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Abstract

Wide-area distributed systems such as data sharing,
computational grids, and multimedia are increasingly be-
ing deployed in a large-scale, heterogeneous and dynamic
distributed environment with geographically scattered re-
sources. However, most current resource management ap-
proaches are unable to simultaneously deal with the char-
acteristics of such an environment. This paper presents
an efficient DHT-based locality-aware resource manage-
ment mechanism. Taking advantage of a DHT’s hierar-
chical structure, it uses a single DHT to achieve multi-
resource management with low overhead. Moreover, it has
high capability to handle the characteristics of distributed
systems. Simulation results demonstrate the effectiveness
of the mechanism in comparison with other resource man-
agement algorithms. The mechanism performs no worse
than existing locality-aware approaches and exhibits high
resilience to dynamism. It also reduces the overhead of the
locality-aware algorithms due to the elimination of unnec-
essary communications by shrinking probing scope. In ad-
dition, it yields significant improvements in the efficiency of
resource discovery.

1 Introduction

Advancements in technology over the past decade

are leading to a promising future for computing, where

globally-scattered computing resources will be collectively

pooled and used in a cooperative manner to achieve un-

precedented petascale supercomputing capabilities. Wide-

area distributed systems, such as grid and peer-to-peer

(P2P) infrastructures, interconnect computers, clusters,

storage systems, instruments, and available infrastructure of

large scientific computing centers to make possible the shar-

ing of the resources such as CPU time, storage, memory,

network bandwidth, and data. Wide-area distributed appli-

cations, such as data sharing, computational grids, naviga-

tion systems, multi-party video conferencing, multimedia

and telecommunications, have been widely used in scien-

tific, engineering and commercial areas. For example, the

average simultaneous users of global P2P distributed ap-

plications currently are already over 9 million [1] out of

approximate 1 billion documented Internet users. Conse-

quently, resource management has become a critical part for

high performance wide-area distributed systems. Although

resource management on parallel and distributed systems

has been investigated extensively in the past, they are lim-

ited to cooperative and dedicated environments.

The rapid development of wide-area distributed systems

has posed challenges in resource management due to their

complex environments. Specifically, they are characterized

by: (1) Large scale. Distributed systems connect millions of

resources by high-speed Internet. (2) Heterogeneity. With

the increasing emergence of diversified end devices on the

Internet equipped with various computing, networking, and

storage capabilities, the heterogeneity of resources in a dis-

tributed system is pervasive. (3) Dynamism. Participant

nodes and resource availability are continuously changing.

Nodes can enter or leave the system unpredictably. Re-

sources such as available CPU time, available memory can

become unavailable at any time and their values vary sig-

nificantly over time. (4) Locality. Heterogeneous com-

putational resources such as personal computers, clusters

and online instruments may belong to different communi-

ties, and they spread across geographically distributed areas

world wide.

In such a complex environment, traditional resource

management approaches relying on centralized, hierarchi-

cal, or decentralized consensus based policies [10, 2, 9, 15,

12, 7, 8, 16] are insufficient in dealing with the above char-

acteristics. Current middlewares provide necessary mecha-

nism to meet the end-to-end QoS requirements of the appli-



cations, but they are not sufficient by themselves to manage

large-scale distributed systems with dynamic heterogeneous

computer resources [22]. There is an ever-increasing need

for an efficient resource management mechanism for such a

complex environment to deal with these characteristics.

Distributed Hash Tables (DHTs) is an important class of

the overlay networks that map keys to the nodes of a net-

work based on a consistent hashing function. It has emerged

as a new paradigm for solving large-scale resource man-

agement. They enable nodes to contribute their resources

while being autonomous, and let much otherwise unused

resources be harvested for the development of science, en-

gineering, and business. However, some DHT-based ap-

proaches neglect resource heterogeneity by assuming there

is only one bottleneck resource [27, 13, 18, 28, 33, 14, 24],

while other multi-resource management approaches neglect

locality [6, 3, 26, 5, 6, 3, 17, 11, 29, 23] To meet all the re-

quirements with focus on low cost and high efficiency, we

propose a single DHT-based Efficient and LOcality-Aware

resource Management mechanism (Eloam) that can deal

with the characteristics with its high capabilities in terms

of scalability, efficiency, reliability, and self-organization.

Eloam efficiently supports large-scale distributed systems

to harness heterogeneous resources of a vast number of

individual computers across geographically distributed ar-

eas for high performance. It maps physically close re-

source requesters and providers, and further enhances the

efficiency of existing locality-aware resource management

approaches.

The rest of this paper is structured as follows. Section 2

presents a concise review of representative resource man-

agement approaches for distributed systems. Section 3 de-

scribes the DHT-based multi-resource management mecha-

nism, focusing on its resource management framework and

resource management algorithms. Section 4 shows the per-

formance of Eloam in comparison with other approaches

using a variety of metrics. Section 5 concludes this paper

with remarks on possible future work.

2 Related Work

There have been numerous approaches to managing re-

sources in wide-area distributed systems. Systems such as

Condor-G [10] uses the Globus toolkit [9] to integrate with

a grid computing environment for resource management. A

number of projects, including Condor [15], XtremWeb [12],

Entropia [7], AppLes [8], and Javelin++ [16], have inves-

tigated scheduling of computations on grids. However,

these systems have limitation to explore in a dynamic multi-

domain environment with variation of resource availabil-

ity and the presence of large-scale heterogeneity due to

their centralized or hierarchical features. To cope with

these problems, more and more distributed systems resort to

DHT [27, 25, 19, 32, 21] middleware overlays for resource

management.

One group of resource management approaches is load

balancing in DHT overlay networks themselves. “Virtual

server” [27, 13] is a popular approach, in which each real

node runs O(log n) virtual servers, and the keys are mapped

onto virtual servers so that each real node is responsible for

the key ID space of different length proportional to its ca-

pacity. An alternative to ID partitioning for load balance

is load reassignment [18, 28, 33, 14, 24] that move load

from heavily loaded nodes to lightly loaded nodes. These

methods assume there is only one bottleneck resource and

neglect resource heterogeneity. In addition, most of them

are not able to deal with either dynamism or locality.

DHT also has been widely adopted in wide-area dis-

tributed systems for multi-resource discovery with the con-

sideration of resource heterogeneity. Multi-resource dis-

covery refers to the problem of locating resources that

are described by a set of attributes or characteristics (e.g.,

OS version, CPU speed, etc.). A number of approaches

have been proposed to organize resource information in

order to efficiently support multi-resource queries. Some

systems use one DHT for each attribute, and process

multi-attribute range queries in parallel in corresponding

DHTs [6, 3, 26, 5]. Depending on multiple DHTs for

multi-attribute resource management leads to high mainte-

nance overhead for DHT structures. Another group of ap-

proaches [6, 3, 17, 11, 29] organize all resources into one

DHT overlay and let a node be responsible for all informa-

tion of resources with the same attribute. This approach

results in load imbalance among nodes, leading to high cost

for searching resource information among a huge volume

of information in a single node. In addition to high over-

head, most current approaches are not able to deal with both

dynamism and locality features simultaneously. Recently,

Shen et al. proposed LORM [23] resource management al-

gorithm. It uses one DHT to realize multi-attribute resource

management with low overhead. Specifically, it clusters re-

source information based on different resource attributes,

and further groups the resource information in each clus-

ter based on resource size range. However, it does not take

locality feature into account to match physically close re-

source requesters and providers to achieve high efficiency.

Eloam can deal with the heterogeneity, locality and dy-

namism features simultaneously by clustering the resource

information based on resource attribute and their owners’

physical closeness, and by introducing a factor of random-

ness in the probing process in a range of proximity. Eloam’s

self-organization mechanism contributes to its reliability in

dynamic environment. Thus, it has high scalability and ef-

ficiency.
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Figure 1. Cycloid node partial routing links
state.

3 Efficient and Locality-aware Resource
Management

3.1 Overview

Eloam resource management mechanism is built on top

of Cycloid [25] DHT overlay network. Cycloid’s hierarchi-

cal structure as well as flexible topology and routing algo-

rithm facilitate to handle the challenges in resource man-

agement in wide-area distributed systems. Before we begin

more detailed discussion, we briefly describe Cycloid DHT

followed by a high-level view of the architecture and com-

ponents of the resource management mechanism.

Cycloid is a lookup efficient constant-degree overlay

with n=d · 2d nodes, where d is dimension. It achieves

a time complexity of O(d) per lookup request by using O(1)

neighbors per node, where n=d · 2d nodes and d is dimen-

sion. Each Cycloid node is represented by a pair of in-

dices (k, ad−1ad−2 . . . a0), where k is a cyclic index and

ad−1ad−2......a0 is a cubical index. The cyclic index is an

integer, ranging from 0 to d − 1 and the cubical index is a

binary number between 0 and 2d − 1. The nodes with the

same cubical index are ordered by their cyclic index mod d
on a small cycle, which we call cluster. The largest cyclic

index node in a cluster is called the primary node of the

nodes at the cluster. All clusters are ordered by their cu-

bical index mod 2d on a large cycle. Figure 1 shows the

partial routing links of a 11-dimensional Cycloid, where x
indicates all possible cyclic index which ranges from 0 to

10. The links include the node’s predecessor and successor

in the cluster, two primary nodes of the preceding and the

succeeding cycles, and one cubical neighbor and two cyclic

neighbors which are not shown in the figure.

Cycloid assigns keys onto its ID space by the use of a

consistent hashing function. For a given key, its cyclic in-

dex is set to its hash value modulated by d and its cubical

index is set to its hash value divided by d. A key will be

assigned to a node whose ID is closest to its ID. If the tar-

get node of a key’s ID (k, ad−1 . . . a1a0) is a participant,

the key will be mapped to the node. Otherwise, the key is

assigned to the node whose ID is first numerically closest

to ad−1ad−2 . . . a0 and then numerically closest to k. For

example, a key with ID (2, 150) will be assigned to node

(3, 200) in the figure. For more information about Cycloid,

please refer to [25].

3.2 Designs

A fundamental service of resource management is to lo-

cate resources based on predefined requirements. In the

complex environment of wide-area distributed systems, a

challenge for a resource management mechanism is to dis-

cover resources physically close to the resource requesters

at a low cost of overhead for overall high performance of

the distributed systems.

LAR [24] clusters resource information of physically

close nodes and discovers resource by inter-cluster search-

ing and then system-wide intra-cluster probing. LAR can

deal with locality but assumes a single resource bottleneck.

On the other hand, LORM [23] enables multiple resource

management on one Cycloid DHT with each cluster respon-

sible for a resource. But it cannot consider the locality fac-

tor in the process of resource management. Consequently,

this has posed a challenge to discover resources based on

both resource type and locality, and at the same time to

avoid system-wide probing that comes at a high cost of node

communication.

In this section, we will describe an algorithm which

can deal with the locality and resource heterogeneity prob-

lems and meanwhile avoids system-wide probings. First,

let us introduce a landmarking method to represent node

closeness on the Internet by indices. Landmark clustering

has been widely adopted to generate proximity informa-

tion [20, 30]. It is based on the intuition that nodes close

to each other are likely to have similar distances to a few

selected landmark nodes, although details may vary from

system to system. In DHTs, the landmark nodes can be

selected by overlay itself or the Internet. We assume m
landmark nodes that are randomly scattered in the Internet.

Each node measures its physical distances to the m land-

marks, and uses the vector of distances < d1, d2, . . . , dm >
as its coordinate in Cartesian space. Two physically close

nodes will have similar landmark vectors. We use space-

filling curves [4], such as Hilbert curve [30], to map m-

dimensional landmark vectors to real numbers, such that the

closeness relationship among the points is preserved. This

mapping can be regarded as filling a curve within the m-

dimensional space until it completely fills the space. We

partition the m-dimensional landmark space into 2mx grids

of equal size (where m refers to the number of landmarks

and x controls the number of grids used to partition the

landmark space), and number each node according to the

grid into which it falls. We call this number Hilbert number
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of a node. The Hilbert number indicates physical closeness

of nodes on the Internet. The smaller the x, the larger the

likelihood that two nodes will have same Hilbert number,

and the coarser grain the physical proximity information.

Recall that Cycloid consists of a number of clusters,

which constitute a large Cycle. We let each cluster respon-

sible for the information of a type of resource, and divide

the information among nodes within the cluster based on

resource locality. In a Cycloid ID, the cubical indices

differentiate clusters, while the cyclic indices indicate

different node positions in a cluster. Based on the Cycloid

topology, we use cubical indices to represent different

resources, and use cyclic indices to represent the locality

of nodes. Specially, we assign each type of resources a

Cycloid ID. The ID’s cubical index is the consistent hash

function value of the resource’s name, denoted by rescHash,

and its cyclic index is the Hilbert number of the resource’s

owner. Since an object is assigned to the node whose ID

is closest to the object in the ID space in Cycloid, if two

objects have similar keys, then they will be stored in the

same node or close nodes in the ID space. Based on this, we

let nodes report their resource information to the system by

Insert((HilbertNum,rescHash),rescInfo)
every P seconds periodically. As a result, the information

of the same type of resources will be in a same cluster.

Within each cluster, the information of resources in close

proximity will gather together in a node. When a node

wants to query for different resources, it only needs to send

request Lookup(HilbertNum,rescHash) for each

resource. Each request for a resource will be forwarded to

the node responsible for the information of the resource

in close proximity. If the resource information receiver,

i.e. directory node, does not have the requested resource

information, it probes its neighbors in its cluster for the

requested resource. The method to probe the neighbors

will be described in more details in Section 3.3. Since all

the information of one type of resource is in one cluster, if

there’s no resource information satisfying the requesters in

the cluster, there’s no need to search the entire system as in

the LAR algorithm. Algorithm 1 shows the pseudocode of

the algorithm.

Unlike existing resource management approaches,

Eloam relies on a single DHT to achieve multi-resource

management. It has balanced load distribution and low cost

for probing.

3.3 Dynamism-resilient Resource Management

Resource discovery in dynamic environment is a chal-

lenge in a large-scale and dynamic wide-area distributed

systems. For example, a node departure generates out-

dated resource information, or a failed directory node makes

the resource information unavailable. In addition to ex-

Algorithm 1 Pseudo-code for resource information storing

and retrieving conducted by a node.

1: //to store resource information in local cluster
2: get its HilbertNum

3: get rescHash, the consistent hash value of the resource

4: generate rescID (HilbertNum,rescHash)

5: use DHT function Insert(rescID,recInfo) to store the resource

information in its local cluster

6:

7: //to request resource
8: get its HilbertNum

9: get rescHash, the consistent hash value of the resource

10: generate rescID (HilbertNum,rescHash)

11: use DHT function lookup(rescID) to get the resource informa-

tion < rescName, ip addr(i) >...

12: ask resources from node ip addr(i)
13:

14: //when receives a resource request
15: check its rescInfo directory

16: if its rescInfo directory has rescInfo of requested resource

then
17: return the rescInfo

18: else
19: while has not found the resoInfo of requested resource do
20: probe other nodes in its cluster

21: end while
22: end if
23: return the rescInfo

ploiting the physical locality of network nodes to min-

imize operation cost, an effective resource management

algorithm should work for wide-area distributed systems

with dynamic node joins and departures. Cycloid has self-

organization mechanism to maintain its structure and data

in a distributed manner, which helps Eloam to handle dy-

namism. When a node joins in the system, in addition to

reporting its resources, it gets the resource information that

is in its responsible ID region from its neighbors based on

Cycloid’s key assignment policy. When a node departs from

the system, it transfers its resource information to its neigh-

bors. Since the resource information transfer is exactly the

same as file transfer in dynamism based on the key allo-

cation policy, the resource information can be transferred

along with the file to save extra communication overhead.

For node failures or departures without warning, Eloam

resorts to the periodical resource information reporting by

which the lost resource information is recovered. Specif-

ically, when a node receives a resource request, if it can-

not locate requested resource, it assumes that the old di-

rectory node of the resource information failed, and waits

for P seconds which is the resource information report-

ing time period. Within P seconds, the lost resource in-

formation will be reported to its new directory. To pre-

vent the information space from being flooded with out-
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dated information left behind by node or network failure

or even maliciously injected false information, nodes ex-

ecute garbage collection periodically. That is, after a pe-

riod of time, if a node has not received resource informa-

tion from another node, it deletes the outdated informa-

tion of the node. With this mechanism, instead of relying

on specific nodes for resource information, resource infor-

mation is always stored in a node responsible for the ID

region where the information ID locates even in dynamic

situation, and the Lookup(HilbertNum,rescHash)
requests for the resource will always be forwarded to the

node.

Algorithm 2 Pseudo-code for probing in resource manage-

ment performed by a directory node.

performProb(< Ri,Ti,ip addr(i) >){
1: success=0;

2: suc=successor

3: pre=predecessor

4: while suc!=itself and pre!=itself and !success do
5: probe suc and pre for their ARL: ARLsuc and ARLpre

6: if get response from suc within predetermined period time

then
7: success=performAssign(<Ri, Ti, ip addr(i)>,

ARLsuc)

8: suc=suc.successor;

9: end if
10: if get response from pre within predetermined period time

then
11: success=performAssign(<Ri, Ti, ip addr(i)>,

ARLpre)

12: pre=pre.predecessor;

13: end if
14: if no response from suc after predetermined period time

then
15: generate a randomized number num between

suc.cyclicID and (suc.cyclicID+range)%d

16: suc=(num, cubicalID)

17: end if
18: if no response from pre after predetermined period time

then
19: generate a randomized number num between

pre.cyclicID and (pre.cyclicID-range)%d

20: pre=(num, cubicalID)

21: end if
22: end while
23: return success;

24: }

In the previous section, we mentioned that if a directory

node does not have information of a requested resource, it

probes its neighbors in its cluster. Since Hilbert number

represents the physical closeness of nodes, the resource in-

formation of physically close nodes will gather in the same

or logically close nodes in Eloam. Hence, with locality con-

sideration, a node should probe its logically close neigh-

bors in order to map physically close resource requesters

and providers. Specifically, a node probes its successor and

predecessor at the same time at first, and then the succes-

sor of its successor and the predecessor of its predecessor,

and so on until the resource information is found or itself

is reached. However, such sequential probing may fail due

to dynamism. It is proved in [24] that 2-way randomized

probing is effective in dealing with dynamism, and it could

achieve faster speed over one-way probing, but d(> 2)-way

probing may not result in much additional improvement.

Based on this, the system uses a 2-way randomized prob-

ing method. Specifically, it sets a time period. If a node

does not get reply within the time period after sequential

probing, it assumes that the probed node has departed. It

then randomly generates two cyclic ID within a increas-

ing range of proximity in two directions, and probes the

nodes with the random IDs. For example, if a node does

not receive reply from node with ID (5,200), it randomly

generates two cyclic ID within 2 and 8 given range 3. Sup-

pose the two randomized number is 6 and 3, the node then

probes nodes (6,200) and (3,200) at the same time. If re-

quested resource still is not found, the node increases the

proximity range and repeats the same process. Eloam in-

troduces a factor of randomness in the probing process in a

range of proximity to deal with the dynamism and locality

simultaneously. As is known that randomized probing is an

effective way to handle dynamism. Probing in a increasing

range of proximity helps to map physically close resource

requesters and providers. Hence, Eloam’s probing method

improves the resource management efficiency. Algorithm 2

shows the pseudocode for probing in resource management

performed by a directory node.

4 Performance Evaluation

We designed and implemented a simulator in Java for

evaluation of the efficient and locality-aware resource man-

agement mechanism (Eloam) based on Cycloid DHT. We

compared Eloam with LAR [24] and LORM [23]. LORM

maps resource type and value to two levels in hierarchi-

cal Cycloid. We modified LAR for multi-resource manage-

ment. LAR conducts resource management in a cluster with

physically close nodes first, and then uses system-wide ran-

domized probing for resource searching. The number of

nodes was set to 4,096. We assumed there are 100 types

of resources and we used Bounded Pareto distribution func-

tion to generate the resource amount owned and requested

by a node. In the experiment, the resource requesters are

randomly chosen.

We use a transit-stub topologies generated by GT-

ITM [31]: “ts5k-large” with approximately 5,000 nodes

each. “ts5k-large” has 5 transit domains, 3 transit nodes per
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Figure 2. CDF of total resource requests distribution of different schemes.

transit domain, 5 stub domains attached to each transit node,

and 60 nodes in each stub domain on average. “ts5k-large”

has a larger backbone and sparser edge network (stub). It is

used to represent a situation in which a DHT overlay con-

sists of nodes from several big stub domains. To account for

the fact that interdomain routes have higher latency, each

interdomain hop counts as 3 hops of units of latency while

each intradomain hop counts as 1 hop of unit of latency.

4.1 Locality-aware Resource Management

This section shows how Eloam helps to achieve high

locality-aware performance by mapping physically close re-

source providers and requesters. In the experiment, we ran-

domly generated 10,000 resource requests, and recorded the

distance between the resource provider and the resource re-

quester of each request.

Figure 2 shows the cumulative distribution function

(CDF) of the percentage of allocated resources versus dis-

tance between resource requesters and providers of differ-

ent resource management schemes. We can see that in

“ts5k-large,” Eloam and LAR are able to allocate 90% and

80% of total resources requested within 11 hops respec-

tively, while LORM allocates only about 15% within 10

hops. Within 15 hops, almost all resources requested are

allocated in Eloam and LAR, while the LORM scheme al-

locates only 75% of the resource. The results show that

Eloam and LAR can allocate most resources within short

distances from requesters while LORM allocates most re-

sources in long distances. It demonstrates the high locality-

aware performance of Eloam and LAR to locate nearby

resources for the resource requesters in resource manage-

ment. The figure also shows that the LAR allocates more

resources within 7 hops than Eloam, while Eloam allocates

more resources between 7 and 15 hops. Our experiment

results show that there are 416 clusters in the Cycloid. It

means that in LAR, physically close resources information

is partitioned into 416 parts, while in Eloam the informa-

tion is partitioned into at most 11 parts based on physically

closeness. Fine-grained resource information in LAR leads

to higher locality-aware performance. However, less infor-

mation in one directory leads to lower possibility of suc-

cessful response to required resources. To solve this prob-

lem, LAR depends on randomized probing in the entire sys-

tem for requested resources. This explains why LAR does

not perform as well as Eloam in distances within hop 7 to

hop 15. The more resource located within shorter distances,

the higher locality-aware performance of a resource man-

agement scheme with less communication cost. The results

indicate that the performance of Eloam locality-aware re-

source management mechanism is better than LORM, and

is comparable with LAR with regards to locality-aware per-

formance.

4.2 Efficiency of Resource Management

Communication cost When a directory node does not

have information of required resources, it probes other di-

rectory nodes for requested resources. Therefore, resource

probing constitutes a main part of resource management

overhead. The cost is directly related to message size and

physical path length of the message travelled; we use the

product of these two factors of all resource probings to rep-

resent the cost. It is assumed that the size of a message

is one unit. In the experiment, we ranged the number of

resource requests from 3,000 to 13,000, with step size of

1,000. Figure 3 plots the probing cost of Eloam, LAR and

LORM in “ts5k-large” respectively. From these figures, we

can see that the probing cost of LORM remains at 0, and

the cost of Eloam and LAR increases with the request num-

ber. The cost of LAR grows dramatically faster than Eloam,

while Eloam only has a marginally increase. The LORM

scheme stores resource information of a resource in a cer-

tain range in a node. If the directory node does not have

resource information of requested resources, then there is

no requested resource in the system. Therefore, the di-

rectory node does not need to probe other nodes for the

resource, leading to zero probing cost. In LAR scheme,

the directory node probes nodes in the entire system us-

ing randomized-probing. Therefore, the directory node may

contact nodes very far away from itself, and non-existing re-

source requested may lead to infinite probing. In addition,

the fine-grained resource information in LAR contributes

to more directory node probings before the requested re-

source is located. On the other hand, in Eloam, the di-

rectory node only needs to probe other nodes in its clus-
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ter rather than nodes in the entire system. Consequently,

its reduced probing scope helps Eloam significantly reduce

the probing cost of LAR. Combined with the experiment re-

sults of locality-aware performance, the results demonstrate

that Eloam achieves locality-aware resource management at

a cost of marginally higher communication overhead than

LORM. However, LORM has poor performance in mapping

physically close resource requester and suppliers. LAR is

comparable with Eloam in locality-aware performance, but

it comes at a high cost of node communication overhead.

Number of nodes involved This experiment test the 1st,

99th percentiles and the average number of nodes involved

in a resource location operation, which includes message

routing nodes and probed nodes. We measured the metric

as a function of network size with n = d · 2d nodes, and the

dimension d is varied from 3 to 8. The number of requests

was set to the twice the number of nodes. The results are

shown in Figure 4. We can see that the number of nodes of

Eloam and LORM are approximately the same. However,

the number of involved nodes of LAR is much higher than

Eloam and LORM. Since all of them are built on Cycloid,

the number of nodes for forwarding a message from a re-

quester to the directory node should be the same between

them. LAR incurs much more involved nodes is because

that it probes nodes for required resources in a system-wide

manner. It groups the information of different physically

close resources in one cluster. Therefore, when a cluster

does not have the information of a requested resource, the

nodes in the other clusters should be probed, leading to high

number of involved nodes. In contrast, Eloam and LORM

group each type of resource in one cluster. Thus, if a clus-

ter does not have the information of requested resource, it

is not necessary to probe nodes in other clusters. The prob-

ing scope reduction from system-wide to cluster-wide helps

to reduce the number of nodes involved, resulting in less

overhead and high efficiency.

5 Conclusions

Rapid development of wide-area distributed systems re-

quires an efficient resource management mechanism to deal

with their characteristics of heterogeneity, large scale, dy-

namism and proximity. This paper presents an efficient and

locality-aware resource management mechanism, which is

built on a single DHT to deal with these challenges. Unlike

most previous approaches which either neglect the resource

heterogeneity or the locality characteristics, the mechanism

is able to locate physically close multiple resources for re-

questers, and meanwhile deal with dynamic feature. Fur-

thermore, it improves the efficiency and scalability of exist-

ing locality-aware resource management approaches. Sim-

ulation results show the superiority of the mechanism, in

comparison with a number of other resource management

approaches in terms of locality-awareness and efficiency.

We plan to further investigate the efficiency, scalabil-

ity, and applicability of the proposed mechanism for low-

overhead multi-resource management given a large-scale,

heterogeneous, dynamic distributed environment with geo-

graphically scattered resources. Using semantic informa-

tion for precise resource discovery in such an environment

is a relatively new research topic. Distributed matchmak-

ing and semantic-based routing will promise improvements

in discovery precision and cost. We envision that resource

management mechanisms that use DHT-based networks for

scalable and reliable storage of semantic information will

appear soon in distributed systems. Hence, we plan to fur-

ther explore and elaborate the mechanism design to discover

resources based on semantic information.
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