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Abstract

Peer-to-peer (P2P) networks based on consistent hashing
functions have an inherent load uneven distribution prob-
lem. Things are even worse in unstructured P2P systems.
The objective of load balancing in P2P networks is to
balance the workload of the network nodes in proportion
to their capacity so as to eliminate traffic bottleneck. It
is challenging because of the dynamic nature of overlay
networks and time-varying load characteristics. Ran-
dom choices schemes can balance load effectively while
incurring only a small overhead, making such schemes
appealing for practical systems. Existing theoretical work
analyzing properties of random choices algorithms can not
be applied in the highly dynamic and heterogeneous P2P
systems. In this paper, we characterize the behaviors of
randomized search schemes in the general P2P environ-
ment. We extend the supermarket model by investigating
the impact of node heterogeneity and churn to the load
distribution in P2P networks. We prove that by using d-way
random choices schemes, the length of the longest queue
in P2P systems with heterogeneous nodal capacity and
node churn for d≥ 2 is clog logn/logd + O(1) with high
probability, where c is a constant.

Keywords: Randomized probing; Peer-to-Peer net-
works; Load balancing; Heterogeneous and bounded
nodal capacity; Churn.

1 Introduction

Peer-to-peer (P2P) networks have become, in a short period
of time, one of the fastest growing and most popular In-
ternet applications. An important class of the P2P overlay
networks is distributed hash tables (DHTs) that map keys
to nodes of a network based on a consistent hashing func-
tion. Representatives of the DHTs include Chord [26], Pas-

try [21], Tapestry [32], CAN [19], and Cycloid [24]. In
a DHT, each node and key has a unique Id, and a key is
mapped to a node according to DHT definition. The Id
space of a DHT is partitioned among nodes and each of
them is responsible for those keys whose Ids are located in
its space portion. An important goal in the design of DHTs
is to achieve a balanced partition of the hash space among
peer nodes. It is often desirable that each node assumes
responsibility for a portion of the hash space that is propor-
tional to its power, measured in terms of its processor speed,
available bandwidth, and/or storage capacity, and that this
property is maintained as nodes join and leave the system.
A similar goal is desirable in unstructured P2P networks as
well.

However, consistent hashing [26] produces a bound of
O(log n) imbalance of keys between nodes, wheren is the
number of nodes in the system. Things are even worse in
unstructured P2P systems, where no commonly-accepted
load distribution mechanisms are built in. In addition,
users may query geographically close nodes and those that
have popular files. These lead to imbalanced distribution
of workload among peer nodes. When a node become
overloaded, it can not store any other files or respond to
user queries any more, which affects system utilization and
users’ satisfaction. To balance load among peer nodes in
a P2P network, lightly loaded nodes need to be selected to
store files or service queries. Load balancing in P2P net-
works is an important topic and many research works have
been conducted focusing on it recently [29, 22, 33, 9, 2].

It is well known that simple randomized load balancing
schemes can balance load effectively while incurring only
a small overhead, making such schemes appealing for prac-
tical systems. The paradigm of multiple random choices
was used in [22, 9, 11, 34, 3]. Several peer nodes are
probed before storing a file to or dispatching a user query
to the least loaded one. Random choice algorithms are scal-
able and they require little control messages and data struc-
tures [22, 3]. More importantly, they work in P2P systems
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with churn, a situation where a large percentage of nodes
join and leave continuously and rapidly, leading to unpre-
dictable network size.

To theoretically analyze the effectiveness of random choices
schemes in balancing load of distributed systems, re-
searchers have proposed several techniques. Azar et al. [1]
introduced thelayered inductionapproach, where the ran-
dom choice problem was modeled by balls-and-bins. It pro-
vides nearly tight results. Thewitness treemethod was used
by Cole et al. [6] to handle the random choices problem.
The probability of the certain event can then be bounded
by the probability of occurrence of a witness tree. Gener-
ally, witness tree arguments involves the most complexity,
and they have proved to be the most challenging in terms of
obtaining tight results. Thefluid limit model [16, 17] char-
acterize the system dynamics by constructing a family of
differential equations. This approach is simple and flexible.
When the system dynamics can be modeled by this method,
the differential equations generally yield accurate numerical
results.

However, these theoretical work analyzed a system where
compute nodes have homogeneous and infinite capacities.
Moreover, node churn, a defining characteristic of P2P sys-
tems, is not modeled by these approaches. As a result,
we can not directly argue that the performance bounds de-
rived in these work are still valid in the P2P networks.
In this paper, we analyze the dynamic behavior of ran-
dom choice paradigm in general P2P systems, where peer
nodes join/leave at runtime and they have heterogeneous
and bounded capacities.

We model dynamic P2P systems, where load queries arrive
as a Poisson stream at a collection ofn peer nodes, where
n is a random variable reflecting nodal churn. Nodes are
heterogeneous with bounded capacity. For each query, a
number ofd nodes are chosen independently and uniformly
at random, and query is queued at the node currently con-
taining the fewest queries. We refer to such multiple choices
query asd-way probing. Queries arrive to peer nodes at rate
λ relative to the node population. They are served accord-
ing to the FIFO protocol, and the service time for a query is
exponentially distributed with mean 1.

We extend the supermarket model [16] to formulate behav-
iors of the preceding dynamic system in the general case
and quantify system properties. We are interested in charac-
terizing the average response delay and the maximum load
among active nodes. However, quantifying these metrics
in a general P2P system is nontrivial. It’s difficult to find
closed-form solutions to the differential equations describ-
ing system dynamics, after we remove the restrictions of
static system configuration, homogeneous and infinite node

capacities. Instead of solving the equations directly, we
analyze the lower and upper bounds of state variables at
equilibrium points with reference to those in a special case.
Based on these bounds, we quantify the average response
delay and the maximum load, and come to the following
conclusions ofd-way probing in P2P networks:

Theorem 1 For any fixed time interval I, the expected time
that a query spends in the dynamic P2P system with d≥
2, denoted by Td(λ), over interval[0, I ] satisfies thatTd(λ)

logT1

is close toα 1
logd , for λ close to 1, whereα is a constant

depending on capacities of peer nodes and the change rate
of the node population.

Theorem 2 For any fixed time interval I, the length of the
longest queue in the dynamic P2P models with d≥ 2 over
interval [0, I ] is clog logn + O(1) with high probability
(1−O( 1

n)), where c is a constant depending on capacities of
peer nodes, d and the arrival rate of queries, and the O(1)
term depends on I and some constants.

These theorems show that two-way randomized probing is
asymptotically superior to the one-way choice approach.
However, by increasing the number of choices further, ef-
ficiency of the search algorithm does not improve signifi-
cantly. They are consistent with the findings in the super-
market model [16], where the number of servers are fixed,
their capacities are homogeneous and infinite. Simulation
and experiment results confirm the correctness of our find-
ings. Although the randomized probing algorithms for load
balancing are designed and analyzed within the context of
P2P networks, the results have wide applicability and are of
interest beyond the specific applications.

The remainder of this paper is organized as follows: The
basic supermarket model is briefly introduced in Section 2.
Section 3 formulates thed-way randomized probing in P2P
networks. We investigate the influences of nodal capacity
in Section 3.1 and nodal churn in Section 3.2. By analyz-
ing the equilibrium points of the system, we quantify the
expected time of a query spending in the system and the
length of the longest queue among peer nodes. Experimen-
tal results are shown in Section 4. Section 5 presents the
related work. Conclusions are made in Section 6.

2 Basic Supermarket Model

A load balancing scheme distributes user requests or storage
loads among compute nodes and avoids hot spots. In [16],
Mitzenmacher presents a supermarket model based on dif-
ferential equations to analyze both static and dynamic load
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balancing strategies. In this section, we briefly describe this
model, and in the subsequent sections we will present our
extension of the model to formalize randomized probing al-
gorithms for load balancing in general P2P systems.

Supermarket model analyzes balancing workload in a spe-
cial distributed environment. User requests arrive as a Pois-
son stream at a collection of servers. For each request, some
constant number of servers are chosen independently and
uniformly at random with replacement from the servers,
and request waits for service at the server currently con-
taining the fewest requests. Requests are served according
to the FIFO protocol, and the service time for a request is
exponentially distributed with mean 1. Three underlying as-
sumptions were made: (a) unbounded server capacities, (b)
static server configuration, and (c) homogeneous servers.
The author derived the average time of a request staying in
the system and the maximum workload of the servers by
solving the differential equations of system states.

3 Randomized Probing in General P2P Sys-
tems

In large-scale P2P systems, a great number of nodes share
resources and issue queries to each other. More often than
not, they have heterogeneous configurations of storage ca-
pacity and processing speed. In addition, dynamics is a
defining characteristic of P2P networks, with nodes joining
and leaving frequently. Load balancing in such large-scale
and dynamic distributed environments is challenging. Ob-
taining the capacity information of all active nodes before
dispatching jobs to the most lightly-loaded nodes is expen-
sive. Randomized probing is a remedy to this problem.

By applying randomized probing algorithms, we make dis-
patch decisions based on the load dynamics of a small num-
ber of nodes that are selected randomly. In this way, the
number of load query messages that are exchanged is re-
duced significantly. The scalability of these algorithms is
ensured because the number of control messages for each
decision making is almost constant even when the system
scale expands. However, theoretically analyzing behaviors
of these algorithms in such general cases is challenging.
Nodal heterogeneity and churn may make it intractable. In
this section, we extend the supermarket model to formulate
behaviors of randomized probing algorithms in general P2P
environments and to quantify system dynamics with regards
to the nodal workload and average response time based on
our extended models. Our extension is made in two orthog-
onal dimensions: server capacity (from homogeneous and
unbounded case to heterogeneous and bounded case) and
node dynamics (from static configuration to dynamic con-
figuration).

3.1 Heterogeneous and Bounded Node Capacity

In the basic supermarket model, as described in Section 2,
servers are modeled as homogeneous with unbounded ca-
pacity. However, in practical P2P systems, peer nodes have
limited and different storage capacity and processing speed.
In this section, we analyze behaviors of random choice al-
gorithms for load balancing in P2P networks where nodes
have heterogeneous and bounded capacity. We extend the
basic supermarket model in two steps: bounding node ca-
pacity in a homogeneous environment (Section 3.1.1) and
then heterogenizing node capacity (Section 3.1.2). Here we
assume the static composition of peer nodes. A P2P net-
work consists ofN nodes. Node churn or dynamic compo-
sition will be studied in Section 3.2.

3.1.1 Homogeneous and Bounded Case

In a homogeneous P2P system with bounded nodal capac-
ity, we useC to denote the uniform capacity of peer nodes.
C is measured as the maximum number of queries that a
node can queue at runtime. When a node receives a query
from a peer, it services the query if there are extra capacity
to handle it. Otherwise, it drops this query by its admis-
sion controller. Therefore, we adopt the saturation policy as
follows. A query is turned down when all of thed nodes, se-
lected randomly and independently, are saturated, i.e. their
load equals to their capacity.

Let ni(t) denote the number of nodes queuingi queries at
time t; mi(t) =

∑C
k=i nk(t), i.e. the number of nodes queuing

at leasti queries at timet; pi(t) = ni(t)/n be the fraction
of nodes that have queues of sizei; si(t) =

∑C
k=i pk(t) =

mi(t)/n be the tails of thepi(t). We drop the reference tot
in the notation where the meaning is clear. Thesi is more
convenient to work with than thepi . In an empty system,
which corresponds to one with no query,s0 = 1 andsi = 0
for 1 ≤ i ≤ C. The expected number of queries per node at
any timet is

∑C
i=1 si(t), and it’s finite because each node can

queue at mostC queries at a time.

The state of the system at any given time can be represented
by an finite vector~s = [s0, s1, . . . , sC]. It contains infor-
mation regarding the number of nodes queuing each size of
queries. We can derive the maximum load of peer nodes
and the average response time of queries, based on the dy-
namics of this state information. This resulting model can
be considered as a Markov chain on the above state space.

We now extend the basic supermarket model to formulate
and analyze randomized probing among peer nodes with
homogeneous and bounded capacity. The time evolution
of the P2P system is specified by the following set of differ-
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ential equations:
ṡi = λ(sd

i−1 − sd
i ) − (si − si+1), for i < C

ṡC = λ(sd
C−1 − sd

C) − sC

s0 = 1
(3.1)

whereṡi denotesdsi/dt.

Let us explain the reasoning behind the system (3.1). Con-
sider a P2P network withN nodes, and determine the ex-
pected change in the number of nodes with at leasti queries
over a small period of time of lengthdt. The probability a
query arrives during this period isλNdt, and the probabil-
ity an arriving query is dispatched to a node queuingi − 1
queries issd

i−1− sd
i , i.e. all of thed nodes chosen by the new

query are of size at leasti − 1, but not all of size at leasti.
The probability a query leaves a node of sizei in this period
is N(si − si+1)dt, for i < C. Because each node can server
no more thanC queries at a time, the probability a query
leaves a node of sizeC in this period isNsCdt.

Next, we try to find the equilibrium points of (3.1). At the
equilibrium points, the volume of incoming queries equals
to the volume of outgoing queries, i.e. ˙si = 0. For a special
cased = 1, system (3.1) becomes stable at states

πi =
λi − λC+1

1− λC+1
, for 1 ≤ i ≤ C.

We denote the expected time a query spends in the P2P
system with homogeneous and bounded-capacity nodes by
Td(λ). As mentioned before, the probability that an in-
coming query arriving at timet becomes theith query
in the queue issi−1(t)d − si(t)d. Therefore, the expected
time a query that arrives at timet spends in the system is
Td(λ) =

∑C
i=1 i(si−1(t)d− si(t)d) =

∑C−1
i=0 si(t)d−CsC(t)d. For

d = 1, it’s clear that at the equilibrium point,

T1(λ) =
C−1∑
i=0

si −CsC =
1− (C + 1)λC +CλC+1

(1− λ)(1− λC+1)
.

Then, we consider the convergence of sequence{si(t)}Ci=0 for
d ≥ 1.

Definition 1 A sequence{xi} is said to decrease doubly ex-
ponentially if and only if there exist positive constants N,
α < 1, β > 1, andγ such that for i≥ N, xi ≤ γα

βi
. �

Then, we show that every trajectory of the system (3.1) con-
verges to a fixed point.

Corollary 2 Suppose there exists some j such that sj(0) =
0. Then the sequence{si(t)}Ci=0 decreases doubly exponen-
tially for all t≥0, where the associated constants are inde-
pendent of t.

Proof: According to the definition of sequence{si(t)}Ci=0,
it’s clear that s0 ≥ s1 ≥ . . . ≥ sC, i.e. a monotone
decreasing sequence. Let’s first increasesi(0) such that
si(0) = si−1(0) − ε, where ε is a small constant. Let

v = max(si(0) · λ−
di−1
d−1 )

1
di . In the original systemsi(t) ≤ si(0)

for all t ≥ 0. Then,si(t) ≤ λ
di−1
d−1 · vdi

. Based on the result
in [15], we conclude that{si(t)}Ci=0 decreases doubly expo-
nentially for all t≥0. Next, we further find the upper and
lower bounds of the equilibrium points. �

Sequence{si(t)}Ci=0 decreases doubly exponentially to a
fixed point. Let~π = [π0, π1, · · · , πC] denote the equilib-
rium points of states{si} in system (3.1). We now examine
the expected time a query spends in the homogeneous and
bounded-capacity P2P system.

Theorem 3 For λ ∈ [0,1] and d≥ 2, Td(λ) ≤ α(logT1(λ)),
whereα is a constant dependent only on d and C. Moreover,

lim
λ→1−

Td(λ)
logT1(λ)

=
C

logC
2 logd

. (3.2)

Proof: First, we proveπi ≤ λ
di−1
d−1 by induction. Fori = 0,

π0 = λ
di−1
d−1

∣∣∣
i=0
= 1. For 0≤ i ≤ k, assumeπi ≤ λ

di−1
d−1 . Then

for i = k + 1, let’s compare the equilibrium points of (3.1)
and those of the following unbounded-capacity system{

ṡi = λ(sd
i−1 − sd

i ) − (si − si+1), i ≥ 1
s0 = 1

(3.3)

Let (π̂i) denote the equilibrium points of (3.3). In [15], it

was proved that ˆπi = λ
di−1
d−1 . Then, we only need to prove that

πi ≤ π̂i for 0 ≤ i ≤ C, which are as follows. From (3.3), we
haveπ̂i = λπ̂

d
i−1, i ≥ 1. According to (3.1),πi = λ(πd

i−1−π
d
C),

1 ≤ i ≤ C. Becauseπi , π̂i ≥ 0, πi ≤ λπ
d
i−1. Based on the

assumptionπi ≤ π̂i for i ∈ [0, k], we getπk+1 ≤ λπ
d
k ≤

λπ̂d
k = π̂k+1. Therefore, the equilibrium pointsπi ≤ λ

di−1
d−1 for

1 ≤ i ≤ C. On the other end, we proveπi ≥ aπ̂b
i , wherea =

λ
1

d−1 andb = 2 − log(1+λ)
logλ . The induction step is as follows:

assumeπi ≥ aπ̂b
i for 0 ≤ i ≤ k − 1, and then according to

(3.1) πk + λπ
d
C = λπ

d
k−1 ⇒ λπ

d
k−1 ≤ πk + λπ

d
k ≤ (1 + λ)πk.

Thus,πk ≥
λ

1+λπ
d
k−1 ≥

λ
1+λ · a

d · π̂bd
k−1. Because ˆπk = λπ̂

d
k−1

from (3.3), we haveπk ≥
1

1+λ ·
ad−1

λb−1 ·aπ̂b
k =

1
(1+λ)λb−2 aπ̂b

k = aπ̂b
k.

Based on the resultaπ̂b
i ≤ πi ≤ π̂i for 0 ≤ i ≤ C,

we can calculate the upper and lower bounds ofTd(λ).
Td(λ) =

∑C
i=1 i(πi−1(t)d − πi(t)d) =

∑C−1
i=0 π

d
i − Cπd

C =∑C
i=1 πi . Therefore,a

∑C
i=1 π̂

b
i ≤ Td(λ) ≤

∑C
i=1 π̂i . When

λ → 1−, πi tends to beλγ
di−1
d−1 , where γ is a constant

within [1, 3
2]. Therefore,Td(λ) =

∑C
i=1 λ

γ di−1
d−1 . Because
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(a) State dynamics whend = 1.
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(b) State dynamics whend = 2.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

% 
of 

no
de

s w
ith

 qu
eu

e l
en

gth
 ≥ 

i

s6

s5

s4

s3
s2
s1

(c) State dynamics whend = 3.
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Figure 1. Dynamics of query response time and nodal queue length in a simulated P2P network with
homogeneous and bounded-capacity nodes.

C−1∏
i=0

(1 + λdi
+ λ2di

+ . . . + λ(d−1)di
) =

1− λdc

1− λ
, we get

C−1∑
i=0

log(1+λdi
+λ2di

+. . .+λ(d−1)di
) = log(1−λdc

)− log(1−λ)

Based on the result in [15], we have (3.2). �

Adding a constraint of node capacity makes it difficult to
find the closed-form solution to (3.1) with parametersλ and
d. To analyze the dynamic behaviors of the P2P system
with homogeneous and bounded nodal capacity, we con-
ducted simulations to trace the changes of state variables
in example systems. In the example system, we have 4
peer nodes, each of which can queue up to 6 queries at
a time, and the arrival rate of queriesλ = 0.99. The ini-
tial system is empty and queries comes and leaves the P2P
system following the model described at the beginning of
this section. Figures 1(a), 1(b) and 1(c) depict the dy-
namics of the nodal queue length when one, two and three
choices are made by random in node search. It’s clear that
asd increases the number of nodes with the longest queues
decreases, because incoming queries are more evenly dis-
tributed among nodes for largerd. Figure 1(d) presents the

values of C
logC

2 logd
·

Td(λ)
logT1(λ) converges closely to 1 as time

goes on. The small deviation from 1 is because the arrival
rate of queriesλ is set to 0.99 as to simulateλ → 1−. The
system is stable and we have different trajectory for differ-
entd. From this figure, we can measure the expected time
that a query stays in the P2P system, i.e.Td.

We apply Kurtz’s theorem [25] to our randomized probing
model in P2P network to obtain bounds on the maximum
load:

Theorem 4 For any fixed time interval I, the length of the
longest queue in an initially empty P2P system with homo-
geneous and bounded nodal capacity for d≥ 2 over the
interval [0, I ] is C

logC
2 logd

log logN + O(1) with high prob-

ability, where C is the nodal capacity and the O(1) term
depends on I andλ.

Hence in comparing the systems where queries have one
choice and those haved ≥ 2 choices, we see that the sec-
ond yields an exponential improvement in both the expected
time in the system and in the maximum observed load for
sufficiently largeN.
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3.1.2 Heterogeneous and Bounded Case

In Section 3.1.1, we extended the supermarket model to
analyze the effect of d-way random probing in balancing
load in P2P systems with homogeneous and bounded nodal
capacity. However, in practical P2P networks, participant
nodes generally have different configurations. To tackle this
nodal heterogeneity, we extend the preceding model to an-
alyze behaviors of peer nodes with different capacities in
face of randomized probing to balance load.

Here, we still consider P2P systems with static composi-
tion. Let’s assume a system hasN peer nodes to process
queries. Their correspondent capacities are{c1, c2, . . . , cN},
which are positive and finite. We assumeci ’s take nonuni-
form values, otherwise we can analyze the system by apply-
ing the model presented in Section 3.1.1. Next, we will try
to model and investigate behavior of the P2P system with
heterogeneous and bounded nodal capacity by utilizing re-
sults derived in the preceding section.

Let c∗ denote the maximum values in the sequence{ci}
N
i=1.

Then, we calculate the residue capacity as{c∗ − ci}
N
i=1. We

treat these residue capacity as the initial load of their cor-
responding nodes. Thus, value of the state variablessi for
0 ≤ i ≤ c∗ at timet = 0 equals tosi(0) =| {ci |ci ≤ c∗−i} | /N,
i.e. the fraction of nodes bearing initial load (residue ca-
pacity) no less thani. When the system runs and queries
come/leave, the area of residue capacity is reserved and load
changes in the rest area withinc∗. With this transformation,
peer nodes have homogeneous capacity asc∗ so that we can
model the dynamic system by (3.1). The state variables sat-
isfy the following equations:

ṡi = λ(sd
i−1 − sd

i ) − (si − si+1), i < C
ṡC = λ(sd

C−1 − sd
C) − sC

si(0) = |{ci |ci≤c∗−i}|
N , i ≤ C

si(t) ≥ si(0)

(3.4)

For example, in a small-scale P2P network having four
nodes, they can accommodate at most 3, 3, 4 and 6
queries at a time, respectively. Thus,c∗ = 6 and their
residue capacities are ¯c = {3,3,2,0}, which determines
the initial load of the corresponding nodes{si(0)}6i=0 =

{1,0.75,0.75,0.5,0,0,0}. The system dynamics can be
modeled by (3.4) and its solution describes the steady states
of the P2P system.

Equations (3.4) are established by exerting constraints on
the initial values and the range of state variables to (3.1).
Their equilibrium states have certain relations.

Corollary 5 Let T̃d(λ) denote the expected time a query

spends in the system (3.4). Then,T̃d(λ) is bounded by:

Td(λ) ≤ T̃d(λ) ≤ Td(λ) + S,

where Td(λ) is the expected time a query spends in the ho-
mogeneous and bounded-capacity system (3.1) and S is a
constant which equals to

∑C
i=1 si(0).

Proof: In Section 3.1.1, we prove that (3.1) converges
doubly exponentially to its equilibrium state{πi}. We now
derive the solution to (3.4) based on{πi}. Let {mi}

C
i=1 =

{max(πi , si(0))}Ci=1. We calculate the remains of (λmd
i−1−mi)

for 1 ≤ i ≤ C. Let r = min{(λmd
i−1−mi)C

i=1}. Then, we obtain
the solution (˜πi) by iteratively computing ˜πi = λπ̃

d
i−1−mi for

1 ≤ i ≤ C, starting withπ̃0 = 1.

If {πi} is no less than the value of the initial state{si(0)}
in (3.4), then{πi} is also the steady state of (3.4).T̃d(λ) =∑C

i=1 i(π̃d
i−1− π̃

d
i ) =
∑C

i=1 π̃i . Therefore,T̃d(λ) ≥ Td(λ). If {πi}

is less than{si(0)}, we have ˜πi ≤ πi + si(0). The expected
time a query spends in the system satisfiesT̃d(λ) ≤ Td(λ) +
S, whereS is a constant which equals to

∑C
i=1 si(0). �

Based on Corollary 5, we apply Kurtz’s theorem to derive
the upper bound of the length of queues in the P2P system
with heterogeneous and bounded nodal capacity.

Theorem 6 For any fixed time interval I, the length of the
longest queue in an initially empty P2P system with hetero-
geneous and bounded nodal capacity for d≥ 2 over the
interval [0, I ] is c∗

log c∗
2 logd

log logN + O(1) with high prob-

ability, where c∗ is the upper bound of nodal capacity, and
the O(1) term depends on c∗, si(0), I andλ.

The result of Theorem 6 is reduced to the one in Theorem 4
when the system is homogeneous. This theorem indicates
that the maximum load of peer nodes is affected by the dis-
tributions of nodal capacity. However, the power of 2-way
randomized probing is still valid in P2P networks with het-
erogeneous and bounded nodal capacity.

3.2 Node Dynamics

The composition of a P2P network is dynamic. Compute
nodes join and leave the P2P system in its lifetime. Guha
et al. [10] observed that only 30% - 40% supernodes were
online at any given time in a P2P network. Nodal churn
must be considered when we analyze the behaviors of ran-
domized probing to balance load among peer nodes. In this
section, we model the dynamic composition of peer nodes
in a P2P network by using a random variable. Then we
investigate the impact of nodal churn to the expect time
a queue spends in the system and the longest length of
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(a) State dynamics whend = 1.
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(b) State dynamics whend = 2.
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(c) State dynamics whend = 3.
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Figure 2. Dynamics of query response time and nodal queue length in a simulated P2P network with
churn and unbounded-capacity nodes.

queues among peer nodes. To make our analysis tractable,
we first discuss randomized probing in a dynamic P2P net-
work where nodes have infinite capacity, as in Section 3.2.1.
Then, peer nodes with bounded capacities are investigated
in Section 3.2.2.

3.2.1 Dynamic Nodes with Unbounded Capacity

In Section 3.1, we analyze the properties of randomized
probing in static P2P systems by focusing on the factor of
nodal capacity. In a dynamic P2P system with nodal churn,
node composition is not fixed any more. We use a ran-
dom variablen to characterize the number of peer nodes
that changes with time. Then, variablemi(t), the number of
nodes whose loads are at leasti, is also random. Their ratio
mi(t)/n denoted bysi(t) still describes the fraction of peer
nodes bearing loads that are at leasti.

Existing research work [30, 27, 5, 12, 20] on analyzing
churn in P2P systems found that the arrival/departure pro-
cesses of peer nodes can be modeled by a Poisson distribu-
tion when the system size becomes sufficiently large. Thus,
we assume new nodes join the current P2P network in a

Poisson distribution with rateλin and existing nodes leave
the system in a Poisson distribution with rateλout relative to
the node population,λin, λout < 1. When a peer node leaves,
its original load will be removed from the P2P system. We
assume the probability with which a node leaves the sys-
tem is uniformly distributed among the existing nodes. As
a result, the number of nodes join/leave the P2P system is
Mn = (λin−λout)nMt in a small time intervalMt. A new node
can service coming queries when they are dispatched to it.

To characterize the system dynamics, we look into the
change of random variablemi , the number of nodes that
have load at leasti. Its value changes when a query is dis-
patched to a node queuingi − 1 queries, or a query is ser-
viced and removed from a node havingi queries or such a
node leaves the system. Therefore,

M mi

M t
= λn

[(mi−1

n

)d
−
(mi

n

)d]
−n
(mi

n
−

mi+1

n

)
−λoutn

mi −mi+1

n
.

Thus, the influence of nodal churn on system behavior is
incorporated in the value of random variablemi . Because
si = mi/n, we have ˙si = (ṁin−mi ṅ)/n2. We use{si}

∞
i=0 and

n as state variables and the state equations characterizing

7



system dynamics are as follows.
ṡi = λ(sd

i−1 − sd
i ) − (1+ λin)si + (1+ λout)si+1, i ≥ 1

ṅ = (λin − λout)n
s0 = 1,

(3.5)
with the initial conditionsi(0) = 0, 1 ≤ i ≤ n andn(0) = N,
whereN is the number of nodes in the initial system.

The population of the P2P system depends on the values
of λin andλout. If λin > λout, n tends to increase. On the
other hand, whenn increases, more queries will arrive at the
system. A similar situation happens whenλin < λout. Thus,
although nodes join/leave the system in runtime, the state
variables{si}

∞
i=0 can converge to steady state by adjusting

the volume of queries.

Corollary 7 Let Td(λ) denote the expected time a query
spends in the system (3.5). Then, Td(~λ) is bounded by:

0 ≤ Td(~λ) ≤
1+ λin

1+ λout
λd−1T̂d(λ),

where~λ = {λ, λin, λout} and T̂d(λ) is the expected time a
query spends in the homogeneous and infinite-capacity sys-
tem ([16]).

Proof: Let ṡi = 0 in (3.5) for i ≥ 1, and we getsi+1 =
1

1+λout
[(1 + λin)si − λsd

i−1 + λs
d
i ]. Td(~λ) =

∑∞
i=1 i(πd

i−1 − π
d
i ) =∑∞

i=0 π
d
i . By using induction, we can prove the expression in

the corollary. �

Figures 2(a), 2(b) and 2(c) depict dynamics of the nodal
queue length when one, two and three choices are made
by random in node search.λin = 0.2, λout = 0.1 and
λ = 0.99. It’s clear that asd increases the number of
nodes with the longest queues decreases, because incom-
ing queries are more balanced distributed among nodes for
largerd. Figure 2(d) presents the values of1+λout

(1+λin)logd ·
Td(λ)

logT1(λ)
for asλ→ 1−. We can see they converge closely to 1 as time
goes on. The small deviation from 1 is because the arrival
rate of queriesλ is set to 0.99 as to simulateλ→ 1−.

We apply Kurtz’s theorem [25] to our randomized probing
model in P2P network to obtain bounds on the maximum
load:

Theorem 8 An initially empty P2P system in which nodes’
arrival /departure follows a Poisson distribution with rate
λinn andλoutn and nodes have infinite capacity. For any
fixed I, the length of the longest queue in the system for
d ≥ 2 over the interval[0, I ] is O(log logn) with high prob-
ability.

3.2.2 Dynamic Nodes with Bounded Capacity

A more general case is a P2P system that peer nodes ar-
rive/depart at runtime and the participant nodes have het-
erogeneous and bounded capacities. In this section, we con-
struct the state equations to describe the system dynamics
and derive the bounds on length of the longest queue.

Let c1, c2, · · · , cn denote the capacities of peer nodes in the
system. The number of nodesn is a random variable. We
assume{ci}

n
i=1 follows a Pareto distribution, with a shape

parameterkc. The number of nodes bearing load at leasti,
mi(t), follows the equations:


ṁi = λn[( mi−1

n )d − ( mi

n )d] − n[ mi

n −
mi+1

n ]
+λinn · Pr{c∗ − c ≥ i} − λoutn

mi−mi+1
n , i < c∗

ṁc∗ = λn[( mc∗−1
n )d − ( mc∗

n )d] − nmc∗

n − λoutn
mc∗

n , i = c∗

ṅ = (λin − λout)n,

wherec∗ is a sufficiently large value that is greater than any
possible value of node capacity. According to the CDF of
Pareto distribution,Pr{c∗ − c ≥ i} = Pr{c ≤ c∗ − i} =
1− ( c∗−i

cmin
)−kc, wherecmin is a minimum capacity.

By applyingṡi = (ṁin−mi ṅ)/n2, we construct the following
state equations.



ṡi = λ(sd
i−1 − sd

i ) − (1+ λin)si + (1+ λout)si+1

+λin[1 − ( c∗−i
cmin

)−kc], i ≤ c∗ − cmin

ṡi = λ(sd
i−1 − sd

i ) − (1+ λin)si + (1+ λout)si+1,
c∗ − cmin < i < c∗

ṡc∗ = λ(sd
c∗−1 − sd

c∗ ) − (1+ λin)sc∗ , i = c∗

ṅ = (λin − λout)n
si(0) = |{ci |ci≤c∗−i}|

N , i ≤ c∗

si(t) ≥ si(0)

(3.6)

with initial condition s0(0) = 1, si(0), 1 ≤ i ≤ n(0) set
according to the server configuration att = 0.

It’s difficult to calculate closed form solutions to (3.6).
However, it is numerically solvable. Figure 3(a), 3(b) and
3(c) show the dynamics of state variables{si} in an example
system. The system consists of 10 nodes att = 0. Their ca-
pacity are within the set of{6,7, . . . ,10}, and for each value
in the range there are two nodes having that capacity.λin,
λout andλ are 0.2, 0.1 and 0.99 respectively. The capac-
ity of newly joined nodes follows a Pareto distribution with
shape parameterkc = 2 and the minimum capacitycmin = 5.
The figures show the system evolves to steady states as time
goes on. We can calculateTd(~λ) based on values of these
steady states.
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(a) State dynamics whend = 1.
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(b) State dynamics whend = 2.
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(c) State dynamics whend = 3.

Figure 3. Dynamics of query response time in a simulated P2P network with churn and heteroge-
neous, bounded-capacity nodes.

4 Experimental Results

To quantify the performance of random choices schemes
in real P2P systems, we conducted simulations on Cy-
cloid [24] P2P network. Cycloid is a constant-degree
DHT based on the network topology of cube-connected-
cycle. We use two transit-stub topologies generated by GT-
ITM [31]: “ts5k-large” which has 5 transit domains, 3 tran-
sit nodes per transit domain, 5 stub domains attached to
each transit node, and 60 nodes in each stub domain on av-
erage. It is used to represent a situation in which Cycloid
overlay consists of nodes from several big stub domains.
To account for the fact that interdomain routes have higher
latency, each interdomain hop counts as 3 hops of units of
latency while each intradomain hop counts as 1 hop of unit
of latency. We assume the object arrival locations are uni-
formly distributed over the Id space. The number of nodes
is 4096 and the number of items is 20480. The capacity
of nodes is modeled by a bounded Pareto distribution with
its shape parameter as 2. The background load caused by
existing items is modeled by a bounded Pareto distribution
with its shape equal to 2. Pareto distribution reflects real

world where there are machines with capacities that vary
by different orders of magnitude.

To balance load in the P2P network, probes are sent to a
number of peer nodes. Among the responders, the one
having the least load is selected. We refer to this class
of randomized load balancing algorithms asd-way prob-
ing, denoted byLARd, d = 1,2,. We compare the per-
formance of 1, 2, 4, and 6-way random probe schemes in
terms of node probing time and total number of load rear-
rangements. From Figure 4 and 5, we can observe that the
probing efficiency of the randomized load balancing algo-
rithm LARd,(d > 2), is almost the same as that ford = 2,
though they need to probe more nodes than the latter. Our
results are closely consistent with the performance results
of randomized algorithms analyzed in Section 3.1 and 3.2.

5 Related Work

In most early DHT structures [26, 14, 13], each node
chooses at random a point in the hash space, typically, the

9
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Figure 6. Effect of load balancing due to different LAR algorithms

a main function of nodes is to handle key location query.
Query load balancing is a critical part of P2P load balanc-
ing; that is, the number of queries that nodes receive, handle
and forward is based on their different capacities accord-
ingly. We will explore methods for this.
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a main function of nodes is to handle key location query.
Query load balancing is a critical part of P2P load balanc-
ing; that is, the number of queries that nodes receive, handle
and forward is based on their different capacities accord-
ingly. We will explore methods for this.
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Figure 5. Total number of load rearrangements.

unit interval [0,1), and becomes associated with the points
of the hash space closest to the selected point. Assuming
random node departures, this scheme guarantees that the ra-
tio of largest to average node segment size isO(logn), with
high probability [26]. Virtual server approach has been used
to mitigate imbalance of key assignment between nodes. It
was proposed that each real server works as logn virtual
servers, thus greatly decreasing the probability that some
server will get a large part of the ring. Some extensions of
this method were proposed in [18] and [28], where more
schemes based on virtual servers were introduced and ex-
perimentally evaluated. However, these schemes assume
that nodes are homogeneous, objects have the same size,
and object IDs are uniformly distributed.

CFS [7] accounts for node heterogeneity by allocating to
each node some number of virtual servers proportional to
the node capacity. In addition, CFS proposes a simple solu-
tion to shed the load from an overloaded node by having the
overloaded node remove some of its virtual servers. How-
ever, this scheme may result in thrashing as removing some
virtual servers from an overloaded node may result in an-
other node becoming overloaded.

Byers et al. [3] proposed the use randomized search to
achieve better load balance. Each object is hashed tod ≥ 2
different IDs, and is placed in the least loaded node of the
nodes responsible for those IDs. The other nodes are given
a redirection pointer to the selected node so that search-
ing is not slowed significantly. For homogeneous nodes
and objects and a static system, pickingd = 2 achieves a
load balance within a log logn factor of optimal. However,
this scheme was not analyzed or simulated for the case of
heterogeneous node capacities and node churn, which are
defining characteristics of P2P networks. The paradigm of
multiple random choices was also used in [22, 11, 8, 23].
Several peer nodes are probed before store a file to or dis-
patch a user query to the least loaded one.

Besides applying randomized probing algorithms to balance
load in P2P networks, researchers also analyzed the charac-
teristics of random choices theoretically. The main tech-
niques used to analyze random choice problems are lay-
ered induction, witness trees, and fluid limits via differential
equations. Thelayered inductiontechnique pioneered by
Azar et al. [1]. The random choice problem was modeled
by balls-and-bins. It bounded the maximum load by bound-
ing the number of bins withk or more balls via induction
on k. The layered induction approach provides nearly tight
results. An alternative technique for handling the problem
called thewitness treemethod [6]. The key idea of this ap-
proach is to show that if a “bad event” occurs, i.e. if some
node is heavily loaded, one can extract the history of the
process a suitable tree of events called the witness tree. The
probability of the bad event can then be bounded by the
probability of occurrence of a witness tree. Generally, wit-
ness tree arguments involves the most complexity, and they
have proved to be the most challenging in terms of obtaining
tight results. The third technique studies algorithms that use
random choices paradigm viafluid limit models [16, 4]. The
system dynamics can be described by a family of differen-
tial equations. This approach is simple and flexible. When
the system dynamics can be modeled by this method, the
differential equations generally yield accurate numerical re-
sults. However, these theory work analyzed a system where
compute nodes have homogeneous and infinite capacities.
Moreover, node churn, a defining characteristic of P2P sys-
tems, is not modeled by these approaches. In this paper, we
analyze the dynamic behavior of random choice paradigm
in general P2P systems, where peer nodes join/leave at run-
time and they have heterogeneous and bounded capacities.
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6 Conclusions

In this paper, we model the randomized probing in general
peer-to-peer systems. Theoretical analysis shows that two-
way random probing is asymptotically superior to the one-
way choice approach. However, by increasing the number
of choices further, efficiency of the search algorithm does
not improve significantly. Our random probing model is
general in that the influence by nodal heterogeneity, capac-
ity distribution and churn on search efficiency is investi-
gated. The random approach is less sensitive to the node
churn and heterogeneity in terms of the number of probes
conducted before finding suitable nodes and the average re-
sponse time of queries. Simulation and experiment results
confirm our analysis. It’s difficult to calculate the closed
form solutions to state equations of the most general case.
However, we can find the steady states numerically. For
completeness in theory, we include the analysis of P2P sys-
tems consisting heterogeneous and bounded-capacity nodes
with churn and simulation results. In this paper, we design
and analyze the random probing algorithms within the con-
text of P2P networks. However, our results have wide appli-
cability and are of interest beyond the specific applications.

Although we analyze the performance of randomized
probing in the general P2P environments, we still intro-
duce some simplifying assumptions to make the problem
tractable. One such assumption is that each peer node can
service every query. However, in practice certain queries
or requests may only be serviced by those nodes that have
the required resources. To address this situation, we need
to extend the composition model of a P2P network in a way
that each query maps to a subset of nodes that can service it,
and the changes of peer nodes’ queue length will be quan-
tified by distinguishing these different sets. However, this
will make the analysis quite difficult. Another assumption is
that the service time for a query is exponentially distributed
with mean 1. In reality, different queries may require differ-
ent amount of work and the processing power of peer nodes
may vary. As a result, the service time follows a more com-
plicated model. Although we do not discuss this case in our
paper, our model can be extended to formulate the case by
introducing other distributions of service time to the state
equations of the system and numerically analyze the state
dynamics.
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