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Abstract

In large-scale computational or P2P Grids, discovery of
heterogeneous resources as a working group is crucial to
achieving scalable performance. This paper presents a hier-
archical cycloid overlay (HCO) architecture with resource
clustering and discovery algorithms for efficient and robust
resource discovery in wide-area distributed Grid systems.
We establish program/data locality by clustering resources
based on their physical proximity and functional matching
with user applications. We further develop randomized prob-
ing and cluster-token forwarding algorithms. The novelty
of the HCO scheme lies in low overhead, fast speed and
dynamism resilience in multi-resource discovery. The paper
presents the HCO framework, new performance metrics, and
simulation experimental results. This HCO scheme compares
favorably with other resource management methods in static
and dynamic Grid applications. In particular, it supports
efficient resource clustering, reduces communications cost,
and enhances resource discovery success rate in promoting
large-scale distributed supercomputing applications.

1. Introduction

The popularity of the Internet as well as the availability

of powerful computers and high-speed network technologies

have led to what are popularly known as Grid computing.

Grid computing leverages a high-degree of resource shar-

ing in a distributed network environment. It enables the

sharing, selection, and aggregation of a wide variety of

resources including supercomputers, storage systems, data

sources, and specialized devices. Grid computing benefits

a variety of applications such as collaborative engineering,

data exploration, high-throughput computing, and distributed

supercomputing.
Overlay networks based on distributed hash table (DHT)

have been suggested to manage large-scale Grid re-

sources [16]. DHT overlay networks [18], [10], [23], [15]

map files to the nodes in a network based on a consistent

hashing function [7]. Most of the DHT overlays require

O(log n) hops per lookup request with O(log n) neighbors

per node, where n is the network size. A computing resource

is always described by a resource type (i.e. functionality)
such as CPU and memory, and resource attribute indicating

the quantity and special application requirement. To use

a DHT overlay for resource discovery in a Grid system,

all Grid nodes are organized into a DHT overlay. The

descriptors of available resources are regarded as files and

are distributed among the nodes. Resource queries are re-

garded as file lookups and are routed to the nodes having

the descriptors of the required resources. Therefore, DHT

overlays map the resource providers and consumers in Grids

in a distributed manner with high scalability.

In a wide-area Grid system, resource sharing and commu-

nication among physically close nodes enhance application

efficiency. In addition, we need to solve the problem of

increasing complexity in using heterogeneous resources in a

Grid system. Different resources, such as CPU and memory,

are always jointly requested and used. Resource clustering

based on functional matching with the demands of user

application facilitates a user’s resource discovery. We use

program/data locality to represent the phenomenon in which

resources are proactively clustered so that a node can always

locate physically close resources satisfying required func-

tionalities in its neighborhood on the overlay. It is desirable

to develop a resource management scheme that is able to

preserve the program/data locality.

However, the adoption of DHT overlays in most current

resource management schemes [3], [4], [8], [11], [1], [17],

[22], [12] cannot preserve program/data locality. First, direct

DHT construction on a Grid system breaks the physical

proximity relationship of nodes in the underlying IP-level

topology. That is, two nodes which are close in the DHT

overlay are not necessarily close nodes in the underlying IP-

level topology. Second, a node may not locate its required

multiple resources in its neighborhood on the overlay. If

a node needs m resources, at least m lookup messages

are needed, each of which traverses O(log n) hops in the

system-wide scope.

Moreover, most DHT-based solutions of multi-resource

management have limited scalability and fault tolerance.

Some solutions apply multiple DHT overlays to manage

specific resource groups [3]. This may result in signifi-

cant increase in management overhead and low dynamism-

resilience since node joins and departures lead to update

of multiple DHT overlays. Others apply a single DHT over

with one node responsible for one type of resources [4], [8],

[1], [5], [19]. They store resource descriptors in a few nodes,



resulting in imbalanced distribution of resource management

workload and loss of many descriptors in dynamism.

We desire to have a Grid resource management scheme

that is program/data locality-preserving (locality-preserving

in short) and highly scalable and dynamism-resilient.

To meet this demand, this paper extends from previous

work [15], [14], [12] on locality-preserving and dynamism-

resilient Grid resource clustering and discovery. We present

a new hierarchical cycloid overlay (HCO) architecture with

resource clustering and discovery algorithms for efficient

and scalable resource discovery. We establish program/data

locality by clustering resources based on their physical

proximity and functional matching with user applications.

We further develop randomized probing and cluster-token

forwarding algorithms. The novelty of the HCO scheme

lies in its low-overhead, fast and dynamism-resilient multi-

resource discovery. Within the authors’ knowledge, the HCO

scheme is the first work that preserves the program/data

locality in Grid resource management for high scalability

and efficiency.

The rest of this paper is structured as follows. Section 2

presents a concise review of representative resource man-

agement approaches for Grids. Section 3 specifies the HCO

architecture and applications. Section 4 presents the locality-

preserving properties of HCO, the resource discovery and

clustering algorithms, the algorithm to deal with dynamism,

and the randomized probing and cluster-token forwarding

algorithms. Section 5 reports the simulation experimental

results in both static and dynamic network environments.

The final section concludes with a summary of contributions

and discussions on further research work needed.

2. Related Work

DHT overlay networks [18], [10], [23], [15] have been

suggested to manage large-scale Grid resources. Mercury [3]

is a resource discovery protocol for routing multi-resource

range-based queries. It can also support explicit load bal-

ancing. To support multi-resource queries, Mercury uses

multiple DHT overlays. It uses one DHT for each resource,

and processes multi-resource queries in parallel in corre-

sponding DHT overlays. However, depending on multiple

DHT overlays leads to high overhead for DHT maintenance.

SOMO [22] is a scalable, efficient and robust infrastruc-

ture for resource management in DHT overlay networks.

SOMO performs resource management by relying on a tree

structure. It does so by gathering and disseminating system

metadata in O(log n) time with a self-organizing and self-

healing data overlay.

One group of approaches [4], [8], [1], [5], [19] organize

all Grid resources into one DHT overlay, and assign all

descriptors of one resource to one node. MAAN [4] is a

Multi-Attribute Addressable Network that extends Chord to

support multi-resource and range queries for grid informa-

tion services. MAAN addresses range queries by mapping

attribute values to the Chord identifier space via uniform

locality preserving hashing. It uses an iterative or single

attribute dominated query routing algorithm to resolve multi-

resource based queries. To facilitate efficient queries on a

range, Andrzejak and Xu proposed a CAN-based approach

for grid information services [1]. They proposed a number

of range query strategies and investigated their efficiency.

The approach also enhances the routing aspects of current

DHT-systems. SWORD [8] is a resource discovery service

for wide-area distributed systems. It locates a set of ma-

chines matching user-specified constraints on both static and

dynamic node characteristics. It has a technique for effi-

cient handling of multi-resource range queries that describe

application resource requirements. For scalable resource

monitoring and discovery in Grids, Cai and Hwang [5] pro-

posed a Grid monitoring architecture that builds distributed

aggregation trees (DAT) on a structured P2P network. By

leveraging Chord topology and routing mechanisms, the

DAT trees are implicitly constructed from native Chord

routing paths without membership maintenance. Most of

the single DHT-based approaches assign one node to be

responsible for all descriptors of one resource, leading to

imbalanced distribution of workload. If one of the nodes

fails in dynamism, many descriptors will be lost at a time.

Most DHT-based approaches focus on organizing resource

descriptors in DHT overlay based on individual resource

type. Some approaches focus on weaving all attributes

of a resource into one or a certain number of IDs for

resource clustering in a DHT overlay [11], [12]. Schmidt

and Parashar [11] proposed to use Hibert space filling curve

and Shen [12] proposed to use a locality sensitive hashing

function to map a multi-dimensional information space into

a one dimensional DHT identifier space.

However, few of the current approaches have devoted to

realizing the program/data locality to facilitate low-overhead

and quick resource discovery. The HCO scheme proposed

in this paper is novel in that it establishes program/data

locality which enables users to discover their required and

physically close resources from their nearby nodes on the

DHT overlay. Unlike most existing approaches, HCO is

based on a single DHT for multi-resource management. It

distributes workload of resource descriptor maintenance and

resource query processing in balance. Our previous work

SEMM [13] provides a preliminary study of exploiting a

hierarchical cycloid overlay for resource management. HCO

distinguishes itself by addressing detailed issues in resource

discovery and proposing strategies for locality-preserving,

dynamism-resilience and efficient resource discovery. These

features contribute to the high scalability and efficiency

characteristics of HCO in Grid resource management. Com-

prehensive simulation results confirm the high performance

of HCO.



3. Hierarchical Cycloid Overlay Network

We present below the architecture and processing layers of

HCO. This is a DHT-based hierarchy for locality-preserving

Grid resource clustering and discovery. HCO is built by

extending from the cycloid overlay proposed in [15]. Cycloid

is a lookup efficient overlay network generalized form the

cube-connected cycles (CCC) [9]. A d-dimensional cycloid

is built with at most n=d · 2d nodes. Like CCC, a cycloid

has a constant node degree equals to its dimension d.
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Figure 1. A HCO network built on top of Grid resource
clusters. A 3-dimensional cycloid overlay is shown to
manage at most 8 clusters (only 6 are shown). Nodes
at different cycles in cycloid manage different resource
clusters in order to preserve program/data locality in
distributed Grid computing (cluster mapping shown by
dashed lines).

The upper part of Figure 1 shows a 3-dimensional cy-

cloid. In general, it takes at most O(d) steps to lookup

a file. Each cycloid node is represented by a pair of in-

dices (k, ad−1ad−2 . . . a0), where k is a cyclic index and

ad−1ad−2......a0 is a cubical index. The cyclic index is an

integer ∈ [0, d−1], and the cubical index is a binary number

∈ [0, 2d − 1]. The nodes with the same cubical indices are

ordered by their k mod d on a small cycle called a cluster.

The node with the largest cyclic index in a cluster is called

the primary node of the cluster. All clusters are ordered by

their cubical indices mod 2d on a large cycle. The cubical

index represents the cluster that a node or an object locates,

and the cyclic index represents its position within a cluster.

An object is assigned to a node whose ID is closest to

its ID. The overlay network provides two main functions:

Insert(ID,object) stores an object to a node respon-

sible for the ID, Lookup(ID) retrieves the object through

DHT-based searching. Each node maintains a routing table

recording its neighbors in the overlay network for object

lookups. Most properties of cycloid can be found in [15].

In Figure 1, the resource nodes are shown at the bottom

Grid layer. Various nodes are grouped into different clusters

based on their physical proximity. All resource discovery

operations are conducted in the cycloid layer in a distributed

manner. The logical distance between node i and node j in

an overlay is measured by |IDi−IDj |. One major challenge

in resource clustering is to relate logical proximity to phys-

ical proximity of resource nodes. A landmark clustering is

adopted to generate proximity information [20]. We assume

m landmark nodes that are randomly scattered in the Grid.

Each node measures its physical distances to the landmark

nodes. A vector of distances < d1, d2, ..., dm > is used to

perform clustering. Two physically close nodes have similar

vectors. We use space-filling Hilbert curve [20], [2] to map

each m-dimensional landmark vectors to a real number. The

number is called the Hilbert number of a node denoted by

H. Its purpose is to preserve the physical proximity among

the nodes selected for the same cluster in HCO.
The HCO architecture builds a topology-aware cycloid

architecture on a Grid. Specifically, each node generates

its ID (H,H), where H is the consistent hash value of

its IP address. Recall that the first index indicates node

positions within a cluster and the second index differentiates

clusters. Therefore, physically close nodes with the same

Hilbert number are in the same cluster, and those with

similar Hilbert number are in nearby clusters. To build

each node’s routing table, HCO uses proximity-neighbor

selection technique [6]. That is, to choose a node for a

routing table entry among a number of satisfying nodes,

a node selects the physically nearest node. As a result, a

topology-aware cycloid is constructed, in which the logical

proximity abstraction derived from overlay matches the

physical proximity information in reality.

4. Locality-Preserving Grid Resource Manage-
ment

Using a flat DHT, resource descriptors are gathered in

different repository nodes based on resource type. Multi-

resource query with m resources leads to m messages being

routed in the system-wide scope, leading to high overhead.

In addition, it does not gather the descriptors of physically

close resources together, which otherwise can help locate

physically close resources more efficiently. This has posed

a challenge to achieving program/data locality, by which

a node can locate physically close resources for its multi-

resource query by only probing its nearby nodes in the DHT

overlay.
We propose locality-preserving resource clustering and

discovery using HCO. The idea is to map functional re-

sources in the same physical cluster to logically close

nodes to satisfy specific application demands. Taking ad-

vantage of the hierarchical cluster structure of HCO, the

Insert(ID,object) function is used to gather resource

descriptors within a cluster and distribute the descriptors

to all nodes in the cluster based on resource type. With

this clustering algorithm, the descriptors of physically close

nodes are grouped in the same cluster. In addition, the logical

distance between a node and a cluster on the HCO reflects

the physical distance between the node and the resources



whose descriptors are in the cluster. In other words, the

closer logical distance between a cluster and a node, the

closer physical distance between the resources grouped in

the cluster and the node. This facilitates a node to locate

physically close resources by probing its nearby nodes in

increasing proximity. Within a cluster, resource descriptors

are further grouped according to resource type. This supports

a node to discover resources based on its various demands.

Successful clustering leads to fast resource discovery for

various Grid applications. The Lookup(ID) function is

used to discover multiple resources. Thus, HCO achieves

program/data locality by supporting proximity-aware and

multi-resource discovery. The resources are discovered with

a balanced workload and reduced overhead. HCO employs

randomized probing algorithm and other strategies to deal

with dynamism. The resource discovery efficiency is further

enhanced by the cluster-token forwarding algorithm.

4.1. Locality-Preserving Resource Clustering

In general, resources required by a Grid application is

specified by a set of resources such as CPU, memory, band-

width, I/O subsystem, etc. An effective resource discovery

algorithm locates resources across a wide area based on a list

of predefined attributes. We specify each resource in node

i by a resource descriptor Dr, consisting of the following

4-tuple:

Resource Descriptor Dr =< RF, ID, RA, IP >,

where RF , ID and RA are the resource functionality,

identification and attribute. IP refers to the IP address of the

resource owner or requester. Resource requests and reports

are represented by such descriptors. For clarity, all node

indices are omitted in the descriptors.

HCO divides resource descriptors into categories based

on resource functionality, and assigns different nodes in a

cluster for different categories. In a DHT overlay, the objects

with the same ID are stored in the same node. Based on

this object assignment policy, HCO computes the consistent

hash value Hr of a resource r, and uses IDr = (Hr,Hi) to

represent the ID of resource r in node i. Each node applies

Insert(IDr,Dr) to periodically store the descriptors of

its available resources in a node, which is called directory
node. As a result, the descriptors of the physically close

resources with the same functionality are stored in the same

directory node. Different nodes in a cluster are responsible

for resources with different functionalities. Furthermore,

resources in the directories stored in nearby clusters are

located in physically close nodes.

We use a directory node’s resource to represent the

resource r whose Dr is stored in the directory node. The

logical distances between node i and a number of directory

nodes represent the physical distances between node i and

the directory nodes’ resources. Therefore, if a node has

resource options in a number of directory nodes, it should

choose the resource in the logically closest directory node

in the overlay. Theorem 4.1 shows the feature of HCO.

Theorem 4.1: If nodes j and k are directory nodes of

resource requested by node i, and IDi � IDj < IDk or

IDi � IDj > IDk, then directory node j’s resources are

physically closer to node i than directory node k’s resources.

Proof: If nodes j and k are directory nodes of a specific

resource, nodes j and k must be in different clusters. In

HCO, the logical proximity abstraction derived from over-

lay matches the physical proximity information in reality.

Therefore, if IDi � IDj < IDk or IDi � IDj > IDk,

node j is physically closer to node i than node k. A node

reports its resource descriptors to a node in its cluster, so

directory node j’s resources are physically closer to node i
than directory node k’s resources.

The load balancing algorithm in [14] can be further

adopted to achieve more balanced descriptor distribution

between the directory nodes. Since this is not the focus

of this paper, we do not present the details of the load

balancing.

4.2. Locality-Preserving Resource Discovery

When node i queries for multiple resources, it sends a

request Lookup(Hr,Hi) for each resource r. Each request

will be forwarded to its directory node in node i’s cluster.

If the directory node has no requested descriptor, it probes

nodes in nearby clusters. Theorem 4.1 indicates that the

resources of directory nodes in closer clusters are physically

closer to the requester. Hence, a node should probe its

logically close neighbors in order to locate physically close

resources.

We present the successor and predecessor clusters of node

j’s cluster as sucCluster(j) and preCluster(j), respectively.

Firstly, a node probes the directory nodes in these clus-

ters simultaneously. Then, the directory nodes in sucClus-
ter(sucCluster(j)) and preCluster(preCluster(j)) are probed.

This process is repeated until the desired resource descriptors

are found. However, such sequential probing is not robust

enough to handle dynamism where nodes join and leave the

system continually.

We incorporate the algorithm in [14] and develope

proximity-aware randomized probing algorithm (PRP) to

resolve the problem. In the PRP algorithm, a node first

applies sequential probing. If no response is received during

a predefined time period, the node randomly chooses two

nodes in an increasing range of proximity and repeats the

probing process. Since resource descriptors are allocated to

different nodes in a cluster based on resource functionality,

the probed nodes should be the directory nodes of the

requested resource. Based on the resource clustering algo-

rithm, we know that the probed nodes should have the closest

cyclic ID to the probing node. Therefore, the probing node



can reach them by targeting an ID composed of its cyclic

ID and a randomized cubical ID chosen in an increasing

proximity.

4.3. An Example of the HCO Algorithms

Figure 2 shows an example of using HCO for locality-

preserving resource clustering and discovery. Based on the

ID determination policy in HCO, physically close nodes are

grouped in a cluster, and the resource descriptors of all nodes

in each cluster is distributed among the nodes based on

resource functionality. Physically close nodes < a, b, c, d >
are mapped to the same cluster, and other two groups of

physically close nodes < e, f, g, h > and < i, j, k, l > are

mapped to other two clusters. In each cluster, the resource

descriptors are further grouped based on resource type. For

instance, the memory descriptors of nodes < a, b, c, d > are

stored in node a, and the disk descriptors of these nodes are

stored in node b.

The requests on memory and disk resources of nodes

< a, b, c, d > will also be forwarded to nodes a and b,

respectively. Specifically, when a node in a cluster needs

memory and disk resources, it applies Lookup(3,200)
for memory and Lookup(5,200) for disk space. The

requests are forwarded to nodes a and b respectively. These

nodes check their own directories for the descriptors of the

requested resource. If they cannot find the descriptors, they

probe nodes in other clusters using the PRP algorithm. For

example, node b (5,200) probes nodes by targeting (5,199)

and (5,201). If it does not receive reply within a predefined

time period, it randomly generates two cubical indices within

100 proximity range. Suppose the two randomized number

is 150 and 250, the node probes nodes by targeting (5,150)

and (5,250). If the requested resource is still not found, the

node increases the proximity range and repeats the same

process.

4.4. Dynamism-Resilient Resource Management

In addition to exploiting the physical proximity of the

network nodes to minimize operation cost, an effective

resource management scheme should also work for Grids

in a dynamic environment. For example, a node depar-

ture generates outdated resource descriptors, or a failed

directory node makes the resource descriptors unavailable.

HCO uses cycloid self-organization mechanism to cope with

these problems. Specifically, nodes transfer descriptors when

joining or leaving the system.

When node i joins in the system, it reports its resources

via Insert((Hr,Hi),Dr), and receives the descriptors

in its responsible ID region from its neighbors. When a

node departs from the system, it transfers descriptors to its

neighbors. For example, if node (2, 200) joins the system

in Figure 2, then the descriptors in the range (0, 200) and
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Figure 2. Example use of the HCO network for global-
scale Grid resource clustering and discovery. Grid re-
source clusters: < a, b, c, d >, < e, f, g, h > and <
i, j, k, l > are created and managed by overlay nodes
at three cycles in the cycloid hierarchy. Only partial
connecting edges of the HCO overlay are shown.

(2, 200) are transferred from node (3, 200) to node (2, 200).
If node (3, 200) leaves, it transfers its descriptors to node

(10, 200) or (5, 200) based on the ID closeness. If node

(3, 200) is the only node in its cluster, it transfers its

descriptors to its closest node in its closest cluster. The

consistent hashing for key assignment protocol requires

simple re-assignment of resource descriptors.

HCO resorts to periodical resource reporting to avoid

useful descriptors from being lost in the clustering and

discovery process. If a directory node has failed, its resource

descriptors are lost. Within T , the lost resource descriptors

will be reported to a new directory node. To prevent the de-

scriptor space from being flooded with outdated descriptors,

the directory nodes execute garbage collection periodically.

Consequently, instead of relying on specific nodes for re-

source descriptors, HCO always stores a resource descriptor

in a directory node, and the Lookup(Hr,Hi) requests can

always be forwarded to the node.

4.5. Cluster-Token Forwarding Algorithm

We introduce cluster-token forwarding algorithm to fur-

ther enhance the efficiency of the HCO scheme. Like

most multi-resource management approaches, HCO uses m
lookups for a query of m resources. Based on cycloid routing

algorithm, all lookup message are firstly routed within a

cluster sequentially. Thus, rather than using m lookups, a

node can combine the m lookups into one lookup message

to be sequentially routed within a cluster. Moreover, since

a node with available m resources needs m Insert()
messages for resource clustering, which are routed in the

same manner as the Lookup() messages, the two kinds of

messages can be integrated. Furthermore, since the messages

of all nodes in a cluster are routed in the same manner and

the nodes need to report their available resources periodi-

cally, the messages for resource clustering and discovery of

all the nodes can be combined.



Based on the observation, the cluster-token forwarding

algorithm accumulates the messages of available resources

and resource requests of all nodes in one cluster. In a

nut shell, the primary node in each cluster periodically

generates a token which circulates along its cluster. Each

node receiving the token inserts the resource descriptors of

its available resources and resource requests into the token,

absorbs the descriptors of available resource and resolves the

resource requests in the token that are in its responsibility.

For example, if primary node i needs multiple resources

represented by r1, r2, ..., rm1, and it has available resources

represented by δr1, δr2, ..., δrm2, it generates the IDs of the

resources IDr1 , ..., IDrm1 and IDδr1 , ..., IDδrm2 , in which

IDrm̃ = (Hrm̃ ,Hi)(1 � m̃ � m1 + m2).

The resource descriptors are ordered by Hr in the form of

< D1, D2, · · · , Dm1+m2 > .

Next, node i sends the token to its successor j.

Based on the HCO resource clustering algorithm, a node

is the directory node of the resources whose Hr satisfies

IDpre.cyc � Hr � IDsuc.cyc,

where IDpre.cyc and IDsuc.cyc represent the cyclic index of

the node’s predecessor and successor. Therefore, in order to

avoid unnecessary checking, node j only needs to check

the Dr in the token satisfying this condition. For those

Dr of requests, if node j has resource descriptors of the

required resources, it sends the resource locations to the

requesters, and removes the Dr from the token. For those Dr

of available resources, node j absorbs the Dr. Afterwards,

it adds its own Dr of available resources and requests to the

token, and forwards the token to its successor. This process

is repeated until the primary node receives the token back,

which means that the token completes one circulation.

At this time, the token has no Dr of available resources

and the Dr left are for resource requests. The primary

node uses PRP algorithm to forward the token to another

cluster. At the cluster, this process is repeated until the

token is empty, i.e. all requested resources are discovered.

Therefore, in the algorithm, only one message is generated

periodically. Combining a number of messages into a single

message for forwarding within a cluster and between clusters

significantly reduces cost.

5. Performance Evaluation

We designed and implemented a simulator in Java for

evaluation of the HCO scheme with the cluster-token for-

warding algorithm. The dimension of the cycloid simulated

is 11. Thus, the DHT overlay network can accommodate

4096 nodes. We compare the performance of HCO with

MAAN [4], Mercury [3], and SWORD [8]. To be com-

parable, we used Chord for attribute hub in Mercury and

SWORD. The experimental results show advantages in using

HCO over the competing overlays for the same purpose.

We assumed that there are 11 types of resources, and

used Bounded Pareto distribution function to generate the

resource amount owned and requested by a node. This

distribution reflects the real world where there are available

resources that vary by different orders of magnitude. We

generated 1000 requests. The number of resources in a

request ranges from 1 to 5 with step size of 1. We use

HCO/o to represent HCO without the cluster-token forward-

ing algorithm. We used a transit-stub topology generated by

GT-ITM [21] with approximately 5,000 nodes.

We evaluate the effectiveness of the resource management

approaches in the following metrics:

(1) Cumulative distribution function (CDF) of the percent-
age of discovered resources. This reflects the effec-

tiveness of a resource discovery algorithm to discover

requested resources physically close to requesters.

(2) Physical communication cost. The communication cost

is directly related with message size and physical rout-

ing path length. we use the product of these two factors

to represent the communication cost. It is assumed that

the size of a resource request message or response

message is 1 unit.

(3) Resource request success rate. This is the percent of

resource requests that arrive at their directory nodes

successfully. Due to dynamic environment, some re-

quests may fail to reach their directory nodes. This met-

ric represents the capability of a resource management

scheme to deal with dynamism.

(4) The number of visited nodes. Node dynamism may lead

to more visited nodes in the probing phase in HCO. We

use the metric to reflect the impact of dynamism on the

efficiency of a resource management scheme.

5.1. Cost in Grid Resource Management

In this experiment, we randomly generated 5000 resource

requests, and recorded the distance between the resource

provider and requester of each request. Figure 3(a) shows

the CDF of the percentage of allocated resources against

the physical hop distance. We can see that HCO is able

to locate 97% of total resource requested within 11 hops,

while others locate only about 15% within 10 hops. Almost

all resources are located within 15 hops from requesters

in HCO, while 19 hops in others. The results show that

HCO can locate most resources within short distances from

requesters, but others locate most resource in long distances.

The more resources are discovered in shorter distances, the

higher efficiency of Grid applications. The results confirm

the unique locality-preserving feature of HCO to enable

users to locate physically close resources.

The communication cost also plays an important role in

resource management efficiency. Figure 3(b) and (c) plot
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Figure 3. Communication cost of different resource management schemes.

the physical communication cost for resource discovery

and clustering versus the number of resources in a query,

respectively. From these figures, we can see that the cost

of each scheme increases with the number of resources

in a query. The cost of MANN grows dramatically faster

than others, while HCO and HCO/o only have a marginal

increase. Recall that MAAN needs two messages for each re-

source discovery and resource reporting, one is for resource

type and the other for resource’s attribute, leading to much

higher communication cost. The results illustrate that HCO

and HCO/o incur much less physical communication cost

than others by arranging nodes to contact their physically

close nodes. The results also show that the cluster-token

forwarding algorithm is effective in reducing communication

cost. SWORD and Mercury do not consider the proximity

in the resource management process, so they generate much

higher cost than HCO and HCO/o.

5.2. Performance in a Dynamic Environment

In this experiment, we run each trial of the simulation

for 20T simulated seconds, where T is a parameterized

resource clustering period which was set to 60 seconds.

We ranged node arrival/departure time rate from 0.1 to 0.5

with 0.1 step size, and generated 5000 resource requests

randomly. For instance, there were one node join and one

node departure/failure every 2.5 seconds at rate 0.4. The

resource join/departure rate was modelled by a Poisson

process with a rate of 0.4 as in [15]; the resource type in

requests are randomly distributed.

Figure 4(a) plots the resource request success rates against

node arrival/departure rate. The success rate decreases

monotonically in all resource management schemes. MAAN

and SWORD incur lower success rates than HCO and

Mercury. Because of dynamism, some requests may be lost.

More requests fail to arrive at their destinations success-

fully when the node arrival/departure rate increases, leading

to decrease of success rate. HCO and Mercury distribute

resource descriptors among all nodes in the system, while

MAAN and SWORD mainly depend on 11 nodes, so any

departure in the 11 nodes will result in the loss of a high

volume of resource descriptors, resulting in sharp drop-off

of success rate.

The efficiency performance in dynamism is also reflected

in the number of visited nodes for resource requests. Fig-

ure 4(b) shows the number of visited nodes for requests.

MAAN has to visit more nodes than others due to its doubled

lookups per query. SWORD and Mercury visit fewer nodes

than HCO. This is expected because HCO has an extra

probing phase to probe nodes for resources. In a dynamic

environment, the number of nodes probed in the probing

phase will be more than that of static environment due to

node joins and departures. These results verify the superior

performance of Mercury and HCO, compared with MAAN

and SWORD in handling network dynamism.

6. Conclusions

Rapid development of Grids demands a scalable and

efficient resource management scheme to sustain distributed

performance in a dynamic wide-area environment. The

major contributions of this work are summarized below:

(a) This paper presents a HCO by extending the cycloid

DHT overlay. The HCO pools physically close resource

together in logically-close clusters. (b) We have developed

locality-preserving algorithms to enable users to dynamically

discover physically close resources with required function-

alities in their neighborhood. Most previous schemes fail to

preserve the locality and require users to discover resources

in the system-wide scope. (c) The HCO scheme uses a single

large DHT overlay with low overhead. It achieves balanced

workload distribution and resilience to resource failure. Most

previous schemes use multiple DHT-based overlays causing

high overhead or one DHT overlay causing workload im-

balance. Both of those are more suitable for static Grid

configurations with limited applications. (d) The cluster-

token forwarding algorithm enhances system efficiency. Sim-

ulation results reported demonstrate the superiority of using

HCO in Grid reconfiguration for large-scale and dynamic

applications.

The proposed framework is still under intensive system

and middleware development. For further research, we en-

courage continued effort be conducted in the following as-

pects: (1) Prototyping of the proposed HCO network for Grid
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Figure 4. Effectiveness of resource management schemes in dynamism.

resource management. (2) Developing benchmark programs

to test the efficiency and validate the claimed advantages. (3)

Apply virtual machine techniques [16] to extend the HCO

model to secure and safeguard Grid applications. (4) Inte-

grate P2P and Grid technologies with machine virtualization

techniques for global-scale Internet applications. These four

areas post wide open problems that are crucial to promote

large-scale distributed computing in the future.
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[19] S. Suri, C. Töth, and Y. Zhou. Uncoordinated load balancing
and congestion games in P2P systems. In Proc. of P2P, 2004.

[20] Z. Xu, M. Mahalingam, and M. Karlsson. Turning hetero-
geneity into an advantage in overlay routing. In Proc. of
INFOCOM, 2003.

[21] E. Zegura, K. Calvert, and et al. How to model an Internet-
work. In Proc. of INFOCOM, 1996.

[22] Z. Zhang, S.-M. Shi, and J. Zhu. Somo: Self-organized
metadata overlay for resource management in P2P DHT. In
Proc. of IPTPS, 2003.

[23] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: An Infrastructure for Fault-
tolerant wide-area location and routing. J-SAC, 12(1):41–53,
2004.


