between nodes. Itequations. Thdayered inductiontechnique pioneered by
was proposed that each real server works as Mgual Azar et al. [1]. The random choice problem was modeled
servers, thus greatly decreasing the probability that someby balls-and-bins. It bounded the maximum load by bound-
server will get a large part of the ring. Some extensions of ing the number of bins wittk or more balls via induction
this method were proposed in [18] and [28], where more onk. The layered induction approach provides nearly tight
schemes based on virtual servers were introduced and exresults. An alternative technique for handling the problem
perimentally evaluated. However, these schemes assumealled thewitness treanethod [6]. The key idea of this ap-
that nodes are homogeneous, objects have the same sizproach is to show that if a “bad event” occurs, i.e. if some
and object IDs are uniformly distributed. node is heavily loaded, one can extract the history of the
process a suitable tree of events called the witness tree. The

CFS [7] accounts for node heterogeneity by allocating to probability of the bad event can then be bounded by the
each node some number of virtual servers proportional toprobability of occurrence of a witness tree. Generally, wit-
the node capacity. In addition, CFS proposes a simple soluness tree arguments involves the most complexity, and they
tion to shed the load from an overloaded node by having thehave proved to be the most challenging in terms of obtaining
overloaded node remove some of its virtual servers. How-tight results. The third technique studies algorithms that use
ever, this scheme may result in thrashing as removing som&andom choices paradigm iaid limit models [16, 4]. The
virtual servers from an overloaded node may result in an- system dynamics can be described by a family éeden-
other node becoming overloaded. tial equations. This approach is simple and flexible. When

) the system dynamics can be modeled by this method, the
Byers et al. [3] proposed the use randomized search Ogjgerential equations generally yield accurate numerical re-
achieve better load balance. Each objectis hashddt@  gjts. However, these theory work analyzed a system where
different IDs, and is placed in the least loaded node of the .o mpyte nodes have homogeneous and infinite capacities.
nodes_ res_ponS|b_Ie for those IDs. The other nodes are 9IVe€M\Moreover, node churn, a defining characteristic of P2P sys-
a redirection pointer to the selected node so that search-tems' is not modeled by these approaches. In this paper, we
ing is not slowed significantly. For homogeneous nodes gp5)y7e the dynamic behavior of random choice paradigm
and objects and a static system, pickohg- 2 achieves a general P2P systems, where peer nodeglggive at run-

load balance within a log logfactor of optimal. However,  ime and they have heterogeneous and bounded capacities.
this scheme was not analyzed or simulated for the case of

heterogeneous node capacities and node churn, which are
defining characteristics of P2P networks. The paradigm of
multiple random choices was also used in [22, 11, 8, 23].
Several peer nodes are probed before store a file to or dis-
patch a user query to the least loaded one.
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