
CORP: A Cooperative File Replication Protocol for Structured P2P Networks

Haiying Shen

Department of Electrical and Computer Engineering
Clemson University

Clemson, SC 29631, USA
shenh@clemson.edu

Abstract

File replication and file consistency maintenance are two
important protocols for achieving overall high performance
of peer-to-peer file sharing systems. In spite of the significant
dependency of consistency maintenance on file replication,
there has been little file replication research devoted to tack-
ling the dependency issue. Most traditional file replication
protocols focus on improving file lookup efficiency without
considering the subsequent consistency maintenance. This
paper presents a COoperative file Replication Protocol
(CORP). CORP observes a set of factors including file
update rate, file popularity, node available capacity, file load
and node locality that affect the efficiency of consistency
maintenance. It considers these factors to achieve high
efficiency not only in file replication but also in consistency
maintenance. CORP generates less replicas and optimally
chooses infrequently-updated or popular files to replicate.
In addition, it makes file replicas in physically close nodes.
Further, CORP can dynamically adjust the number of repli-
cas based on ever-changing file popularity and visit pattern.
Simulation results demonstrate the efficiency and effective-
ness of CORP in comparison with other file replication
protocols. It dramatically reduces the overhead of both file
replication and consistency maintenance. Moreover, it yields
significant improvement in reducing overloaded nodes.

1. Introduction

Over the past years, the immense popularity of the Internet

has produced a significant stimulus to peer-to-peer (P2P) net-

works. The distributed and self-organizing features of a P2P

network allow it to grow considerably without performance

degradation. One of the widely used P2P applications is file

sharing systems such as BitTorrent [1]. A recent study [2]

shows that between 49 and 83 percent of all Internet traffic

is P2P related, with peaks of over 95 percent during the

night. In a file sharing system, if a node receives a large

volume of file requests at one time, it would become a hot

spot, leading to delayed response. For example, total of 5.5

million viewers used P2P TV platforms such as PPLive to

watch the opening ceremony of Olympics in 2008 [3]. If

the popular files are in one node, they could exhaust the

capacity of the node.

File replication protocol to replicate a file to other nodes

is an effective strategy to avoid such hot spots [4–12].

Though files such as video and mp3 files are static or

infrequently-changed, some other files are frequently chang-

ing. For instance, the news for the number of medals

earned by each country is frequently updated during the

Olympic period. Furthermore, other P2P applications need

consistency support to deliver frequently-updated contents,

such as directory service [13], online auction [14], remote

collaboration [15], shared calendar [16], P2P web cache [17]

and online games [18]. Thus, file consistency maintenance

protocol is indispensable to file replication to keep the

consistency between a file and its replicas. The cost of

consistency maintenance mainly depends on a number of

factors determined in the phase of file replication, including

the number of replicas, the update rate of the file, and the

distances between the file’s owner and its replica nodes.

Considering this dependency issue, a file replication protocol

should be efficient and farseeing to facilitate scalable, low-

cost and timely consistency maintenance. However, there has

been little file replication research devoted to tackling the

dependency issue of consistency maintenance.

Most previous file replication methods in structured P2P

networks focus on improving file lookup efficiency without

considering subsequent file consistency maintenance. Specif-

ically, most methods determine replica nodes based on node

ID [4–7] or location [8–11]. ID-based methods select replica

nodes based on the relationship between node ID and the

file’s ID, and location-based methods choose replica nodes

in a file query path between a file requester and a file

provider. Both groups of methods concentrate on avoiding

hot spots to improve query efficiency, but neglect the impact

of file replication on file consistency maintenance. They fail

to simultaneously take into account the non-uniform and

time-varying file popularity and update rate, node available

capacity and file load, as well as the locality feature of

structured P2P networks during file replication, which are

vital factors for the efficiency of both file replication and

consistency maintenance.

This paper presents a COoperative file replication Protocol

(CORP) that not only achieves high efficiency in file replica-

978-1-4244-4921-7/09/$25.00 ©2009 IEEE 322

tion but also supports efficient file consistency maintenance.

Moreover, CORP does not compromise the effectiveness

of file replication in reducing hot spots and improving

lookup efficiency. Essentially, CORP is characterized by the

following features:

• The consideration of file update frequency and popu-
larity. It makes less replicas for frequently-updated or
infrequently-visited files in order to reduce file consis-

tency maintenance overhead and meanwhile increase

replica utilization.

• The consideration of node available capacity and file
load. It avoids exacerbating the hot spot problem by

proactively choosing nodes with sufficient capacity for

replicas. More importantly, CORP reduces the number

of replicas by optimally selecting files to replicate and

replica nodes.

• The consideration of node locality. It replicates files
in physically close nodes without relying on an extra

network structure to achieve high efficiency of both file

replication and consistency maintenance.

• The adaptiveness of file popularity and visit pattern.
It dynamically adjusts the number of replicas to han-

dle ever-changing file popularity and visit pattern for

efficient file replication and consistency maintenance.

The rest of this paper is structured as follows. Section 2

presents a concise review of representative file replication

approaches for structured P2P networks. Section 3 presents

the CORP file replication protocol. Section 4 shows the

performance of CORP in static situation as well as dynamic

situation in comparison with other file replication protocols.

Section 5 concludes this paper.

2. Related Work

Driven by tremendous advances of P2P file sharing sys-

tems, numerous file replication protocols have been pro-

posed. One group determines replica nodes based on IDs.

PAST [4] is a P2P-based file system for large-scale persistent

storage service. In PAST, each file is replicated in a number

of nodes whose IDs match most closely to the file’s ID.

PAST has load balancing algorithm for non-uniform node

storage capacities and file sizes, and it uses caching along the

lookup path for non-uniform popularity of files to minimize

fetch distance and balance query load. Similarly, CFS [5]

is a P2P read-only storage system. CFS stores blocks of a

file and spreads blocks evenly over the available servers to

prevent large files from causing unbalanced use of storage.

It uses distributed hash function to replicate each block on

nodes immediately after the block’s successor on the Chord

ring [19] in order to increase file availability. CFS also has

a caching protocol that leaves cached copies of file along

the query path. LessLog [6] constructs a lookup tree based

on node IDs to determine the locations of replica nodes.

HotRoD [7] is a structured P2P based architecture with a

replication scheme, in which a group of successive peers

on a ring are replicated and rotated over the ID space. By

tweaking the degree of replication, it can trade off replication

cost for access load balancing.

Another group replicates files based on node location by

choosing replica nodes along a file lookup path between a

client and a server (including the clients). Beehive [8, 20]

achieves O(1) lookup latency for common Zipf-like query
distributions by replicating an object at nodes i hop prior
to the server in the lookup path and choosing different i for
different objects. It aims to find the minimum replication ex-

tend to achieve constant lookup performance. Backslash [9]

is a collaborative web mirroring system with file replication

and caching methods for flash crowds. A node periodically

injects files in its local file collection, and also pushes

cache to one hop closer to requester nodes when overloaded.

LAR [10] specifies the overloaded degree of a server that

a file should be replicated. Overloaded nodes replicate files

at the query initiator and create routing hints on the reverse

path. Overlook [11] places a replica of a file on a node with

most incoming lookup requests for fast replica location. It

needs to keep track of client-access history to decide the

replica nodes. Squirrel [21] is a distributed P2P web cache.

Its key idea is to facilitate mutual sharing of web objects

among client nodes by enabling these nodes to export their

local caches to other nodes in the corporate network.

However, few work tries to optimize consistency mainte-

nance in the file replication stage. Our previous work [22]

addressed this problem by arranging each node to keep

track of queries it receives to make replicas of popular files,

and remove under-utilized replicas. CORP deals with the

problem from a completely different direction. It observes

a set of factors that affect the efficiency of consistency

maintenance and takes into these factors in file replication

to optimize consistency maintenance. Rigid replica node

determination in the ID-based or location-based methods

makes it difficult to consider the factors. For instance,

without considering the available capacity of replica nodes,

the methods may make the hot spot problem even more

severe.

Without strict specification of replica nodes, CORP repli-

cates files in physically close nodes based on node available

capacity with consideration of file update and visit rates,

which leads to efficient file replication and consistency

maintenance. CORP is developed based on our preliminary

work Plover [23], which only considers node locality and

available capacity. Plover considers available capacity only

to avoid overloaded nodes rather than reducing the number

of replicas. In addition, it needs to build an additional su-

pernode structure. In contrast, CORP mainly aims to reduce

the number of replicas by considering capacity, and it does

not need to build an extra supernode structure. More impor-

tantly, CORP observes and considers other critical factors

323

that affect consistency maintenance to reduce the overhead

of consistency maintenance and meanwhile increase replica

utilization.

3. Cooperative File Replication

CORP aims to achieve both efficient file replication and

consistency maintenance. To realize its goal, it optimally

chooses source files to replicate (briefly called source files)
and replicates them in physically close nodes, and tries

to minimize the number of replicas. Specifically, CORP

observes and takes into account a set of factors including

file popularity, update rate, node available capacity, file load,

and node locality in file replication. Figure 1 shows the

goal of CORP and the factors its considers during the file

replication.

High efficiency in both file replication and consistency maintenanceUltimate
goal

Locality-aware P2P-based infrastructure (LP2P)Minimize the
number of replicas

Objective

LocalityConsidered
factors

Shorten physical
distances

Update rateVisit rate Capacity/Load

Optimally choose
source files

Figure 1. The goals of CORP and its considering
factors.

To optimally choose source files, COPR considers file
visit rate and file update rate. An unpopular file does not
necessarily have many replicas since the replicas would

have low probability to be visited, and vice versa. Thus,

a highly-popular file should have more replicas while an

unpopular file should have less replicas. Update rate is

another important factor to consider in file replication for

lightweight consistency maintenance. Different files have

different update rates. For instance, files for auction applica-

tions may change frequently while video or mp3 files hardly

change. Therefore, frequently-updated files should have less

replicas in order to reduce the overhead of update message

propagation in consistency maintenance.

To minimize the number of replicas, COPR consid-

ers node available capacity and file load. An overloaded
node needs to replicate its highly-popular files to release its

file visit load. In most previous replication methods, once a

file owner is overloaded due to a file’s visits, it replicates

the file to a certain node based on ID or location. As a

result, many replicas lead to high overhead for consistency

maintenance. By considering node available capacity and

file load, CORP brings three benefits. First, CORP helps to

replicate a file to less nodes to handle all the file’s visits.

Second, when a node chooses files to replicate, it selects the

files with higher load. This reduces the number of replicas

since higher-load files release more load than low-load files.

Third, CORP avoids overloading replica nodes by replicating

a file to a node with sufficient available capacity.

In addition, CORP considers locality by discovering phys-
ically close nodes to a file’s owner for file replication. Short

physical distances between a file owner and its replica nodes

help to reduce the overhead of file replication and subsequent

consistency maintenance. Moreover, it also helps to increase

lookup efficiency since a file owner can efficiently forward

a file query to its physically nearby replica nodes.

CORP periodically runs three phases. First, overloaded

nodes optimally choose source files. Second, overloaded

nodes and lightly-loaded nodes report the information of

their source files and available capacities to a number of

repository supernodes. The information of physically close

nodes is marshalled in the same repository supernode. Third,

the repository supernodes arrange the source files in over-

loaded nodes to be replicated to their physically close nodes.

Specifically, CORP addresses the following challenges:

(1) When an overloaded node chooses source files to

release its load due to file visits, how to consider node

capacity and file load to reduce the number of replicas?

How to reduce the number of infrequently-visited and

frequently-updated source files? (Section 3.1)

(2) When overloaded nodes and lightly-loaded nodes report

the information of their source files and available capac-

ities to repository supernodes, how to make sure that

the information of physically close nodes is gathered

together in a supernode? (Section 3.2)

(3) When repository nodes arrange file replication between

overloaded nodes and lightly-loaded nodes, how to take

into account the factors of available capacity, file load,

file update rate and visit rate to minimize the number

of replicas? (Section 3.3)

3.1. Source File Selection for Replication

As the works in [24, 25], we assume that there is only

one bottleneck resource for optimization though a node’s

capacity includes its storage space, bandwidth, CPU, and

etc. For simplicity, we represent a node’s capacity by the

number of bits it can transfer during a time unit, say one

second, in response to file queries. We assume that each

node has a capacity it is willing to contribute to the system,

denoted by C, which is in a percentage of the node’s actual
capacity. Similarly, a node’s load is measured by the number

of bits it needs to transfer in response to file queries, denoted

by L. A file’s visit rate can be measured by the number of
visits during one second, denoted by V . To truly reflect a
file’s popularity by its visit rate, CORP considers the file’s

current visit rate and past visit rate, and gives more weight

to the current visit rate. It introduces a weighted average

visit rate of a file as below:
Vnew = γVold + βVcurrent,

324

where weights γ (0 ≤ γ ≤ 1) and β (0 ≤ β ≤ 1) are
discount factors.

Assume node A contains m files, labelled as FA[i](i =
1, 2, . . . ,m), then LA is the sum of the load of these files.

That is, LA =
∑m
i=1 LFA[i], where LFA[i] denotes the load

of file FA[i]. The file access delay experienced at a node
depends on the overall load on the node measured by the

number of bits transferred during a time unit. Therefore, the

load of a file on a node is determined by the file’s size and

visit rate on the node. That is, LFA[i] = SFA[i]×VFA[i], where

SFA[i] and VFA[i] respectively denote the size and visit rate

of file FA[i] in node A. We define the update rate of file
k in node A, denoted by UFA[i], as the number of the file’s

updates in one second. The update rate can be determined by

the same way as visit rate as shown in the above formula.

Each node A periodically measures the VFA[i] and UFA[i],

and maintains the LFA[i], SFA[i], VFA[i] and UFA[i] of each

of its files in a table.

When a node, say node A, doesn’t have enough capacity
to handle all queries, it needs to replicate its files to release

its excess load ΔLA = LA − CA by choosing a number

of source files to be replicated. Based on the objective of

CORP to minimize the number of replicas, high-load files

should be the choices because their replication can release

node A’s load quickly and meanwhile reduce the number of
replicas.

In addition, the factors of visit rate and update rate should

also be considered. For instance, during the 2008 Olympic

period, its related news was more popular than the news of

2004 Olympics. During the period, the news of the number

of medals earned by each country was updated frequently

while the video of the Olympic Opening Ceremony hardly

changed. Because the replicas of infrequently-visited files

will have low probability to be visited, such files should

have less or no replicas in order to reduce idle replicas and

consistency maintenance overhead.

On the other hand, frequently-visited files should have

more replicas in order to improve lookup efficiency. It also

reduces the overhead of file replication due to small sizes

of source files. This is because given certain load, higher

visit rate means smaller file size. For example, file i’s
visit rate is 100 and its size is 100 bits and file j’s visit
rate is 1 and its size is 10000 bits. Although replicating

either file can release load of 10000 units, replicating file j
with 10000 bits generates higher cost than replicating file

i with 100 bits. Moreover, the replica of j will be less
frequently used than the replica of file i since j’s visit rate
is less than i’s visit rate. Hence, file i with higher visit
rate should be a better choice than j for replication. At
the same time, frequently-updated files also should have

less replicas in order to reduce consistency maintenance

overhead. For instance, Olympic video is a better choice than

the news of Olympic medals for file replication during the

Olympic period. Avoiding producing replicas for the news

saves the cost of the subsequent update propagation to keep

the consistency between the source file and its replicas.

Considering all these factors, to choose source files to

be replicated, a node orders its files as shown in Figure 2.

Specifically, the files in F are sorted in descending order

of their load, the files with the same load are ordered in

ascending order of their update rates, and the files with the

same update rates are further ordered in descending order

of their visit rates.

The selection process has three steps. The first step is

to choose the initial source files with the highest loads

in order to reduce the number of replicas. The files in F

are selected in a top-down manner until the sum of the

loads of the selected source files is no less than the load to

release. We represent the selected files of node A by FA =
{FA[1],FA[2], . . . ,FA[m̃]} (F ∈ F, 1 ≤ m̃ ≤ m), and their
corresponding loads are {LFA[1], LFA[2], ..., LFA[m̃]}. The
source nodes are chosen in such a way that

∑m̃
i=1 LFA[i] ≥

ΔLA. The next step reduces the total update rate of the
source files in FA, thus reducing consistency maintenance
overhead. In this step, the rest of files in F continue to

be fetched in the top-down manner. Assume a fetched

file is FA[m̃ + 1]. It is compared to the files in FA one

by one from FA[1] to FA[m̃]. If UFA[m̃+1] < UFA[k]

(1 ≤ k ≤ m̃) and the condition
∑m̃
i=1 LFA[i] ≥ ΔLA is still

satisfied after replacing FA[k] with FA[m̃+ 1], file FA[k]
is replaced by file FA[m̃ + 1]. In the third step, if there is
no such file in F that can be replaced, the file FA[m̃+ 1]
is compared to the files in FA in a sequential order again.
This step is to increase the total visit rate of the source

files in FA, thus increasing the utilization of file replicas
and reducing file replication cost. If UFA[m̃+1] = UFA[k]

and VFA[m̃+1] > VFA[k] (1 ≤ k ≤ m̃), and the condition
∑m̃
i=1 LFA[i] ≥ ΔLA is still satisfied after replacing FA[k]

with FA[m̃+ 1], file FA[k] is replaced by file FA[m̃+ 1].
Consequently, source files constitute a subset of node A’s

resident files, satisfying the following condition.

minimizes m̃; minimizes

m̃∑

i=1

UFA[i]; maximizes

m̃∑

i=1

VFA[i]

(1)

subject to (LA −
m̃∑

i=1

LFA[i]) ≤ CA. (2)

3.2. Locality-aware Information Clustering

Recall that nodes report the information of their source

files and available capacities to repository supernodes in

phase two of CORP. We use IR to denote the information for
file replication. The IR of overloaded node A is represented
by a set of 6-tuple:
IR =< LFA[i], SFA[i], VFA[i], UFA[i], IDFA[i], ip addr(A) >,

325

Load

Update
rate

Visit rate

Figure 2. File ordering in source file
selection (phase 1).

Supernode
Regular node

Structured P2P

2

45

32

20

63

1

40 UofA node,
H=56

UofA node,
H=56

UofA node,
H=56

Info. of UofA nodes
1, 10, 30

31
30

25

15

13

10

60
50

0

Figure 3. Information clustering
(phase 2).

Load

Update rate

Visit rate

Figure 4. File ordering in replica
arrangement (phase 3).

in which IDFA[i] denote the ID of file FA[i] and

ip addr(A) denotes the IP address of node A. The IR
of lightly-loaded node B is in a 2-tuple representation

IR =< δCB , ip addr(B) >, where δCB = CB − LB is

node B’s available capacity.
CORP realizes locality-aware file replication through

locality-aware information clustering which groups the IR
of physically close nodes together. It is developed by

leveraging hash-based proximity clustering in our previous

work [25] which deals with load balancing problem. Similar

works of locality-awareness can also be found in [26, 24,

27]. However, there are few works tackling locality-aware

file replication which reduces the overhead of both file

replication and consistency maintenance.

We choose Chord structured P2P network [19] as an

example to explain this clustering method. It can be applied

to any existing structured P2P network such as Tapestry,

CAN, Pastry, and Kademlia. CORP employs the techniques

of landmark clustering and Hilbert curve [27] to calculate

the Hilbert number of each node, denoted by H. The Hilbert
number indicates node physical closeness on the Internet.

Two nodes with close Hilbert numbers are physically close

to each other, and vice versa. Due to the space limit, for

more information of the methods, please refer to [27].

In general, supernodes are nodes with high capacity and

fast connections, and regular nodes are nodes with lower

capacity and slower connections. For simplicity, we define

a node with capacity greater than a predefined threshold as

supernode; otherwise a regular node. The logical distance
of node A and node B is calculated by D(A,B) = |IDB−
IDA|. The clustering method assigns regular nodes to their
logically closest supernodes. As a result, logically close

nodes constitute a cluster with a supernode, which operates

as a server to the regular nodes in the cluster.

Physically close nodes will report their information

to the same supernode or logically close supernodes.

A structured P2P network provides two main functions:

Put(ID,object) and Lookup(ID) to store an object
with an ID in its owner node, and to retrieve the object. In

Chord, an object is assigned to the first node whose ID is

equal to or follows the key in the ID space. If two objects

have the same or close IDs, then they are stored in the same

node or close nodes in the ID space. Because Hilbert number

represents node physical closeness, if nodes report their

IR with their Hilbert number as the key by put(H, IR),
the IR of physically close nodes with the same or close

Hilbert numbers will reach the same node or logically close

nodes. The destination nodes further forward the IR to

their supernodes. As a result, the IR of physically close

nodes are pooled in the same supernode. Figure 3 shows an

example of the information pooling in the supernode ring.

In the example, physically close regular node n1, n10 and
n30 periodically send their IR with their Hilbert number 56

as destination. The IR will first arrive at n60, and then is
forwarded to n63.
We call the destination supernode of the reporting nodes

as their cluster server, and call the reporting nodes as the
cluster server’s clients. Therefore, the physically close nodes
connect to their cluster server virtually by put(H, IR),
and they reach their cluster server by Chord function

Lookup(H). Rather than building an extra supernode

network that clusters physically close nodes, the clustering

method only arranges regular nodes to connect to their logi-

cally close supernode and depends on the original P2P func-

tions for identifying physically close nodes, which greatly

reduces the extra overhead for extra structure maintenance.

In CORP file replication, nodes periodically report their

IR to their cluster servers. Specifically, each overloaded

node reports the IR of its source files and each lightly-

loaded node reports the IR of its available capacity (i.e.

δC) to its cluster server periodically. The cluster server
then arranges the replica nodes for each source file. The

communication and file replication between physically close

nodes enhance the efficiency of not only file replication but

also file consistency maintenance, because files or update

messages are transferred along short physical distances.

Some supernodes may be overloaded due to the load of

file replication arrangement. The load balancing mechanism

in [25] can be adopted to deal with the load imbalance

between supernodes.

Before a supernode leaves, it finds its preceding and

succeeding supernodes and moves its clients to them. The

clients then connect to their new supernodes. Lazy-update

is used to handle supernode failures. That is, if a supernode

326

Table 1. Lists of available capacity and source files.

Information in a cluster server
Available capacity list Source file list

< δCB , ip addr(B) > < LFA[1], SFA[1], VFA[1], UFA[1], IDFA[1], ip addr(A) >

.
< δCG, ip addr(G) > < LFA[m̃], SFA[m̃], VFA[m̃], UFA[m̃], IDFA[m̃], ip addr(A) >

fails or leaves without warning, its clients will not receive

response from the supernode. The clients then connect to

the new supernodes by probing their neighbors. For more

information of the clustering method, please refer to [25].

3.3. File Replication Arrangement

This section presents how the source files are replicated

in the lightly-loaded nodes after the IR of physically close

nodes is marshalled in the cluster servers, with the objective

of enhancing the efficiency of both file replication and

consistency maintenance.

Upon receiving the IR from its clients, each cluster

server stores the IR into a pair of lists of source files and

available capacity correspondingly as shown in Table 1. It

then arranges replica nodes for each source file. In order

to reduce the number of replicas, the ideal situation is that

each source file has one replica node. Thus, it is important

to avoid fragmenting the available capacity of a node so that

the capacity can be used for a source file with higher load.

Therefore, the available capacity list is sorted in ascending

order of δC; maxδC represents the maximum δC in the

list. To locate a replica node for source file FA[i], the
cluster server checks the available capacity in the sorted

list one by one in a top-down manner until δC ≥ LFA[i].

Hence, a source file is assigned to the most fit lightly-

loaded node which has minimum available capacity left after

the source file is replicated to it. This avoids fragmenting

the available capacity, and makes full use of the existing

available capacity.

As explained, a frequently-updated or infrequently-visited

file should have less replicas. The factor of update rate has

higher priority than visit rate since it directly affects the

overhead of consistency maintenance. When a number of

files have the same update rate and visit rate, the file with

higher load should be resolved first in order to avoid capacity

fragmentation and reduce the number of replicas. For in-

stance, the available capacity list is {100, 200, 300, 400} and
the load list of source files is {300, 250, 200, 150}. If the list
of source files is sorted in descending order, after assigning

each file based on the above algorithm, the 100 available
capacity is left. If the load list is ordered by ascending

order, the load 300 has to be separated and replicated in
three nodes. Thus, sorting the load list in ascending order

leads to capacity fragment and more replicas.

Based on the analysis, as shown in Figure 4, CORP

orders the IR pieces of source files in descending order

of update rate. Files with the same update rate are ordered

in ascending order of visit rate, and files with the same visit

rate are further ordered in a descending order of their load

values. CORP orders the IR pieces of available capacity

in ascending order. File replication arrangement is executed

between a pair of the two lists. In the algorithm, each IR
piece in the source file list is fetched, and its replica node is

searched in the available capacity list in a top-down manner

until the available capacity is no less than the source file’s

load. This algorithm guarantees that frequently-updated files

have a higher priority to be assigned to lightly-loaded nodes

with higher available capacities, then infrequently-visited

files, and finally higher load files. The algorithm reduces

the number of the source files’ replicas and the total update

rate of the replicas, subsequently reducing the overhead of

consistency maintenance.

A node records the replica nodes for each of its source

files and the visit rate that each replica node is responsible

for. Later on, if the node receives a file query when it

is overloaded, it forwards the query to one of its replica

nodes according to the visit rates they are responsible for.

A replica node responsible for higher visit rate will receive

more queries and vice versa.

A cluster server may not be able to resolve all source files

for all of its clients. Recall that physically close nodes report

their IR to logically close cluster severs. Therefore, the

logical distances between a cluster server and its succeeding

cluster servers or preceding cluster servers represent the

physical distances between their clients. Based on this, a

cluster server s can contact its succeeding cluster server and
preceding cluster server, represented by suc(s) and pre(s), to
replicate its unsolved source files to their physically close

nodes. It sends messages to its successor and predeces-

sor [19]. The messages will be forwarded successively until

arriving at supernodes. After file replication arrangement is

performed between the supernodes’ available capacity lists

and the cluster server’s source file list, if the source file list

is still nonempty, suc(suc(s)) and pre((pre(s)) are attempted.
This process is repeated until the cluster server’s source

file list becomes empty. Communication and file replication

between physically close nodes reduce overhead.

A node periodically checks its load status. If it is lightly-

loaded, it first removes some of its replicas before reporting

its available capacity. The replicas of files with low visit rate,

high update rate or low load should be removed firstly in

order to reduce the overhead of consistency maintenance and

327

increase replica utilization. An overloaded node includes the

replicas in itself into its own files for source file selection,

and can also select these replicas to be further replicated.

Each node periodically reports its source files or available

capacity based on its experienced actual load, and increases

or decreases the number of replicas of its files adaptively

based on file popularity and visit pattern. Correspondingly,

each node notifies replica nodes to delete replicas or requests

its cluster server for more replicas.

For example, in skewed lookups where many nodes query

for a highly-popular file, CORP enables the file owner

quickly locate physically close nodes with sufficient capac-

ities to replicate the file in order to release its load. Later

on, the file owner forwards the file queries to the replica

nodes, which will further make replicas of the popular file

when overloaded. Consequently, there will be more and

more replicas for the highly-popular file until no node is

overloaded due to the visits of the file. In the previous file

replication methods, the file will be replicated to other nodes

without the consideration of node available capacity, which

may overload the replica nodes and exacerbate the situation

of overloaded nodes. CORP selects source files and repli-

cates them based on recent file visit rate and it is dynamically

adaptive to lookup and visit pattern. From the view of the

entire system, a file with increasing popularity will have

more and more replicas and a file with decreasing popularity

will have less and less replicas. It helps to guarantee the high

utilization of replicas and reduce the overhead of consistency

maintenance for unnecessary replicas.

4. Performance Evaluation

We designed and implemented a simulator for evaluating

CORP based on Chord. There are two other classes of file

replication methods: ID-based and location-based. We chose

PAST [4] and LAR [10] in each class and compared the

performance of CORP with them. Briefly, PAST replicates

a file to a number of nodes whose IDs match most closely

to the file’s ID. LAR replicates a file to query initiators. To

make them comparable, we did not create routing hints in

lookup paths, and we updated every file once using broad-

casting method in each protocol in consistency maintenance.

The number of nodes in the system was set to 4096, and

the number of files was set to 20480. The visit rate and

update rate of each file was randomly chosen from [1,10].

We assumed bounded Pareto distribution for the capacity of

nodes and the sizes of files. This distribution reflects real

world where there are machines with capacities that vary by

different orders of magnitude. The network topology was

generated by GT-ITM [28]: “ts5k-large”. It has 5 transit

domains, 3 transit nodes per transit domain, 5 stub domains

attached to each transit node, and 60 nodes in each stub

domain on average. We define node utilization (NU) as the
fraction of a node’s capacity that is used: NUA = LA/CA.

System utilization is the ratio between the system’s total load
and the system’s total capacity:

∑n
i=1 Li/

∑n
i=1 Ci.

4.1. Capacity-aware File Replication

Figure 5 shows the total number of file replicas versus sys-

tem utilization. We can observe that the number of replicas

increases with the increase of system utilization. It is because

higher system utilization leads to more overloaded nodes,

resulting in more file replicas. We can also find that LAR

and PAST generate dramatically more replicas than CORP.

Recall that LAR and PAST do not consider node available

capacity during file replication. They replicate files at the

query initiators and logically close nodes respectively based

on node load status. File replication without considering

node available capacity will result in unnecessary replicas. In

addition, the replica nodes may not have sufficient capacity

for the replicas, leading to more overloaded nodes. In con-

trast, CORP proactively takes into account node available ca-

pacity during file replication. It not only avoids unnecessary

file replication, but also avoids exacerbating the overloaded

node problem by choosing nodes with sufficient available

capacity as replica nodes. Thus, it outperforms LAR and

PAST by reducing overloaded nodes and extra overhead for

load balancing and file consistency maintenance.

4.2. Locality-aware File Replication

This test shows the effectiveness of CORP to achieve

locality-aware file replication between physically close

nodes. Figure 6 shows the cumulative distribution function

(CDF) of total load of replicated files with system utilization

approaching 1 in “ts5k-large”. We can see that in “ts5k-

large,” CORP is able to replicate 95% of total load of

replicated files, while LAR and PAST replicate about 30%
within 10 hops. Almost all replications in CORP are within

15 hops, while LAR and PAST protocols replicate only 80%
of the total file load within 15 hops. The results show that

CORP replicates most files in short distances but LAR and

PAST replicate most file in long distances. The more file

replicated in the shorter distances, the less overhead incurred

in both file replication and consistency maintenance. The

results indicate that CORP performs superiorly compared to

LAR and PAST with regards to the communication overhead

in both file replication and consistency maintenance.

4.3. Lightweight File Consistency Maintenance

The cost of a message transmission is directly related to

message size and physical distance of the message travelled;

we use the product of these two factors of all file update

messages to represent the consistency maintenance cost. It

is assumed that the size of an update message is 1 unit.

Figure 7 plots the file consistency maintenance cost of

328

0

5000

10000

15000

20000

0.5 0.6 0.7 0.8 0.9 1
System utilization

To
ta

l n
um

be
r o

f f
ile

 re
pl

ic
as

CORP
PAST
LAR

Figure 5. Total replicas.

0

20

40

60

80

100

0 5 10 15 20
Physical distance by hops

P
er

ce
nt

ag
e

of
 to

ta
l l

oa
d

of
 re

pl
ic

at
ed

 fi
le

s
(%

)

CORP
PAST
LAR

(a) ts5k-large

Figure 6. CDF of total load of
replicated files.

0

10000

20000

30000

40000

50000

0.5 0.6 0.7 0.8 0.9 1
System utilization

C
on

si
st

en
cy

 m
ai

nt
en

an
ce

 c
os

t

CORP
PAST
LAR

(a) ts5k-large

Figure 7. File consistency mainte-
nance cost.

CORP, PAST and LAR in “ts5k-large”. From the figure, we

can see that the cost increases as system load increases, and

LAR and PAST incur considerably higher cost than CORP.

There are two reasons for the observation. First, LAR and

PAST replicate each file without the consideration of node

available capacity, file popularity and visit rate, resulting in

many unnecessary file replicas or replicas with high update

rates. Taking into account of these factors, CORP generates

less replicas and less replicas with high update rates. Second,

because LAR and PAST neglect locality in file replication,

they render significantly higher cost for file update since

messages travel long physical distances. In contrast, CORP

proactively considers locality in file replication, such that the

update messages only travel between physically close nodes.

Its features of fewer replicas, replicas with lower update

rates, and shorter update message travel distance contribute

to low-overhead and timely file consistency maintenance.

4.4. Effect of File Popularity and Update Rate

Recall that CORP reduces the replicas of frequently-

updated or infrequently-visited files to decrease the overhead

of file consistency maintenance. This experiment is to illus-

trate the effectiveness of CORP that considers file popularity

and update rate. We use ”CORP-w” and ”CORP-w/o” to rep-

resent CORP protocol with and without file update and visit

rates consideration respectively. Figure 8(a) illustrates the

CDF of percentage of replicas versus update rate. We can see

that CORP-w makes less replicas for frequently-updated files

while makes more replicas than CORP-w/o for infrequently-

updated files. Taking into account of node available capacity,

CORP-w assigns high priorities to infrequently-updated files

to be replicated into nodes with high available capacity

to reduce the number of replicas, leading to reduction of

consistency maintenance overhead. Figure 8(b) demonstrates

the CDF of percentage of replicas versus visit rate. We can

see that CORP-w renders less replicas for unpopular files

compared with CORP-w/o. It is not necessary to produce

a large number of replicas for an unpopular file, since it is

visited infrequently and seldom generates load on a node.

On the other hand, popular files should have more replicas

to distribute its load among more nodes and increase replica

utilization. From the figure, we can conclude that compared

to CORP-w/o, CORP-w generates less replicas for unpopular

files, and more replicas for popular files, thus reducing

consistency maintenance cost, avoiding idle file replicas, and

enhancing replica utilization.

4.5. Performance in a Dynamic Environment

This experiment evaluates the efficiency of CORP in a

dynamic environment with churn. In this experiment, we

run each trial of the simulation for 20T simulated seconds,

where T is a parameterized period set to 60 seconds. We

averaged the simulation outcomes as the final results. The

file join/departure rate was modelled as a Poisson process

at rate of 0.4 as in [19]. That is, there is one file join

and one file departure every 2.5 seconds. We ranged node

interarrival/interdeparture rate from 0.1 to 0.5 with step size

of 0.1. Figure 9 illustrates the average of NUs versus node

interarrival/interdeparture rate. By comparing the results of

LAR/PAST and CORP, we can make two observations. First,

the 99th percentile NUs of CORP are kept no more than

1. This implies that CORP can achieve the file replication

goal of reducing overloaded nodes in dynamism. Second,

the 99th percentile NUs of LAR/PAST are higher than 1,

and they increase as the node interarrival/interdeparture rate

increases. Because LAR/PAST overlook the node available

capacity factor, they are not able to control node utilization

as in static situation. In conclusion, unlike LAR and PAST,

CORP ensures a load balance condition by file replication

even in a dynamic environment.

5. Conclusions

In P2P file sharing systems, in spite of the significant

impact of file replication on the efficiency of consistency

maintenance, the two issues have been typically addressed

separately. Most previous file replication methods focus on

hot spot elimination and querying efficiency but neglect

329

0

10

20

30

40

50

60

70

80

90

100
C

D
F

of
 p

er
ce

nt
ag

e
of

 re
pl

ic
as

 (%
)

1 2 3 4 5 6 7 8 9 10
Update rate

CORP-w/o
CORP-w

(a) Update rate

0

10

20

30

40

50

60

70

80

90

100

C
D

F
of

 p
er

ce
nt

ag
e

of
 re

pl
ic

as
 (%

)

1 2 3 4 5 6 7 8 9 10
Visit rate

CORP-w
CORP-w/o

(b) Visit rate

Figure 8. CDF of percentage of replicas.

0.9

0.95

1

1.05

1.1

1.15

1.2

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture rate

Th
e

av
er

ag
e

of
 n

od
e

m
ax

. u
til

iz
at

io
n CORP

PAST
LAR

Figure 9. Performance in a dy-
namic environment.

the effect of file replication on the subsequent consistency

maintenance. This paper presents a COoperative file replica-

tion Protocol (CORP) that not only achieves high efficiency

in file replication but also proactively supports scalable,

low-cost, and timely consistency maintenance. It observes

a set of factors including file update rate, file popularity,

node available capacity, file load and node locality that

influence the efficiency of consistency maintenance. It takes

into account these factors in file replication to reduce the

number of replicas and the replicas of frequently-updated or

infrequently-visited files, and to replicate files in physically

close nodes. Moreover, it adaptively adjusts the number of

replicas based on ever-changing file popularity and visit

pattern. Thus, CORP significantly improves the efficiency

of both file replication and consistency maintenance. Simu-

lation results demonstrate the efficiency and effectiveness of

CORP in comparison with other file replication protocols.

Acknowledgment

This research was supported in part by U.S. NSF grants

CNS-0834592, CNS- 0832109 and CNS 0917056.

References

[1] Bittorrent. http://en.wikipedia.org/wiki/Bittorrent.

[2] P2P Traffic Is Booming, BitTorrent The Dominant Pro-

tocol. http://torrentfreak.com/p2p-traffic-still-booming-

071128/.

[3] Final Tally: Olympics Web and P2P Numbers.

http://newteevee.com/2008/08/28/final-tally-olympics-

web-and-p2p-numbers/.

[4] A. Rowstron and P. Druschel. Storage Management

and Caching in PAST, a Large-scale, Persistent Peer-

to-Peer Storage Utility. In Proc. of SOSP, 2001.
[5] F. Dabek, M. F. Kaashoek, D. Karger, and et al. Wide-

area cooperative storage with CFS. In Proc. of SOSP,
2001.

[6] K. Huang and et al. LessLog: A Logless File Repli-

cation Algorithm for Peer-to-Peer Distributed Systems.

In Proc. of IPDPS, 2004.

[7] T. Pitoura, N. Ntarmos, and P. Triantafillou. Repli-

cation, Load Balancing and Efficient Range Query

Processing in DHTs. In Proc. of EDBT, 2006.
[8] V. Ramasubramanian and E. Sirer. Beehive: The De-

sign and Implementation of a Next Generation Name

Service for the Internet. In Proc. of ACM SIGCOMM,
2004.

[9] T. Stading and et al. Peer-to-peer Caching Schemes to

Address Flash Crowds. In Proc. of IPTPS, 2002.
[10] V. Gopalakrishnan, B. Silaghi, and et al. Adaptive

Replication in Peer-to-Peer Systems. In Proc. of
ICDCS, 2004.

[11] M. Theimer and M. Jones. Overlook: Scalable Name

Service on an Overlay Network. In Proc. of ICDCS,
2002.

[12] M. Roussopoulos and M. Baker. CUP: Controlled

Update Propagation in Peer to Peer Networks. In Proc.
of the USENIX 2003 Annual Technical Conf., 2003.

[13] T. Hu, S. Ardon, and A. Sereviratne. Semantic-laden

peer-to-peer service directory. In Proc. of the 4th IEEE
International Conference on P2P Computing (P2P04),
2004.

[14] Marcus Fontoura. Law-governed peer-to-peer auctions.

In Proc. of the eleventh international world wide web
conference (WWW2002), pages 109–117, 2002.

[15] J. Zhu, J. Gong, W. Liu, T. Song, and J. Zhang. A

collaborative virtual geographic environment based on

P2P and Grid technologies. Information Sciences: An
International Journal archive, (21), 2007.

[16] P2P Calendar Synchronizer.

http://www.brothersoft.com/p2p-calendar-

synchronizer-47655.html.

[17] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A de-

centralized peer-to-peer web cache. In Proceedings of
the 21th ACM Symposium on Principles of Distributed
Computing (PODC), 2002.

[18] B. Knutsson, H. Liu, W. Xu, and B. Hopkins. Peer-

to-peer support for massively multiplayer games. In

Proceeding of IEEE INFOCOM, 2004.
[19] I. Stoica, R. Morris, D. Liben-Nowell, and et al. Chord:

A Scalable Peer-to-Peer Lookup Protocol for Internet

330

Applications. IEEE/ACM Transactions on Networking,
1(1):17–32, 2003.

[20] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)

lookup performance for power-law query distributions

in peer-to-peer overlays. In Proc. of NSDI, pages 99–
112, 2004.

[21] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A

Decentralized Peer-to-Peer Web Cache. In Proc. of
ACM Symposium on Principles of Distributed Com-
puting, 2002.

[22] H. Shen. IRM: Integrated File Replication and Consis-

tency Maintenance in P2P Systems. In Proc. of IEEE
ICCCN, 2008.

[23] H. Shen and Y. Zhu. Plover: Proactive Low-overhead

File Replication in Structured P2P Systems. Journal
of Parallel and Distributed Computing (JPDC), 2009.

[24] Y. Zhu and Y. Hu. Efficient, Proximity-Aware Load

Balancing for DHT-Based P2P Systems. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS),
16(4), 2005.

[25] H. Shen and C.-Z. Xu. Hash-based Proximity Clus-

tering for Efficient Load Balancing in Heterogeneous

DHT Networks. Journal of Parallel and Distributed
Computing (JPDC), 2008. An early version appeared
in IPDPS, 2006.

[26] Z. Li, G. Xie, and Z. Li. Locality-Aware Consis-

tency Maintenance for Heterogeneous P2P Systems.

IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2008. Early version is appeared in Proc. of
IPDPS’07.

[27] Z. Xu and et al. Turning Heterogeneity into an

Advantage in Overlay Routing. In Proc. of INFOCOM,
2003.

[28] E. Zegura, K. Calvert, and S. Bhattacharjee. How to

Model an Internetwork. In Proc. of INFOCOM, 1996.

331

