
SPPS: A SCALABLE P2P-BASED PROXIMITY-AWARE MULTI-RESOURCE
DISCOVERY SCHEME FOR GRIDS

Haiying Shen and Ze Li
Department of Computer Science and Computer Engineering

University of Arkansas, Fayetteville, AR 72701
{hshen, zxl008}@uark.edu

ABSTRACT

Grids are emerging as a novel approach of employing
distributed computational and storage resources to solve
large-scale problems in science, engineering, and com-
merce. Distributed Hash Table (DHT) middleware overlay
has been applied to grids as a middleware for providing
scalable multi-resource discovery. However, direct DHT
overlay adoption breaks the physical locality relationship
between nodes, making it difficult to discover physically
close resources to requesters. Moreover, to achieve multi-
resource discovery, some approaches relying on multiple
DHTs need high DHT maintenance overhead and other ap-
proaches lead to imbalanced load distribution, resulting
in low scalability. This paper presents a Scalable P2P-
based Proximity-aware multi-resource discovery Scheme
(SPPS). It collects the resource information of physically
close nodes together, and maps resource requests from re-
questers to the resource information pool of its physically
close nodes. In addition, it relies on a single DHT and
achieves balanced resource discovery load distribution, en-
hancing the system scalability. Simulation results demon-
strate the effectiveness of SPPS in proximity-awareness,
overhead reduction, and balanced load distribution in com-
parison with other approaches.

1 INTRODUCTION

The popularity of the Internet as well as the availability
of powerful computers and high-speed network technolo-
gies have led to what are popularly known as grids. Grid
computing is a form of distributed computing whereby a
“super and virtual computer” is composed of a cluster of
networked, loosely-coupled computers, acting in concert to
perform very large tasks. This technology has been applied
to computationally-intensive scientific, mathematical, and

academic problems through volunteer computing, and it is
used in commercial enterprises for such diverse applications
as drug discovery, economic forecasting, seismic analysis,
and back-office data processing in support of e-commerce
and web services [1]. Grids enable the sharing, selection,
and aggregation of a wide variety of resources including su-
percomputers, storage systems, data sources, and special-
ized devices that are geographically distributed for solv-
ing large-scale computational and data intensive problems
in science, engineering, and commerce. Thus, a resource
discovery scheme is needed to help a resource consumer to
locate requested resources in resource providers.

Different from other distributed systems, grid environ-
ment has its own distinguishing features characterized by
proximity and heterogeneity. By proximity, we mean the
logical proximity abstraction derived from grids does not
necessarily match the physical proximity information in
reality. In the environment, heterogeneous computational
resources spread across geographically distributed areas
world wide. The resources such as storage space and CPU
are dynamic, and nodes can enter or leave the system un-
predictably. Traditional resource discovery approaches re-
lying on centralized or hierarchical policies [9, 8, 12, 6, 7]
cannot tolerate such an environment. In the resource dis-
covery approaches relying on centralized policies, all nodes
report their available resources to a central grid node. When
a node needs resources, it resorts to the central grid node
for the information of resource providers who have its re-
quired resources. Since the central grid node needs to store
all the information of available resources in the grid sys-
tem, and needs to process the resource requests from all the
nodes in the system, it could easily become a bottleneck
and is unable to efficiently process the resource requests,
leading to low performance of the grid system. In the re-
source discovery approaches relying on hierarchical poli-
cies, all nodes are formed into a hierarchical structure with
a number of levels. A node can ask for the information of

——————————————————
978-1-4244-2677-5/08/$25.00 c©2008 IEEE

1

available resources from the nodes in the above level. The
hierarchical structure based approaches avoid the central-
ized bottleneck problem by distributing resource discovery
load among nodes. However, the structure needs to be main-
tained in the situation of node joins and departures. If the
structure is not fixed in time, the efficiency of resource dis-
covery would be adversely affected.

As a successful model that achieves higher scalability
and efficiency in distributed systems, Distributed Hash Ta-
ble (DHT) middleware overlay facilitates the resource dis-
covery in large-scale grid environment [18, 11, 2, 23, 4, 13,
26]. DHT middleware overlay is an important class of the
peer-to-peer (P2P) overlay networks, which is a distributed
system without any centralized control or hierarchical or-
ganization. In the overlay networks, each node has equal
functionality. DHT overlay networks map files to the nodes
of a network based on a consistent hashing function [10].
To use a DHT middleware overlay for resource discovery in
a grid system, all grid nodes are organized into a DHT over-
lay. The information of an available resource is regarded
as a file. The information of available resources are dis-
tributed among the nodes by the DHT file allocation policy.
A request for a resource is regarded as a request for a file,
and is routed to the node which has the information of the
required resource by the DHT data location policy, which
takes O(log n) hops. Therefore, a DHT middleware overlay
maps the resource providers and consumers in a completely
distributed manner with high scalability and efficiency.

However, direct DHT adoption breaks the physical local-
ity relationship of nodes in the underlying IP-level topology.
That is, two nodes which are close in the DHT middleware
overlay are not necessarily close nodes in the underlying
IP-level topology. Since resource sharing and communica-
tion among physically close nodes enhance resource dis-
covery efficiency, it is desirable that DHT middleware can
map the resource providers and resource consumers that are
physically close to each other. Proximity aside, achieving
multi-resource discovery remains another challenge. Multi-
resource discovery refers to locating resources that are de-
scribed by a set of resources. For example, a user may
need resources described in operation system name, CPU
and free memory. Most current DHT-based approaches for
multi-resource discovery are not sufficiently scalable and
efficient. Multiple-DHT-based approaches rely on multiple
DHTs with each DHT responsible for a type of resource [4].
It generates a DHT for each of the resources. Thus, if
there are numerous resources, the multiple-DHT-based ap-
proaches need to build many DHT middleware overlays. It
comes at the cost of high overhead for the maintenance of
multiple DHT. In addition, load balance is a critical factor

that affects the efficiency of resource discovery approach.
A highly scalable and efficient multi-resource discov-

ery scheme is needed driven by the tremendous advances
in grids. To meet the requirements, we propose a Scal-
able P2P-based Proximity-aware multi-resource discovery
Scheme (SPPS), which is built on a single DHT struc-
ture. By taking advantage of the hierarchical cluster struc-
ture of the DHT, SPPS provides proximity-aware resource
discovery by mapping physically close resource requesters
and providers. Moreover, SPPS achieves not only multi-
resource discovery on a single DHT but also balanced dis-
tribution of resource discovery overhead.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative resource discov-
ery approaches for grids. Section 3 introduces SPPS, focus-
ing on its architecture and algorithms. Section 4 shows the
performance of SPPS in comparison with other representa-
tive approaches in terms of a variety of metrics. Section 5
concludes this paper with remarks on possible future work.

2 RELATED WORK

Over the past years, the immerse popularity of grids has
produced a significant stimulus to grid resource discovery
approaches. There have been numerous approaches for re-
source discovery in grids, such as Condor-G [9], Globus
toolkit [8], Condor [12], Entropia [6], AppLes [7]. How-
ever, relying on centralized or hierarchical policies, these
systems have limitation in a large-scale dynamic multi-
domain environment with variation of resource availabil-
ity. Some middlewares such as that in [17] with neces-
sary mechanism are not sufficient by themselves to manage
large-scale grid systems with dynamic heterogeneous com-
puter resources. Their broadcasting or flooding strategies
are not as efficient as request forwarding in a dynamic envi-
ronment.

To cope with these problems, more and more grids resort
to DHT middleware overlay for resource discovery. DHTs
[14, 24, 16, 27, 22] is an important class of the peer-to-peer
overlay networks that map keys to the nodes of a network
based on a consistent hashing function [10]. Multiple-DHT-
based approaches adopt one DHT for each resource, and
process multi-resource queries in parallel in corresponding
DHTs [4]. Mercury is a scalable resource discovery proto-
col for routing multi-attribute range-based queries. It can
support for multiple attributes and explicit load balancing.
Mercury incorporates techniques to support random sam-
pling of nodes within the system. Random sampling en-
ables a number of lightweight approaches to performing
load balancing, node count estimation and query selectivity

2

estimation. In addition to providing high query-routing per-
formance, Mercury provides a range-based query primitive.
However, depending on multiple DHTs for multi-resource
discovery leads to high structure maintenance overhead.
SOMO [26] is a highly scalable, efficient and robust in-
frastructure for resource management in DHT overlay net-
works. SOMO performs resource management by relying
on a tree structure. It does so by gathering and disseminat-
ing system metadata in O(log n) time with a self-organizing
and self-healing data overlay.

MAAN [11] is a Multi-Attribute Addressable Network
that extends Chord to support multi-attribute and range
queries for grid information services. MAAN addresses
range queries by mapping attribute values to the Chord iden-
tifier space via uniform locality preserving hashing. It uses
an iterative or single attribute dominated query routing algo-
rithm to resolve multi-attribute based queries. To facilitate
efficient queries on a range of keys, Andrzejak and Xu pro-
posed a CAN-based approach for scalable, efficient range
queries for grid information services [2]. The authors pro-
posed a number of range query strategies and investigated
their efficiency. The approach also enhances the routing as-
pects of current DHT-systems so that frequently changing
data can be handled efficiently. SWORD [13] is a scal-
able resource discovery service for wide-area distributed
systems. SWORD has a technique for efficient handling
of multi-attribute range queries that describe application re-
source requirements. It has an integrated mechanism for
scalably measuring and querying inter-node attributes with-
out requiring O(n2) time and space. SWORD also has a
mechanism for users to encode a restricted form of utility
function indicating how the system should filter candidate
nodes when more are available than the user needs, and an
optimizer that performs this node selection based on per-
node and inter-node characteristics. For scalable resource
monitoring and discovery in Grids, Cai and Hwang [5] pro-
posed a scalable Grid monitoring architecture that builds
distributed aggregation trees (DAT) on a structured P2P net-
work. By leveraging Chord topology and routing mecha-
nisms, the DAT trees are implicitly constructed from na-
tive Chord routing paths without membership maintenance.
LORM [21] realizes multi-attribute resource discovery with
low overhead based on Cycloid DHT [22]. Most of these
work focused on range queries but failed to take proxim-
ity feature into account to match physically close resource
requesters and providers to achieve high efficiency. SPPS
can be complemented by these works to achieve range re-
source queries, while in turn can complement these works
to realize proximity-aware resource discovery.

On the other hand, most DHT-based approaches focused

on organizing resource information in DHT structure based
on individual resource attribute. Some other approaches fo-
cus on weaving all attributes of a resource into one or a cer-
tain number of IDs, and then map the resource information
to a DHT [18, 19]. Our previous work SEMM provides a
preliminary study of exploiting scalable and efficient multi-
resource discovery approaches in grids [20]. Relying on
Cycloid, SEMM groups physically close nodes into a clus-
ter, and redistributes the resource information within a clus-
ter. When a node needs resource, it queries the nodes in
its own cluster. However, nodes are not evenly distributed
in a wide area in practice. SEMM will lead to a situation
in which nodes are not evenly distributed among clusters.
Some clusters may have many nodes, while other clusters
may have only a few nodes. Unbalanced node distribu-
tion will decrease the efficiency of SEMM. The work pre-
sented in this paper is motivated by the lessons learned from
SEMM. It distinguishes itself from SEMM by the elimina-
tion of the need to build a proximity-aware DHT overlay
network, and balanced load distribution. It aims to collect
the resource information of physically close nodes without
relying on a proximity-aware DHT, and at the same time
achieves load balance among the nodes.

3 SCALABLE P2P-BASED PROXIMITY-AWARE
MULTI-RESOURCE DISCOVERY

3.1 DHT MIDDLEWARE CONSTRUCTION

SPPS is developed based on Cycloid DHT [22]. We
first briefly describe Cycloid DHT middleware overlay fol-
lowed by a high-level view of SPPS architecture. Cycloid
is a lookup efficient constant-degree overlay with n=d · 2d

nodes, where d is dimension. It achieves a time com-
plexity of O(d) per lookup request by using O(1) neigh-
bors per node. Each Cycloid node is represented by a
pair of indices (k, ad−1ad−2 . . . a0), where k is a cyclic
index and ad−1ad−2......a0 is a cubical index. All nodes
are grouped into different clusters, which are identified by
ad−1ad−2......a0. Within a cluster, the nodes are differenti-
ated by k. The node with the largest k in a cluster is called
the primary node of the nodes at the cluster. All clusters
are ordered by their cubical indices mod 2d on a large cy-
cle. The Cycloid DHT assigns keys onto its ID space by
the use of a consistent hashing function. For a given key
or a node, its cyclic index is set to the hash value of the
key or IP address modulated by d, and the cubical index
is set to the hash value divided by d. A key will be as-
signed to a node whose ID is closest to its ID. Briefly, the
cubical index represents the cluster that a node or an ob-
ject locates, and the cyclic index represents its position in a

3

cluster. The overlay network provides two main functions:
Insert(key,object) and Lookup(key) to store an
object to a node responsible for the key and to retrieve the
object. For more information about Cycloid, please refer
to [22].

SPPS builds an original Cycloid DHT overlay above a
grid system to achieve proximity-aware and multi-resource
discovery. Unlike most resource discovery approaches that
depend on multiple DHTs for multi-resource discovery,
SPPS relies on a single DHT with constant maintenance
overhead. In SEMM, physically close nodes are in one clus-
ter. Since nodes are not evenly distributed in a grid system,
some clusters may have many number of nodes while other
clusters may have only a few nodes. Thus, it will lead to im-
balanced distribution of load caused by resource discovery.
Unlike SEMM, SPPS does not need to build a proximity-
aware DHT middleware overlay. By balanced distribution
of nodes in each cluster relying on the original Cycloid
DHT, SPPS leads to more balanced load distribution than
SEMM. Taking advantage of the hierarchical cluster struc-
ture of Cycloid structure and Insert(key,object)
function, SPPS gathers information of resources in close
proximity in a cluster, and further distributes the informa-
tion to different nodes in the cluster based on resource type.
It relies on Lookup(key) function for multi-resource dis-
covery. Thus, SPPS provides proximity-aware and multi-
resource discovery with a single DHT base and balanced
overhead distribution.

3.2 RESOURCE REPORTING AND SEARCHING

Before we present the details of SPPS, let’s introduce
a landmarking method to represent node closeness on the
network by indices. Landmark clustering has been widely
adopted to generate proximity information [15, 25]. It is
based on the intuition that nodes close to each other are
likely to have similar distances to a few selected landmark
nodes, although details may vary from system to system. In
DHTs, the landmark nodes can be selected by overlay it-
self or the network. We assume m landmark nodes that are
randomly scattered in the Internet. Each node measures its
physical distances to the m landmarks, and uses the vector
of distances < d1, d2, ..., dm > as its coordinate in Carte-
sian space. Two physically close nodes will have similar
vectors. We use space-filling curves [3], such as Hilbert
curve [25], to map m-dimensional landmark vectors to real
numbers, such that the closeness relationship among the
nodes is preserved. We call this number Hilbert number of
the node, denoted byH. H indicates the physical closeness
of nodes on the Internet.

Usually, the resources required by applications are de-

scribed by specifying a set of resources such as available
CPU and memory. It has posed a challenge for a resource
discovery mechanism to effectively locate resources across
widely dispersed domains based on a list of predefined
attributes. Moreover, the resource discovery mechanism
should discovery resources physically close to the resource
requester. In the following, we introduce how SPPS deals
with the challenges based on the Cycloid middleware over-
lay.

We define resource information, represented by Ir, as the
information of available resources and resource requests.
Basically, SPPS groups the information of physically close
resources to clusters, and further divides the information
into different categories based on resource types, and then
assigns different nodes in the cluster responsible for dif-
ferent categories. In DHT overlay networks, the objects
with the same key will be stored in the same node. Based
on this principle and node ID determination policy, SPPS
lets node i compute the consistent hash value of its re-
source r, denoted by Hr, and use (Hr, Hi) to represent
resource ID, denoted by IDr. The node uses the DHT
function Insert(IDr, Ir) to store resource information
to a node in the system. The Ir repository node is called
directory node. A directory node periodically conducts
resource scheduling between resource providers and re-
questers. Note that in SEMM, a node reports its Ir to its
own cluster, and the Ir of the nodes in the same cluster is
redistributed among themselves. Unlike SEMM, in SPPS,
a node’s Ir is not necessarily reported to its own cluster.
Rather, its Ir is routed to a node whose logical ID is the
closest to IDr = (Hr,Hi). That it, the Ir first reaches a
cluster whose logical ID is the closest to the Hi, and then
arrives at a node in the cluster whose cyclic index in its ID is
the closest to the Hr. Therefore, from the view of the entire
system, the resource information with the same IDr will be
pooled in the same node, and the resource information with
the sameHi in its ID will be in the same cluster.

As a result, the information of the same type of resources
in physically close nodes will be stored in the same direc-
tory node. Nodes in the same cluster are responsible for
the resource information of physically nodes, and different
nodes in one cluster are responsible for different types of
resources. Furthermore, resources of Ir stored in nearby
clusters to node i are located physically close to the nodes
whose Ir is stored in node i.

When node i queries for different resources, it sends out a
request Lookup(Hr,Hi) for each resource r. Based on the
routing algorithm, the request will arrive at a node whose
cubical index is the closest to theHi, and cyclic index is the
closest to the Hr. That is, each request will be forwarded

4

to the directory node which may have the information of re-
sources that conform to the requirements in the request and
physically close to the requester. Thus, taking advantage
of the Cycloid’s functions, SPPS maps the physically close
resource consumers and providers.

After receiving the resource request, the directory node
first checks its own directory for the resources. If it has no
requested information, it probes nodes in other clusters. It
was indicated that resources of Ir stored in nearby clusters
to node i are located physically close to the nodes whose Ir

is stored in node i. In other words, the logically close nodes
in the Cycloid DHT overlay store the information of phys-
ically close resources. Therefore, probing logically close
nodes means looking for resources physically close to the
resource requester. We call the directory node which has
the closest ID to node j’s ID in its succeeding cluster as
node j’s succeeding directory node, and call the directory
node which has the closest ID to node j’s ID in its pre-
ceding cluster as node j’s preceding directory node. In the
neighbor probing, a node probes its preceding and succeed-
ing directory nodes, which will further probe their preced-
ing and succeeding directory nodes respectively, and so on
until the resource information is found or node j is reached.

Though nodes are not evenly distributed in the wide area
of the system in practice, they are distributed in balance
in the logical Cylcoid DHT overlay. Recall that physi-
cally close nodes will report their resource information to
the same cluster. If there are many nodes in a local area
and they report their resource information to the same clus-
ter, the nodes in the cluster will be overloaded. On the
other hand, if there are only a few nodes in a local area,
the nodes in the cluster that these local-area nodes report
their resource information to will be lightly loaded. Thus,
a challenge is how to balance the load distribution between
the lower-loaded cluster and higher-loaded cluster. SPPS
takes advantage of the neighbor probing to move the load of
higher-loaded nodes to lower-loaded nodes. If a node can-
not find the required resources in its directory, it will probe
its succeeding directory node and preceding directory node.
Thus, if a node transfers its resource information to its suc-
ceeding and preceding directory nodes, the information sill
can be reached by the subsequent probing algorithm.

Specifically, a node contacts its succeeding and preced-
ing directory nodes periodically. If the node’s load is less
than its succeeding directory and preceding directory, it
moves part of its resource information to them. Its pre-
ceding and succeeding directory nodes conduct the same
operation. That is, if they have more load than their pre-
ceding directory node and succeeding directory node, they
will move their partial resource information to their preced-

ing or succeeding directory nodes respectively. Therefore,
if a node cannot find required resources in its own direc-
tory, it still can reach its transferred resource information
by the neighbor probing. This load balancing algorithm can
be regarded as resource information handover from higher-
loaded nodes to lower-loaded nodes along the clusters, until
all load caused by resource discovery is evenly distributed
among nodes. The information transfer can be conducted by
piggybacking the routing message. Thus, it will not bring
about much extra cost.

4 PERFORMANCE EVALUATION

We designed and implemented a simulator for eval-
uation of SPPS. We compared SPPS with Mercury [4]
and SEMM [20]. Mercury uses multiple DHTs and lets
each DHT responsible for one resource. SEMM builds
a proximity-aware Cycloid overlay on gird for resource
discovery. In contrast, SPPS does not need to build a
proximity-aware DHT overlay. It still is able to collect
the resource information of physically close nodes together.
More importantly, it can achieve balanced load distribu-
tion through balanced node distribution in each cluster. We
assumed that there are 11 types of resources, and used
Bounded Pareto distribution function to generate the re-
source amount owned and requested by a node. In the ex-
periment, we generated 1000 requests, and ranged the num-
ber of resources in a resource request from 1 to 5 with step
size of 1.

4.1 PROXIMITY-AWARE RESOURCE
DISCOVERY

In this experiment, we randomly generated 5000 re-
source requests, and recorded the distance between the re-
source provider and requester of each request. Figure 1(a)
shows the CDF of the percentage of allocated resources ver-
sus the distances in different resource discovery approaches.
We can see that SPPS and SEMM exhibit similar perfor-
mance. They are able to locate 97% of total resource re-
quested within 11 hops, while Mercury locates only about
15% within 10 hops. Almost all allocated resources are lo-
cated within 15 hops from requesters in SPPS and SEMM,
while 19 hops in Mercury. The results show that as SEMM,
SPPS can locate most resources within short distances from
requesters but Mercury allocate most resource in long dis-
tances. The more resources are located in shorter distances,
the higher proximity-aware performance of a resource dis-
covery mechanism. The results indicate that the perfor-
mance of SPPS mechanism is comparable to SEMM, and

5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20
Physical Distance by Hops

P
er

ce
nt

ag
e

of
 re

so
ur

ce
 a

m
ou

nt
 a

ss
ig

ne
d

(%
)

Mercury
SEMM
SPPS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5
Resources in each request

Lo
gi

ca
l c

om
m

un
ic

at
io

n
co

st
 fo

r r
eq

ue
st

s SEMM
Mercury
SPPS

0

2

4

6

8

10

12

14

1 2 3 4 5
Pieces of resource information (x4096)

D
ire

ct
or

y
si

ze
 o

f a
 d

ire
ct

or
y

 n
od

e

SEMM
Mercury
SPPS

(a) CDF of allocated resource (b) Logical communication cost (c) Directory size

Figure 1. Efficiency of different resource discovery approaches.

they are better than Mercury in terms of discovering re-
sources physically close to resource requesters.

4.2 OVERHEAD OF RESOURCE DISCOVERY

We define logical communication cost as the product of
message size and logical path length in hops of the mes-
sage travelled. It is assumed that the size of a message is
1 unit. Figure 1(b) plots the logical communication cost
versus the types of resources in a request for resource re-
questing. In the experiment, resource searching stops once
requested resources are discovered. We can see that SPPS
incurs higher logical communication cost than Mercury, and
SEMM generates lower logical communication cost than
Mercury. SEMM builds a proximity-aware Cycloid over-
lay, in which physically close nodes are grouped in a clus-
ter. Without being routed in the entire system, a message
takes much less hops. As a result, SEMM generates much
less logical communication cost than Mercury and SPPS. In
contrast, SPPS builds an original Cycloid overlay, in which
physically close nodes are not necessarily in the same clus-
ter, and all nodes are distributed in balance. The side-effect
is that a resource reporting message needs to be routed in
the system-wide scale. The lookup path length is O(d)
in Cycloid, and is O(log n) in Chord. Since in Cycloid,
each node keeps constant 7 neighbors which is less than
11 in Chord, the average path length of Chord is shorter
than Cycloid. It is shown in Cycloid [22]. Therefore, SPPS
leads to higher path length and higher logical communica-
tion cost than Mercury. A request with m resources needs
m lookups, which amplifies the difference of lookup cost
between Mercury, SEMM and SPPS.

4.3 RESOURCE DISCOVERY LOAD
DISTRIBUTION

We ranged the piece number of Ir of available resources
reported by a node from 1 to 5 with step size of 1, and mea-
sured the average and the 1st and 99th percentiles of direc-
tory sizes. We assumed that all nodes have the same ca-
pacity for handling resource requests. Figure 1(c) plots the

measured results versus the total piece number of resource
information. Two observations can be made from the fig-
ure. First, the average size of three approaches are the same.
This is because all approaches have the same total num-
ber of Ir pieces and the same number of nodes in the sys-
tem. Second, SEMM exhibits larger variance than Mercury
and SPPS, and SPPS exhibits the least variance. Mercury
uses one DHT for each resource, and classifies resource
information based on value/attribute in each DHT, which
helps to distribute resource information in balance. On the
other hand, by taking advantage of the hierarchical struc-
ture of Cycloid, SPPS lets different clusters responsible for
resource information in the cluster and allocates informa-
tion to nodes based on different resource type. Cycloid’s
more balanced key load distribution helps SPPS achieve
balanced information distribution. In addition, SPPS’s load
balancing algorithm further helps it to achieve balanced in-
formation distribution. Though SEMM also relies on Cy-
cloid structure and Cycloid’s key distribution algorithm, it
leads to unbalanced node distribution by grouping physi-
cally close nodes in a cluster. Some nodes may not be as-
signed resource information, while others may be assigned
much more resource information. Therefore, Mercury and
SPPS can achieve more balanced distribution of load due to
resource information maintenance and resource scheduling
operation.

5 CONCLUSIONS

Rapid development of grids requires a scalable and ef-
ficient resource discovery approach for its high perfor-
mance. Most previous multi-resource discovery approaches
either depend on multiple DHTs with each DHT responsi-
ble for one resource or incur load imbalance, leading to high
maintenance and inefficiency. This paper presents a Scal-
able P2P-based Proximity-aware multi-resource discovery
scheme (SPPS), which is built on a hierarchical DHT.
By taking advantage of the hierarchical cluster structure,
SPPS maps physically resource requesters and providers to
achieve proximity-aware resource discovery. Also, SPPS

6

relies on a single DHT with low overhead, and mean-
while achieves balanced load distribution. Simulation re-
sults show the superiority of SPPS in comparison with other
approaches. In our future work, we plan to explore methods
to reduce the logical communication cost of SPPS.

Acknowledgements

This research was supported in part by U.S. NSF grants
CNS-0834592 and CNS-0832109.

References

[1] Grid computing. http://en.wikipedia.org/wiki/Grid computing.
[2] A. Andrzejak and Z. Xu. Scalable, efficient range queries

for grid information services. In Proc. the 2nd Int. Conf. on
Peer-to-Peer Computing (P2P), pages 33–40, 2002.

[3] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier.
Space filling curves and their use in geometric data struc-
ture. Theoretical Computer Science, 181(1):3–15, 1997.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. In Proc.
of ACM SIGCOMM, pages 353–366, 2004.

[5] M. Cai and K. Hwang. Distributed aggregation algorithms
with load-balancing for scalable grid resource monitoring.
In Proc. of International Parallel and Distributed Process-
ing Symposium (IPDPS), 2007.

[6] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:
architecture and performance of an enterprise desktop grid
system. Journal of Parallel and Distributed Computing,
63(5), May 2003.

[7] F. B. et. al. Adaptive computing on the grid using apples.
IEEE Transactions on Parallel and Distributed Systems,
14(4), Apr. 2003.

[8] I. Foster and C. Kesselman. Globus: a metacomputing in-
frastructure toolkit. Int. J. High Performance Computing
Applications, 2:115–128, 1997.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-g: a computation management agent for multiin-
stitutional grids. In Proc. 10th IEEE Symposium on High
Performance Distributed Computing, 2001.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and P. R. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide
Web. In Proc. of the 29th Annual ACM Symposium on The-
ory of Computing (STOC), pages 654–663, 1997.

[11] J. C. M. Cai, M. Frank and P. Szekely. Maan: A multi-
attribute addressable network for grid information services.
Journal of Grid Computing, 2004. An early version ap-
peared in Proc. of GRID’03.

[12] M. Mutka and M. Livny. Scheduling remote processing ca-
pacity in a workstation-processing bank computing system.
In Proc. of the 7th International Conference of Distributed
Computing Systems, September 1987.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Scalable wide-area resource discovery. Technical Report

TR CSD04-1334, EECS Department, Univ. of California,
Berkeley, 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, pages 329–350, 2001.

[15] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selec-
tion. In Proc. of IEEE Conference on Computer Communi-
cations (INFOCOM), 2002.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-
peer systems. In Proc. of IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware),
pages 329–350, 2001.

[17] R. Schantz, J. P. Loyall, C. Rodrigues, D. Schemidt,
Y. Krisnamurthy, and I. Pyarali. Flexible and adaptive QoS
control for distributed real-time and embedded middleware.
In Proc. of ACM/IFIP/USENIX International Middleware
Conference, 2003.

[18] C. Schmidt and M. Parashar. Flexible information dis-
covery in decentralized distributed systems. In Proc. 12th
Int. Symp. on High-Performance Distributed Computing
(HPDC), pages 226–235, 2003.

[19] H. Shen. Pird: P2p-based intelligent resource discovery in
internet-based distributed systems. ournal of Parallel and
Distributed Computing (JPDC), 2008.

[20] H. Shen. SEMM: Scalable and Efficient Multi-Resource
Management in Grids. In Proc. of the 2008 International
Conference on Grid Computing and Applications (GCA),
2008.

[21] H. Shen, A. Apon, and C. Xu. LORM: Supporting Low-
Overhead P2P-based Range-Query and Multi-Attribute Re-
source Management in Grids. In Proc. of ICPADS, 2007.

[22] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-
degree p2p overlay network. Performance Evaluation,
63(3):195–216, 2006. An early version appeared in Proc.
of International Parallel and Distributed Processing Sym-
posium (IPDPS), 2004.

[23] D. Spence and T. Harris. Xenosearch: Distributed resource
discovery in the XenoServer open platform. In Proc. the
12th IEEE International Symposium on High Performance
Distributed Computing (HPDC-12), pages 216–225, 2003.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 1(1):17–32, 2003.

[25] Z. Xu, M. Mahalingam, and M. Karlsson. Turning het-
erogeneity into an advantage in overlay routing. In Proc.
of IEEE Conference on Computer Communications (INFO-
COM), 2003.

[26] Z. Zhang, S.-M. Shi, and J. Zhu. Somo: Self-organized
metadata overlay for resource management in P2P dht. In
Proc. of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS), 2003.

[27] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: An Infrastructure for Fault-
tolerant wide-area location and routing. IEEE Journal on
Selected Areas in Communications, 12(1):41–53, 2004.

7

