
TrustCode: P2P Reputation-Based Trust
Management Using Network Coding

Yingwu Zhu1 and Haiying Shen2

1 Department of CSSE, Seattle University,
Seattle, WA 98122, USA, zhuy@seattleu.edu

2 Department of CSCE, University of Arkansas,
Fayetteville, AR 72701, USA, hshen@uark.edu

Abstract. Trust management is very important for participating users
to assess trustworthiness of peers and identify misbehaving peers in
the open P2P environment. In this paper, we present TrustCode, a
framework for P2P reputation-based trust management. Leveraging ran-
dom network coding, TrustCode spreads coded feedbacks massively
among peers, thereby achieving bandwidth-efficient dissemination, en-
suring data availability, and yielding efficient feedback retrieval. Our sim-
ulations show that TrustCode is resilient to failures and robust against
malicious nodes. To exhibit applicability of TrustCode, we also present
two applications that can be built on top of TrustCode.

1 Introduction

While P2P systems have become an appealing platform to build a wide range
of large-scale distributed applications (e.g., file sharing, content delivery, multi-
media streaming), the open and anonymous nature of P2P systems opens the
door to possible misuses and abuses of the overlay network by selfish, dishonest
and malicious peers. For instance, malicious peers exploit the Gnutella overlay
to spread tampered with information such as unauthenticated files and mal-
wares (i.e., Trojan horses and viruses). Thus, reputation-based trust manage-
ment, which builds trust by utilizing community-based feedbacks about past
experiences of peers, has been proposed to suppress peer misbehaving, enabling
peers to gauge trustworthiness of others and to selectively interact with more
reputable ones.

Challenges for P2P reputation-based trust management include feedback ex-
pression, computation of trust, and storage and dissemination of trust data.
Prior work [1–3] has well addressed the first two challenges, if not perfectly. In
this paper, we focus our work on the last challenge. That is, we aim to provide ef-
ficient and robust trust data management in the P2P network where node churn
is the norm and malicious peers are present. Current solutions are either central-
ized or distributed. Centralized solutions like eBay and Amazon, using a central
server to store user feedbacks and compute user reputation, while simple, pose
the problem of scalability. Prior work [1–3] stores (or aggregates distributed)
feedbacks and computes a global trust value for each peer over P2P overlays

2 Yingwu Zhu et al.

like DHTs [4–6], through the notion of trust manager or score manager. For
example, a trust manager for a peer i is the peer node that is responsible for the
hash of i’s ID. To compute the column trust vector for peers, the trust managers
collaborate to aggregate distributed feedbacks and repeatedly compute the trust
vector until it converges.

However, the distributed solutions have some limitations: (1) A misbehaving
trust manager or peer storing feedbacks could intentionally ignores/drops some
feedbacks, resulting in a “distorted” trust vector. (2) Malicious nodes could
launch attacks against the trust manager or the node storing the feedbacks for
the specific peer, attempting to discredit the peer or simply void the peer’s
reputation. (3) The number of trust managers is proportional to the number
of peers in the large-scale system since the hashes of each peer’s IDs are very
likely uniformly distributed over the DHT. Consequently, computation of the
trust vector incurs high message overhead among trust managers. Worse, if the
feedbacks for a peer are stored in a different node other than its trust manager,
the feedback retrieval traffic is massive. (4) Node churn could make unavailable
the trust manager for a peer or the node storing the peer’s feedbacks, resulting
in unavailability of trust information and failure of trust computation. Although
replication (e.g., by using multiple trust managers or feedback storage nodes
for each peer) is able to alleviate the problem, the problem of ensuring data
availability in the presence of node churn itself is still nontrivial in the P2P
environment [7, 8]. (5) The trust manager or the node storing the feedbacks of
a popular peer (which provided a high amount of services to others) may be
overburdened, incurring load imbalance.

With these research problems in mind, we propose a P2P reputation-based
trust management framework called TrustCode, which addresses the issue of dis-
semination, storage, and retrieval of feedbacks in the P2P network. TrustCode
has three main design goals. First, availability of trust data is emphasized be-
cause a complete set of feedbacks is key to computation of the trust vector that
closely characterizes the peers’ reputation, while node churn and presence of
malicious nodes in the P2P environment are very likely to make some feedbacks
unavailable. Second, retrieval of feedbacks for trust computation needs to be
efficient by contacting only a small number of nodes if the feedbacks cannot
be found locally on the computing node. Finally, the dissemination of feedbacks
needs to be efficient and robust against node/link failures and node misbehavior;
in the meantime, it needs to ensure data availability and facilitate the retrieval
of feedbacks for trust computation.

To meet the goals, TrustCode exploits random network coding [9] to dissem-
inate feedbacks over the underlying overlay network. In particular, we make the
following contributions: (1) To the best of our knowledge, TrustCode is the first
to exploit network coding in P2P trust management. By using network cod-
ing, TrustCode makes feedback dissemination bandwidth-efficient and resilient
to failures. With massive distribution of coded trust information, TrustCode
improves data availability and facilitates retrieval of feedbacks for trust compu-
tation. (2) TrustCode is independent of feedback expression, trust computation

P2P Reputation-Based Trust Management Using Network Coding 3

models, and overlay structures. It can be easily adapted to any reputation-based
system as the trust information management layer. Our simulations show Trust-
Code has good performance in terms of dissemination speed, bandwidth cost,
feedback retrieval, data availability, and failure resilience. (3) We present exam-
ple applications that can be built on top of TrustCode, exhibiting applicability
of TrustCode.

The remainder of the paper is structured as follows. Section 2 provides back-
ground on network coding and review of related work. We discuss TrustCode’s
design and its two applications in Section 3. Section 4 provides experimental
setup and results. We conclude the paper in Section 5.

2 Background and Related Work

Background: Network Coding Network coding [10] was first proposed to
improve multicast session throughput. It allows an intermediate node to create
outgoing packets by encoding its received packets instead of simply repeating
the received packets. With random network coding [9], the encoding generates a
new coded packet by the linear combination of the received packets over a Galois
field GF (2s) (s with a typical value of 8 or 16), where coefficients are randomly
chosen, and addition and multiplication are performed over the Galois field. Lin-
ear combination is not concatenation: the resulting encoded packet is of length
of L if it is combined from a set of packets of length L. A receiver which wants
to receive all the original packets, needs to receive a sufficient number of coded
packets, and then performs Gaussian elimination over a matrix constructed from
the coefficients and data blocks contained in each received encoded packet, to
decode the original packets. The most compelling benefits of network coding are
bandwidth efficiency, data dissemination simplicity, and failure resilience. Due
to space constraints, please refer to [11] for more detail on network coding.
Related Work Aberer et al. [12] proposed storing complaints as trust data
in a P2P overlay P-Gid, and using replication to handle malicious nodes. In
P2Prep [13], each peer aggregates others’ opinions about a servant by flooding
requests across the network for votes, and computes a reputation value for the
servant by considering votes and credibility of the voters. Prior proposals such
as EigenTrust [1], PeerTrust [2], and PowerTrust [3], are similar in the sense
that they all compute a global trust vector iteratively by taking into account
both feedbacks and credibility of feedback sources. Trust data are stored (and
replicated) into peer nodes by the use of the underlying DHT data location
mechanism. As mentioned earlier, such trust management is vulnerable to node
failures and misbehavior. TrustCode differs from the prior proposals in that
it exploits random network coding to disseminate coded feedbacks and stores
them massively among peers. TrustCode and the prior proposals complement
each other. TrustCode can provide a robust trust data management layer for the
prior proposals to access the data and compute the trust vector.

4 Yingwu Zhu et al.

3 System Design

3.1 Overview

TrustCode disseminates feedbacks across the overlay network using random net-
work coding, which increases diversity of coded feedbacks among nodes and
improves resilience to failures during dissemination, while achieving bandwidth
efficiency. Leveraging slack storage capacity of peers, TrustCode spreads coded
feedbacks massively among peers to provide data availability guarantee in the
presence of node churn and malicious nodes; in the meanwhile, TrustCode is very
efficient in retrieval of feedbacks for trust computation by contacting only a small
number of nodes. While informed feedback dissemination is a plausible alterna-
tive 3, it requires coordination among nodes by exchanging information to make
informed decisions. Leveraging network coding, TrustCode does not require such
coordination. Each node independently makes local distribution decisions (i.e.,
simply distributing encoded packets each of which is an arbitrary combination
of some packets cached locally) while still achieving fast and efficient feedback
dissemination. Not defying the informed dissemination alternative, TrustCode
takes a different, complementary approach to resilient and efficient dissemination
over the dynamic P2P environment.

TrustCode manages feedbacks in an epoch-based manner. An epoch is re-
ferred to a time window of length T (e.g., days, weeks or months). The feedbacks
generated within an epoch are aggregated for trust computation 4. Consequently,
dissemination, storage and retrieval of feedbacks are all epoch-based. A feedback
is locally generated when two peers have done a transaction. For example, if peer
A requests a service from peer B. After B provides the service, A will produce
and submit a feedback for B regarding the satisfaction of the transaction. In this
paper, we term peer A feedback source and peer B feedback target. A feedback
contains a unique ID, epoch, timestamp, feedback source and feedback target.
Due to space limitation, please refer to our technical report [14] for details. It is
worth pointing out TrustCode is insensitive to feedback expression. Mentioning
feedbacks here is only to ease exposition of subsequent subsections

3.2 Packet Structure

target epoch # of feedbacks coded feedback blockC1 fid1 · · · Ck fidk

Fig. 1. Packet format.
3 E.g., nodes exchange Bloom filters that contain their feedback information to

make informed feedback distribution, thereby reducing bandwidth consumption over
blindly random distribution.

4 The feedbacks of multiple epochs may also be aggregated for trust computation.

P2P Reputation-Based Trust Management Using Network Coding 5

When a peer wants to send feedback data to a neighbor node, the peer
uses random network coding to create a packet by encoding its cached data
which may include original feedbacks (i.e., locally generated feedbacks or decoded
feedbacks) and coded feedbacks contained in the received packets. TrustCode
makes two restrictions on feedback encoding: (1) Only feedbacks within the
same epoch can be combined; and (2) Only feedbacks for the same feedback
target can be combined. Figure 1 shows the packet format. As an example,
M is a packet for feedback target B produced by using network coding: M =

{h(PB), epoch, k, C1, fid1, · · ·, Ck, fidk, CB}, where h(PB) uniquely identifies the
feedback target (PB is B’s public key and h() is a hash function), k is the
number of feedbacks encoded in the packet, and Ci is the coefficient randomly
chosen from a Galois field of a proper size for the feedback with ID fidi. Coded
feedback block CB is a data block encoded from the k feedbacks. Assume all
original feedbacks have a same length of L. The coded feedback block also has
the length of L due to network coding. Note that the TrustCode packet incurs
overhead due to the list of coefficients and feedback IDs encapsulated in the
packet header.

How is a packet created from received packets by using network coding?
Suppose a peer caches two received packets M1 and M2 for feedback tar-
get B within epoch e1: M1 = {h(PB), e1, 2, C1, fid1, C2, fid2, CB1} and M2 =

{h(PB), e1, 2, C3, fid3, C4, fid4, CB2}. By combining the two packets with ran-
domly chosen coefficients a and b for M1 and M2 respectively, the peer pro-
duces a packet M from the coded feedbacks contained in the two packets:
M = {h(PB), e1, 4, C′

1, fid1, C
′
2, fid2, C

′
3, fid3, C

′
4, fid4, CB}, where C′

1 = C1⊗a,

C′
2 = C2⊗a, C′

3 = C3⊗b, C′
4 = C4⊗b, and CB = (CB1⊗a)⊕(CB2⊗b) (⊕ and ⊗

are addition and multiplication operations over a Galois field). CB is the coded
feedback block, containing only part of information about the four original feed-
backs, which means that CB alone cannot decode any of the four feedbacks. In
particular, if a packet M is encoded only from a single original feedback F , then
we have: M = {h(PB), e, 1, C, Fc}, where Fc = C⊗F . If C = 1, then Fc = F .

3.3 Local Storage Structure on Peers

Leveraging abundant storage capacity, each peer caches (coded) feedbacks mas-
sively to combat node failures and node misbehaving. Each peer maintains two
buffers for each epoch 5: decoding buffer and decoded buffer. Each entry in both
buffers contains feedback data for a particular feedback target. When a peer A
receives a packet M , it inserts M into the corresponding entry of the decoding
buffer. A then may perform Gaussian elimination on this entry 6: If there are
one or more original feedbacks decoded in this process, the original feedbacks
are inserted into the corresponding entry of the decoded buffer. If the cache size

5 A peer may remove the feedback data in past epochs.
6 In our implementation, the Gaussian elimination is actually performed on a decoding

matrix which is composed of the coefficients and coded feedback blocks contained in
the packets in this entry.

6 Yingwu Zhu et al.

for each entry is limited, we may randomly pick a packet in the corresponding
entry of the decoding buffer, producing a new packet from the chosen packet and
received packet using network coding. Then we replace the chosen packet with
the new packet in the decoding buffer. Note that we assume an infinite buffer
size on nodes in this paper and leave finite buffer sizes to our future work.

3.4 Dissemination Protocol

When a new epoch starts, TrustCode spreads coded feedback data for the current
epoch 7. For feedbacks in the past epochs, TrustCode allows a peer to retrieve
them from other peers. For example, a newly joined peer can not only imme-
diately participate in coded feedback dissemination for the current epoch, but
also retrieve coded feedbacks in past epochs it misses.

The dissemination protocol is fully distributed. Each peer independently
makes local decisions about what to spread to its neighbors. Moreover, the pro-
tocol is an iterative network coding approach. That is, each node further divides
an epoch of length T into multiple time slices of length t (t�T). In each time
slice, each peer generates a packet encoded from the data in the decoding and
decoded buffers for each neighbor and sends the packet to the neighbor. Algo-
rithm 1 outlines the dissemination algorithm on peer x. Note that in Line 7,
TrustCode sets a limit on the number of received packets and decoded feedbacks
that can be encoded in one packet, in order to limit the number of coefficients
and feedback IDs in the packet header and thus the packet overhead. Note that
in Algorithm 1, a peer sends each neighbor only one packet for each time slice. In
practice, we allow multiple packets (for different feedback targets) to be included
in a single message to each neighbor peer, to speed up the dissemination process
and reduce message overhead (i.e., TCP/IP header). Once an epoch ends, each
peer stops dissemination of the feedbacks for this epoch 8. However, a peer may
inform its upstream neighbors of stopping sending packets if the peer deems it
has already cached sufficient data; Or a peer may decides to stop dissemination
if it has not received any new (or innovative) feedback data for a certain number
of consecutive time slices. Algorithm 2 shows the algorithm of receiving a packet.

During dissemination, TrustCode treats locally generated feedbacks differ-
ently. If a peer generates a feedback after a transaction, the peer immediately
floods the feedback (in the form of packets but with a typical coefficient of 1) to
all its neighbors disregarding the time slice concept. The intuition is that Trust-
Code makes a few replicas of the feedback to the direct neighbors right away
in case that the failures of the feedback source peer extinct the newly created
feedback.

7 We assume the Network Time Protocol(NTP) is used in the overlay network to
synchronize clocks.

8 We may allow a grace period for last epoch because the feedbacks generated in the
very end of last epoch may not have been spreaded massively among peers.

P2P Reputation-Based Trust Management Using Network Coding 7

Algorithm 1 x.disseminate()
1: targets ← gather all distinct feedback targets from the decoding and decoded

buffers for the current epoch
2: if targets is empty then
3: return
4: end if
5: for each neighbor node ni do
6: randomly choose a target k∈targets
7: generate a packet p for the target k by combining randomly chosen packets and

decoded feedbacks in two buffers
8: send p to ni which in turn calls receive(p)
9: end for

Algorithm 2 x.receive(Packet p)
1: e ← extract epoch # from p
2: k ← extract feedback target from p
3: CL ← extract the list of coefficients and feedback IDs from p
4: CB ← extract coded feedback block from p
5: Insert CL and CB into the decoding buffer corresponding to the entry of k for

epoch e, which triggers Gaussian elimination
6: if any original feedback is decoded then
7: insert it into the decoded buffer corresponding to the entry of k for epoch e
8: end if

3.5 Feedback Retrieval

TrustCode allows a peer to contact other nodes to retrieve feedbacks for a spe-
cific epoch and even a specific feedback target. The contacted nodes serve the
retrieval request from their decoding and decoded buffers. Upon receiving the
responses, the requesting node inserts them into the decoding buffer, which trig-
gers Gaussian elimination and thus decodes original feedbacks. As shown in our
simulations, feedback retrieval in TrustCode is very efficient, contacting only a
small number of nodes. Moreover, when a new peer joins the network, it can
immediately populate its caches by retrieving coded feedbacks from only a small
number of nodes.

3.6 Using TrustCode

Due to space constraints, we here briefly present two potential applications of
TrustCode. Please refer to our technical report for details.

The first application is trust computation using social links or votes. With
TrustCode, a peer can exploits its social relationships such as friend lists to com-
pute the trust vector. Due to the fact that TrustCode stores coded feedbacks
massively among the peers and feedback retrieval is very efficient by contacting
only a small number of nodes, a small set of friend peers can recover and aggre-
gate all the feedbacks, cooperating in trust computation by playing the role of
trust managers in the prior work [1–3]. Leveraging TrustCode and social links,
we expect the trust computation is resilient to node failures and misbehavior.

8 Yingwu Zhu et al.

We may also use FoF (friends-of-friends) to do trust computation, splitting the
load over more peers. As an alternative, the system may recruit multiple groups
of peers to do trust computation. The peers in each group act as trust man-
agers to compute a trust vector (because of TrustCode, each group should be
able to recover all the feedbacks). Each group reports its trust vector as a vote.
Upon receiving all the votes, we choose a trust vector which is agreed on by the
majority.

The second application is trust monitoring and versioning. Each epoch in
TrustCode represents a version and the trust data in each epoch is a snapshot
of system. A trust collector node can gather and version the feedbacks of each
epoch by contacting only a small number of nodes. A primary purpose of trust
versioning is for monitoring and diagnosis. For example, if a peer consistently
has a low trust value, the system may evict the peer from the network. If a
large percentage of nodes in the network consistently have low trust values,
the system is very likely unhealthy and needs to be alarmed. With versioning,
the system keeps track of each peer’s reputation history, which is important to
system monitoring.

4 Evaluation

4.1 Experimental Setup

A 500-node Chord was used as the underlying overlay network. Due to large
memory requirement by network coding and packet caching, we did not simulate
a larger network size. The Galois field of size is 8 for random network coding.
Simulations were limited to one epoch where 5, 000 feedbacks were generated for
50 feedback targets each of which on average had 100 randomly chosen nodes
as feedback sources. We ran our simulations in a controlled manner: We stop
dissemination of coded feedbacks, if, for each feedback target, there are at least
x% nodes each of which has the number of cached packets (including packets
in the decoding buffer and decoded feedbacks as special packets in the decoded
buffer) that is equal to or larger than a threshold m (1≤m≤100). x and m
indicate degree of distribution of coded feedbacks among peers, with a default
value of 20 and 30 respectively. The size of a feedback is 312 bytes while the
TCP/IP header is counted as 40 bytes for each message during dissemination.

We also simulated random feedback dissemination w/o network coding
(called Random) for comparison against TrustCode. During dissemination, each
message contains up to 5 packets (each of which is encoded from up to 10 ran-
domly chosen packets in the node’s buffers) for different feedback targets in
TrustCode, while in Random each message contains up to 5 feedbacks for differ-
ent, randomly chosen targets.

Three main metrics were used: (1) # of time slices required to reach the
dissemination stop condition. It indicates how fast TrustCode spreads coded
feedbacks among peers. (2) Bandwidth cost per node. It exposes the overhead of
TrustCode in dissemination. (3) # of nodes contacted to recover all feedbacks.

P2P Reputation-Based Trust Management Using Network Coding 9

It exhibits how efficiently a peer can collect all feedbacks. It also implies level of
data availability: If the # of nodes contacted is small, TrustCode provides high
data availability guarantee.

After dissemination of coded feedbacks, we scheduled a collector node which
joins the network, retrieves the feedbacks for the current epoch by contacting
a set of randomly chosen nodes till it recovers all the original feedbacks, and
finally leaves. 1, 000 collector nodes were scheduled in turn to perform the same
operations. Then, we averaged the results in terms of # of nodes contacted
which represents efficiency of feedback retrieval and also implies availability of
trust data. If the set of randomly chosen nodes is small, then we believe feedback
retrieval is efficient and trust data is highly available in TrustCode.

4.2 Results

We summarize our results before presenting the details: (1) TrustCode shows su-
perior performance over Random which disseminates feedbacks without network
coding, in terms of dissemination speed, bandwidth cost, data availability, and
feedback retrieval efficiency. (2) The packet overhead in bandwidth due to the
list of coefficients and feedback IDs in a packet is big (e.g., about 60− 68.9% for
various values of x and m), rendering room for improvement, e.g., using compres-
sion to reduce the overhead. (3) TrustCode exhibits strong resilience to failures
in dissemination and feedback retrieval. (4) TrustCode well balances coded feed-
back distribution among the peers (see Figure 3(c)). Due to space constraints,
some data are omitted and please refer to our technical report for more details
of the results.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
 s

lic
e
s

% of nodes (x)

m=20
m=30
m=50
m=70
m=10

(a)

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

B
a
n
d
w

id
th

 c
o
st

 (
M

B
)

% of nodes (x)

m=20
m=30
m=50
m=70
m=10

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

#
 o

f
n
o
d
e
s

vi
si

te
d

% of nodes (x)

m=20
m=30
m=50
m=70
m=10

(c)

Fig. 2. Performance of TrustCode for various values of x and m. (a) # of time
slices required to reach the dissemination stop condition. (b) Bandwidth cost
per node. (c) # of nodes contacted to decode all the original feedbacks.

Performance with Different Configurations The first set of experiments
investigate performance of TrustCode under different dissemination stop con-
ditions. Figure 2 shows performance of TrustCode for various values of x and
m. We can see that more massive distribution of coded feedbacks (bigger x and

10 Yingwu Zhu et al.

m) makes feedback retrieval more efficient and data more available, but at the
expense of more time slices and higher bandwidth consumption. Contacting a
small number of randomly chosen nodes is able to recover or decode all original
feedbacks. This is very encouraging, especially for the P2P settings where node
churn and failures are the norm. When m = 30 and x = 20 (see Section 4.1
for specifications), a small number 5-6 of arbitrarily chosen nodes are able to
recover all the original feedbacks, showing strong resilience to failures and high
efficiency in feedback retrieval, while incurring low bandwidth cost in dissemi-
nation. The main reason for such high data availability and feedback retrieval
efficiency is due to network coding which maximizes diversity of coded feedbacks
among peers. Figure 3(a) shows CDF of 1, 000 collector nodes with respect to
of nodes contacted in order to retrieve all the original feedbacks. We can see
that at most 7 nodes are needed in order to decode all original feedbacks. In
the rest of the paper, we focus on TrustCode with m = 30 and x = 20 unless
specified otherwise.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 o

f
co

lle
ct

o
r

n
o
d
e
s

of nodes visited

TrustCode
Random

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 o

f
co

lle
ct

o
r

n
o
d
e
s

of nodes visited

0%
20%
40%
50%
60%

(b)

 0

 20

 40

 60

 80

 100

 1000 1500 2000 2500 3000 3500

%
 o

f
n
o
d
e
s

load

(c)

Fig. 3. m = 30, x = 20. (a) CDF of collector nodes. (b) CDF of collector nodes
for various percentages of malicious nodes. (c) CDF of nodes with respect to
load (defined as the number of packets in two buffers). The mean load of peers
is 1, 331 and standard deviation is 318.

Comparison with Random We compared Random against TrustCode (m =
30 and x = 20) when they have similar level of data availability — that is, a same
small number of nodes are able to recover all original feedbacks, thus providing
same degree of data availability and retrieval efficiency. Table 1 presents the
comparison when # of nodes contacted for TrustCode and Random is 5.23 and
5.33 respectively with 1, 000 collector nodes tested. Note that Random needs
to replicate feedbacks of each feedback target with m = 86 and x = 55 in
order to yield the similar degree of data availability and retrieval efficiency.
This means that each peer in Random needs to devote more storage to cache
feedbacks and more bandwidth to disseminate feedbacks. As shown in Table 1,
TrustCode achieves one order of magnitude faster dissemination of feedbacks
than Random and saves about 73% bandwidth over Random. Figure 3(a) plots
CDF of collector nodes for TrustCode and Random. TrustCode has superior

P2P Reputation-Based Trust Management Using Network Coding 11

performance over Random because it spreads coded feedbacks more diversely
and thus are more resilient to failures.

Table 1. Performance comparison.

of nodes contacted # of time slices Bandwidth (MB) m x

TrustCode 5.23 11 1.25 30 20

Random 5.33 138 4.59 86 55

Impact of Malicious Nodes In this set of experiments, we explored the im-
pact of malicious nodes on TrustCode. Malicious nodes receive coded feedbacks
but do not disseminate any coded feedbacks during dissemination, and they do
not respond to feedback retrieval requests (from collector nodes). The parameter
x in the dissemination stop condition represents redundancy of coded feedbacks
among peers: In the presence of malicious peers, we disregard coded feedbacks in
malicious nodes, and x represents redundancy of coded feedbacks for each feed-
back target among only benign peers. Table 2 shows performance of TrustCode
with respect to various fractions of malicious nodes. Figure 3(b) plots CDF of
1, 000 collector nodes with respect to different percentages of malicious nodes.
TrustCode shows strong resilience to failures in dissemination with modest in-
crease in bandwidth cost, and it is very efficient in feedback retrieval even when a
large percentage of nodes are malicious. The driving reason for failure resilience
is the diversity of coded feedbacks among peers by using network coding.

Table 2. Impact of malicious nodes (m = 30, x = 20).

% of malicious nodes
Metrics 0 10 20 30 40 50 60

of time slices 11 12 13 15 17 21 25

bandwidth cost (MB) 1.25 1.35 1.44 1.65 1.85 2.26 2.63

of nodes contacted 5.23 5.9 6.87 8.13 9.43 11.24 14.79

5 Conclusions

Exploiting network coding and storage capacity on peers, TrustCode provides a
framework to manage trust data in P2P networks. Thanks to diversity of coded
feedbacks cached among peers, TrustCode exhibits strong resilience to failures
and high efficiency in feedback retrieval. Our simulations show that TrustCode is
able to distribute coded feedbacks across the network in a fast, failure-resilient,
and bandwidth-efficient manner. By contacting a small number of random nodes,

12 Yingwu Zhu et al.

TrustCode is capable of recovering all the feedbacks, ensuring high data avail-
ability.

References

1. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for
reputation management in P2P networks,” in Proceedings of the 12th international
conference on World Wide Web (WWW), (New York, NY, USA), pp. 640–651, 2003.

2. L. Xiong and L. Liu, “PeerTrust: Supporting reputation-based trust for peer-to-peer
electronic communities,” IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 7, pp. 843–857, 2004.

3. R. Zhou and K. Hwang, “PowerTrust: A robust and scalable reputation system for
trusted peer-to-peer computing,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 4,
pp. 460–473, 2007.

4. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in Proceedings of
ACM SIGCOMM, (San Diego, CA), pp. 149–160, Aug. 2001.

5. A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in Proceedings of the 18th IFIP/ACM
International Conference on Distributed System Platforms (Middleware), (Heidel-
berg, Germany), pp. 329–350, Nov. 2001.

6. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure
for fault-tolerance wide-area location and routing,” Tech. Rep. UCB/CSD-01-1141,
Computer Science Division, University of California, Berkeley, Apr. 2001.

7. B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek,
J. Kubiatowicz, and R. Morris, “Efficient replica maintenance for distributed storage
systems,” in Proceedings of the 3rd Symposium on Networked Systems Design and
Implementation (NSDI), May 2006.

8. A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly durable, decentral-
ized storage despite massive correlated failures,” in Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI), (Boston,
Massachusetts), May 2005.

9. T. Ho, M. edard, J. Shi, M. Effros, and D. Karger, “On randomized network coding,”
in Proceedings of 41st Annual Allerton Conference on Communication, Control, and
Computing, Oct 2003.

10. R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”
IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 46, Jul 2000.

11. C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network coding: an instant primer,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68, 2006.

12. K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer information sys-
tem,” in Proceedings of the tenth international conference on Information and knowl-
edge management, pp. 310–317, 2001.

13. F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati,
“Choosing reputable servents in a P2P network,” in Proceedings of the 11th in-
ternational conference on World Wide Web, (New York, NY, USA), pp. 376–386,
2002.

14. Y. Zhu, “TrustCode: P2P reputation-based trust management using network cod-
ing,” tech. rep., Department of CSSE, Seattle University, June 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

