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Abstract

One primary goal in P2P networks is to provide high
search performance for users to retrieve interested doc-
uments distributed over nodes. Document indexing is the
key to search performance. However, it is challenging to
guarantee high search performance with small document
index. In this paper, we present iSearch which aims to build
small document index to deliver high search performance
on Gnutella-like P2P networks. The number of index terms
per document is typically 4, which dramatically reduces
associated cost in index storage and dissemination. iSearch
explores two options to build index: top term-based indexing
(TTI) and query-driven indexing (QDI). TTI bases selection
of document index terms on term statistics, while QDI
progressively refines document index by past queries. Our
simulations show that that TTI and QDI improve search
performance over random walk significantly. By dynamically
adapting index based on past queries, QDI outperforms TTI
greatly, by up to 2× recall improvement.

1. Introduction

Search techniques proposed for Gnutella-like P2P systems
fall into two main categories: blind search (without index
assisting) and index-assisted search. Blind search includes
query flooding and random walk [1]. Query flooding, while
simple and failure-resilient, is unscalable by flooding queries
over the overlay links. Random walk, blindly forwarding
queries to randomly-chosen neighbors for answers at each
step, could incur high search latency. By contrast, index-
assisted search [2], [3] builds a distributed index that directs
queries to the nodes which are likely to have answers for
the queries, thereby enhancing search performance.

Key to index-assisted search is maintaining “good” index
among nodes. Good index should be informative yet com-
pact, providing instructive guidance on query routing while
incurring small storage cost on each node and low bandwidth
cost in index distribution and maintenance. This paper argues
that P2P search can guarantee high performance with a really
small document index, and presents iSearch that explores
options for building such a small document index.

1.1. Motivation

Our work is motivated by the following observations.
First, many information retrieval (IR) systems retrieve rel-
evant documents for queries based on vector space model
(VSM), where documents and queries are represented as
term vectors (each term is associated with a term weight) and
their relevance scores are computed using an inner product.
Equation 1 calculates the relevance score for a document D
and a query Q, where t is a term appearing in both D and Q,
dt is t’s weight in D, and qt is t’s weight in Q. Documents
with high relevance score are deemed to be relevant to the
query. By VSM, terms with heavy weight (which we call
top terms in the rest of the paper) in the document dominate
the relevance score while terms with light weight contribute
marginally to the relevance score. Therefore, it is wise to
use top terms as document indices.

REL(D,Q) =
X

t∈D,Q

dt·qt (1)

However, it is costly to use all top terms in a document
as its index terms since the number of top terms is not
presumably small. For example, in a set of 80, 008 TREC-
1, 2 AP documents [4], we extracted a term vector for each
document using VSM, sorted the terms in decreasing weight
order, and calculated the relative weight of each term to the
biggest term weight in the document. We then averaged this
normalized term weight across all documents for each term
rank, and plotted the mean for each term rank in Figure 1.
The y-axis is in log scale. The weight of top 50 ranked terms
drops very fast and the curve for the rest of terms is “flat”,
showing that a set of top terms (i.e., 50) with relatively heavy
weight, are central to a document. However, even taking this
set of top terms as document indices still incurs nontrivial
index size per document 1.

Second, user queries are generally short, mostly con-
taining 2-3 unique terms [5]. From perspective of user
queries, a document index does not need to include all
its top terms. Ideally, those top terms not appearing in
queries should be excluded from document indices, which

1. The average document term vector size for the TREC document
collection is 179 after all words are stemmed and stop words are removed.
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will not compromise search results but substantially reduces
associated costs. Figure 2 shows CDF of a set of 50 TREC-3
ad hoc queries with respect to fraction of query terms that
appear in top K ranked terms of their relevant documents in
the TREC-1, 2 AP document corpus. Note that query terms
are dispersed among top 50 ranked terms of their relevant
documents. This indicates that simply choosing several top
terms of a document as its indices is insufficient.
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Figure 1. Ranked term weight for the TREC documents,
normalized to the biggest term weight in each docu-
ment.
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Figure 2. Consider a query Q and its relevant doc-
ument set R = {D1, · · ·, Dm}. The number of query
terms intersecting with Di’s top K ranked terms is Si

(0≤Si≤|Q|), then the expected fraction of query terms
lies in top K ranked terms of Q’s relevant documents is
Frac = 1

m

∑m
i=1

Si

|Q| . If Frac is larger, indexing a docu-
ment by top ranking terms is more effective. Otherwise,
it is not so effective as expected.

Third, user queries have significant locality: 30-40%
queries are repeated queries and query repetition frequency
follows a Zipf distribution [6]. Also, most users submit
queries consisting of terms from a small lexicon, resulting
in similar queries or common terms in their queries. Finally,
like-minded groups of users on the Internet search for the
same sorts of things [7]. Users with common interests could
submit same or similar queries.

To summarize, the first observation shows that top terms
(top ranked by term weight) are good index term candidates
for documents. The second observation suggest that it be
overkill to index a document by using a complete list of
its top terms. However, a small index composed of several
“pre-determined” top terms does not suffice to characterize
a document for different queries as query terms are indeed
dispersed among the full top term lists of the relevant
documents pertinent to the queries. For different queries,
the set of index terms in a document should be different.
That is, index terms of a document should be dynamically
adjusted for different queries, if it is not mission impossible.
The last two observations imply that past queries can assist
in document indexing due to query locality and similarity.
Exploiting past queries opens the door to dynamically ad-
justing index terms.

Based on the above observations, we propose iSearch
which exploits both term statistics and query locality to build
document index. iSearch aims to deliver high search perfor-
mance while using a very small number of dynamically-
chosen top terms as a document index, e.g., 4 representative
terms.

In particular, we make the following contributions:

• We explore two options for building document indices:
top term-based indexing (TTI) and query-driven in-
dexing (QDI). We point out that a very small set of
top terms are capable of indexing a document without
compromising search results.

• We design iSearch which uses past queries to progres-
sively shape document indices and exploits attenuated
bloom filters [8] to maintain distributed indices at each
node. iSearch w/ QDI is responsive to change of query
locality by dynamically adapting document indices.

• We evaluate the performance of iSearch using TTI
and QDI respectively, and compare their performance
against random walk and SETS [11]. Our simulations
show that both TTI and QDI dramatically improve
search performance over random walk. QDI outper-
forms SETS when searching a small fraction of nodes.
Moreover, QDI significantly outperforms TTI, by up to
2× recall improvement.

1.2. Caching vs. iSearch

Caching has been shown effective to Zipf distributed
queries. We argue that caching is orthogonal to iSearch.
Caching alone has three main limitations which can be
addressed by iSearch: (1) Search systems exploiting cached
query results provide no guarantee of data freshness and high
recall. (2) As the number of objects exponentially increases
and the object size increasingly grows, caching needs to
address a number of issues such as cache storage, cache
placement, cache replacement, and so forth. (3) Although
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caching is effective to repeated queries, it remains open
whether caching is cost-effective for similar queries.

Roadmap. The remainder of the paper is structured as
follows. Section 2 presents design of iSearch. Section 3
describes experimental setup and provides experimental re-
sults. Section 4 gives a brief review of related work. We
conclude the paper in Section 5.

2. Design

2.1. Design Goals

iSearch has the following design goals:

• Retaining the overlay structure. iSearch does not alter
the simple yet robust overlay structure of Gnutella-
like P2P networks, and relies on continuously refined
distributed indexes to improve search performance.

• Small index size. iSearch uses a very small number
of index terms (i.e., about 4-5 terms) per document
without compromising search results while reducing
index storage and maintenance cost.

• High search performance. iSearch provides high re-
call for queries while contacting a relatively small
percentage of nodes per query processing.

For the sake of clarity, in the paper we use top terms
to represent top ranked terms ordered by term weight in
a document. In other words, top terms in a document are
those terms whose weight (assigned by VSM) is over some
threshold value, and they are central to the document.

2.2. Choosing Document Index Terms

Central to iSearch is to determine a small set of index
terms for each document. iSearch explores two options: top
term-based indexing (TTI) and query-driven indexing (QDI).
In practice, iSearch starts with TTI, and then operates with
QDI which progressively refines document indices by past
queries. In what follows, we discuss these two options in
turn.

For each document D on peer P , P uses VSM to
extract a term vector where each term is associated with a
weight. Term t’s weight is assigned by using “dampened” tf
scheme [9] in the form of dt = 1+log ft, where ft is t’s term
frequency in D. The main advantage for the “dampened”
tf term weighting is that it does not require global term
statistics, which is important especially for dynamic P2P
environments.

TTI bases choice of index terms solely on term statistics.
By TTI, P sorts D’s term vector in decreasing weight
order and chooses top K ranked terms (or top K terms)
as D’s index terms. K is very small, typically of about 4-5.
However, as discussed earlier, simply choosing several top
terms as document indices is not optimal as query terms

are dispersed among the top term lists of their relevant
documents. On the other hand, using the full top term list
of a document as index terms is inefficient, as a large index
size increases index storage and distribution cost.

The selection of index terms by QDI takes into account
both term statistics and past queries. To work with QDI, each
peer P maintains a query cache which stores past queries.
Each cache entry includes query ID, query term vector, and
timestamp. Query ID is generated by hashing the set of query
terms sorted in alphabetical order. Most user queries consist
of 2-3 terms, and thus the cache entry is expected to cost
modest storage. P learns past queries in two ways: (1) When
P sees a new query Q during query routing, P caches Q; (2)
P exchanges with its neighbor nodes periodically for past
queries by gossip messages. The query cache is actually
split into two partitions: Learned Partition (LP) and To-be-
learned Partition (TP). TP holds queries that have not been
used for document index shaping while LP contains those
that have been used for document index shaping. Past queries
are evicted from LP based on their timestamps.

Each peer independently and periodically shapes docu-
ment indices using queries in TP. After shaping document
indices, queries in TP will be moved into LP which may
cause query eviction. The basic idea behind QDI is that it
re-ranks document terms based on queries in TP and selects
the resulting top K ranked terms as new document index
terms.

In order to re-rank terms for a document D, QDI needs
to calculate a score for each term t ∈ D using queries
in TP. In fact, only top X terms (ranked by term weight)
are considered in the score calculation for D. X , on one
extreme point, can be the number of unique terms in D.
QDI uses a term weight threshold to exclude those terms
with light weight from score calculation and re-ranking
since these terms contribute marginally to relevance score
as shown in Equation 1. Excluding trivial terms from the
score calculation is beneficial: (1) Reducing calculation cost,
and (2) Minimizing interference of trivial terms in document
indices. For example, if a trivial term t ∈ D appears in many
queries, the resulting score for t may be high enough to be
chosen as D’s index term. Based on Equation 1, if no top
terms of D are in these queries, D is unlikely to be relevant
to these queries due to low relevance score. So, it is unwise
to use t as D’s index term.

Assume the set of queries in TP is ψ = {Q1, · · ·, Qm}.
The score for term t ∈ D is computed by

Score(t, ψ) = max(Simt(D,Qi))· logQF (t, ψ) (2)

Where QF (t, ψ) is t’s query frequency representing
number of queries in ψ that contain t, and Simt(D,Qi)
measures similarity of D to Qi with respect to t.

Simt(D,Qi) =
{ |D∩Qi|

|Qi| if t ∈ Qi

0 otherwise
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Intuitively, if a large fraction of query Qi’s terms fall
in D’s top term list (which contains X terms with heaviest
weight), then D is very likely to be relevant to Qi according
to Equation 1. Consequently, the top term t, if appearing in
Qi, is a good index term candidate for D. This accounts for
the first part of Equation 2’s right component. Moreover, if
many queries contain a top term t, then t is a good index
term candidate for D. This accounts for the second part of
Equation 2’s right component, though we use log to avoid
overemphasizing impact of t’s query frequency.

A nice property of Equation 2 is that the score calculation
is accumulative. That is, we do not need to keep and go
through the whole history of past queries to update a term’s
score upon every new set of queries in TP. This is two-fold:
(1) Queries in LP can be freely evicted, and (2) A term’s
score is continuously updated upon a new set of queries in
TP. Thus, QDI works in an iteration-based manner: A new
iteration starts with an empty TP. Then, the peer populates
its TP using queries learned from query routing and gossip
messages. At the end of the iteration, QDI is performed
to update term scores for each document and then queries
in TP are demoted to LP. Note that the iterations across
the nodes are unnecessarily synchronized. Each peer can
independently trigger QDI process.

To assist in updating term scores, each peer needs to
maintain per-term data structures for each local document
D, which includes HistSim(t ∈ D) = max(Simt(D,Qi))
(the maximum value of similarity of D to queries in past
iterations, with initial value of zero) and HistQF (t ∈ D)
(the query frequency in past iterations, with initial value
of zero). Each peer also maintains a per-document data
structure called Term Score Ranking List (TSRL) which
is initially empty. TSRL contains tuple < t,HistQF (t ∈
D),HistSim(t ∈ D), score >, sorted in decreasing order
of score. Algorithm 1 shows term score update for document
D at peer P upon a new set ψ of recent queries. QDI differs
from TTI in that it re-ranks a document’s top terms by their
scores instead of term weight and chooses the top K ranked
terms with highest scores in its RTSL as document index
terms.

2.3. Building Distributed Document Index

iSearch distributes document indices among peers using
attenuated bloom filters (ABF). Each peer P maintains an
ABF for each of its neighbor nodes. An ABF with depth d
is a multi-level of d identically-sized bloom filters where the
i-th level bloom filter holds document index information at
nodes i hops away from P . Consider an ABF associated with
P ’s neighbor node R. The 1-st level bloom filter contains
the document index terms at R, which is one hop way along
the neighbor link P → R. The 2-nd level bloom filter
summarizes the document index terms at nodes two hops
away along the neighbor link P → R (i.e., R’s neighbor

Algorithm 1 P .updateScore(D, ψ)
1: R← D’s TSRL
2: L← D’s top term list by pruning those terms with light weight
3: for each t∈L do
4: qf = (t∈R) ? HistQF (t ∈ D) : 0
5: sim = (t∈R) ? HistSim(t ∈ D) : 0
6: for each Qi∈ψ do
7: if t ∈ Qi then
8: qf++
9: if t /∈ R then

10: sim = Simt(D,Qi)
11: score = sim× log qf
12: insert < t, sim, qf, score > into R
13: else
14: if Simt(D,Qi) > sim then
15: sim = Simt(D,Qi)
16: end if
17: score = sim× log qf
18: update t’s tuple in R with < t, sim, qf, score >
19: end if
20: end if
21: end for
22: end for
23: sort R in decreasing order of score
24: D’s TSRL ← R

nodes excluding P ). The 3-rd level bloom filter aggregates
the document index terms at nodes three hops away along
the neighbor link P → R, and so on.

Now we present how peers collectively distribute doc-
ument indices using ABFs. We here use QDI to choose
document index terms. As described in Algorithm 2, each
peer P generates a bloom filter based on its local documents,
and sends the bloom filter to all its neighbors with level pa-
rameter of 1. Each peer receives from all its neighbor nodes
messages each containing a bloom filter and level value, and
stores the received bloom filters on the corresponding ABFs
(lines 1-4 in Algorithm 3). If the level value l is less than the
depth of ABFs, the peer merges corresponding bloom filters
to produce a new bloom filter and sends the new bloom filter
to its corresponding neighbor node with level value of l+1
(lines 8-17).

Algorithm 2 P .genAndSendLocalBF(int K)
1: BloomFilter bf ← an initialized bloom filter with all bits set to zero
2: for each document D ∈ P do
3: X ← top K ranked terms in D’s TSRL
4: for each term t ∈ X do
5: bf.insert(t) // insert t into the bloom filter
6: end for
7: end for
8: level = 1
9: Message M = {bf |level} // | is a concatenation operator

10: for each neighbor Ni do
11: send M to Ni
12: end for

To summarize, the process of building the distributed
document index is essentially an outward propagation of a
local bloom filter to nodes within a radius of d hops from
the source peer of the bloom filter. An ABF is an aggregate
of such bloom filters from different peers. As higher-level
bloom filters in ABFs are constructed from union of lower-
level bloom filters, the false positive rate increases at high-
level bloom filters. As a result, lower-level bloom filters
have a narrower but more accurate view of document indices
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Algorithm 3 P .createABFs(int level)
Require: d is depth of ABFs
Require: {N1, · · ·, Nm} are P ’s neighbors
1: for i = 1 to m do
2: receive M = {bf |level} from Ni
3: ABFNi

[level] = bf // store bf for Ni at this level of ABF
4: end for
5: if level ≥ d then
6: return
7: end if
8: for i = 1 to m do
9: BloomFilter bf ← initialized with all bits set to zero

10: for j = 1 to m do
11: if i �= j then
12: bf = bf ∪ ABFNj

[level] // ∪ is a merge operator for
bloom filters

13: end if
14: end for
15: Message M = {bf |level + 1}
16: send M to Ni
17: end for

nearby while higher-level bloom filters have a broader but
rougher view of document indices at remote nodes.

As a final point, the small index size achieved by iSearch
is beneficial when coupled with ABFs: Fewer index terms
per document decrease either bloom filter size (i.e., thus
reducing index storage and distribution cost) or the false
positive rate in ABFs (i.e., lowering the probability of
forwarding a query toward a ”deceptive” direction during
query routing, and thus improving search performance).

2.4. Using Document Index to Route Queries

As mentioned earlier, each peer associates an ABF with
each of its neighbor links. Upon receiving a query, the
peer first evaluates the query against its local documents.
If any documents are deemed to be relevant to the query
(according to some relevance threshold), the peer forwards
the responses to the querying node. If the TTL of the query
message is above zero, the peer chooses a neighbor as the
query’s next hop.

The next hop for the query is chosen by examining a
set of ABFs level-by-level on those neighbors to which the
peer has not forwarded the query before. The peer checks
the first level of the ABFs. If a bloom filter covers all the
query terms, it is likely that the desired documents are one
hop away and the query is forwarded to the corresponding
neighbor. If no bloom filter matches the query terms, the
peer looks for a match in the 2nd-level of each ABF. As
before, if a match is found, the query is forwarded to the
corresponding neighbor. Otherwise, the peer examines the
next levels of the ABFs. If no matching neighbor is found
after checking all the levels of the set of ABFs, the peer
selects a neighbor whose first-level bloom filter has the
highest hit ratio of the query terms, as the next hop.

During query forwarding, bookkeeping techniques are
used to sidestep redundant paths. Each query is assigned
with a globally unique identifier GUID by its initiator node,
and each peer keeps track of the neighbors to which it has

forwarded the query with the same GUID. The next hop
selection algorithm disregards the neighbors to which the
query has been forwarded before. If a peer has already sent
the query to all its neighbors, to ensure forward progress,
the peer flushes the bookkeeping state for this query and
forwards the query to a randomly-chosen neighbor.

2.5. Maintaining Distributed Document Index

The process of maintaining document indices is similar to
that of building document indices, except that it is performed
in a bandwidth-efficient manner. The purpose of maintaining
document indices is to keep distributed document indices
up-to-date.

Consider ABFs with depth of d. When a peer updates
index terms of its local documents, the peer generates a new
local bloom filter, calculates bit differences from its old local
bloom filter, and propagates the bit differences in a form of
diff compression outwards to every node within d hops from
itself. In addition to the ABFs associated with each outgoing
neighbor link, each peer also keeps a copy of ABFs that are
maintained by each of its neighbors in reverse direction of
the neighbor links. When document index terms are changed,
the peer determines the changed bits in its local bloom filter
and the copy of ABFs in reverse directions of its neighbor
links. It then sends these bits out to each neighbor in a form
of diff compression. Upon receiving such a message, each
neighbor finalizes the bit changes in its corresponding ABF
and computes the bit changes to be made in each of its own
neighbors’ ABFs. The bit changes are propagated as well.
This process repeats until the bit changes reach nodes d hops
away from the source of the index update [8].

3. Evaluation

3.1. Experimental Setup

The document set used in simulations is from TREC-1,2-
AP which contains AP Newswire documents in TREC CDs 1
and 2. We extracted the documents with text and valid author
fields from the document set, resulting in 80, 008 documents
and 1, 880 authors. Assuming that each author corresponds
to a node and her associated documents are stored on the
corresponding node, we mapped the 1, 880 authors to a
random graph of 1, 880 nodes generated by GT-ITM [10],
and distributed their documents to the corresponding nodes.
The average node degree is 8 and the minimum node
degree is 4. The mean, 1st-percentile, and 99th-percentile
of the number of documents per node are 42.5, 1, and 417,
respectively. The document term vector was derived from
the text field using VSM. The terms in the document vectors
were stemmed and stop words were removed. The document
term vector on average has 179 unique terms.
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We used a set of 50 queries form TREC-3 ad hoc topics
with query number form 151 to 200. The query vector was
derived from the title field using VSM. The terms were
stemmed and stop words were removed as well. The query
term vector on average has 3.5 unique terms. The 50 queries
each comes with a query relevant judgment file which
contains a set of already identified relevant documents by
TREC-3 ad hoc query assessors. Since we only used 80, 008
documents with valid author and text fields, we removed the
other documents from the accompanying relevant judgment
files.

As noted by Xie et al. [6], users queries have signifi-
cant locality and query repetition frequency follows a Zipf
distribution. Based on the original 50 TREC-3 queries, we
generated various sets of queries where the frequency of the
i-th popular query is proportional to 1

iα . Each set contains
492 queries.

Moreover, as mentioned earlier, users with common in-
terests could submit similar queries [7]. Thus, from the
original 50 TREC-3 queries we generated a new set of
similar queries. The generation of similar queries follows
two principles: (1) Similar queries share some common
terms, and thus share some common relevant documents.
(2) The term popularity distribution and relevant document
distribution in the new query set are consistent with those
in the original query set. That is, popular query terms in the
original query set should appear frequently in the new set,
and if an original query has many relevant documents, the
new similar queries derived from it should also have many
relevant documents.

For an original query Q = {t1, · · ·, tm} consisting of m
unique terms, a derived similar query Q′ = {t′1, · · ·, t′m}
shares some common terms, determined by C = |Q∩Q′|

|Q| . C
controls similarity of the derived query to the original query
and is 0.7 in our simulations. The shared common query
terms for Q′ is randomly chosen from Q.

The rest of query terms for Q′ is selected as follows. Let
Z = Q−Q′. We need to find a replacement term from the
document set for each term in Z and these replacement terms
constitute the rest of query terms for Q′. Term replacement
is based on term importance — that is, the replacement
term is “equally” or “similarly” important as the original
term in the document collection. The term importance is
computed by I(t) = Freq(t) · DF (t), where Freq(t)
denotes the t’s term frequency in the document set and
DF (t) represents the number of documents containing t. Let
the term importance difference for two terms t1 and t2 be
Diff(t1, t2) = |I(t1)−I(t2)|. The less the difference is, the
more similar they are. For each term t ∈ Z, the replacement
term is randomly chosen from a set of 5 terms which have
the least importance difference to t. For each original TREC-
3 query, we generated 9 similar queries. Consequently, the
number of synthetic queries is 500, including 50 original
queries and 450 new queries.

Now turn our attention to how to determine relevant doc-
uments for each derived query. Intuitively, the derived query
should share some relevant documents with the original
query and have some different relevant documents. For each
original query Q, we calculated document relevance to the
query using Equation 1 for all documents and put the top
1, 000 ranked documents (by relevance score) into its rank
list RLQ. Similarly, we calculated the rank list RLQ′ for
each of its derived queries, say, Q′. For each document
Di ∈ RLQ′ , if Di is a relevant document to Q, then Di is
also a relevant document to Q′. For each relevant document
Dj ∈ RLQ (assume Dj’s rank position is m in RLQ), if
Dj /∈ RLQ′ , then the document in RLQ′ with rank position
of m is deemed to be relevant to the derived query.

Our simulations study two indexing schemes: TTI and
QDI. iSearch simulator can be configured to use either
of the two schemes. The default number of index terms
per document is 4 unless otherwise specified. The default
depth of ABFs is 3, which has been shown the best fit
in our simulations. The bloom filter size is 1KB.We used
random walk as the baseline system, comparing against
iSearch. It is worth pointing out that using random graphs
as the overlay topology in our experiements is to avoid
bias against random walk in performance comparison. In
addition, we present a comparison with SETS [11]. SETS is
a search system using a topic-driven query routing protocol
on a topic-segmented overlay built from Gnutella-like P2P
systems. A topic segment in SETS contains nodes with
similar content. The topic-segmented overlay is constructed
by performing node clustering at a single designated node,
and each cluster corresponds to a topic segment (nodes
within a topic segment are connected by local links while
nodes belonging to different topic segments are connected by
long-distance links). Given a query, SETS first computes R
topic segments which are most relevant to the query and then
routes the query to these segments for relevant documents.

Two main performance metrics are used in our experi-
ments. (1) Recall. It is used to quantify quality of search
results, and is defined as the number of retrieved relevant
documents divided by the total number of relevant doc-
uments. (2) Query processing cost. It is defined as the
fraction of nodes which are involved in a query processing.
A low query processing cost increases system scalability
since system resource consumption is proportional to the
number of nodes visited by a query.

3.2. Experimental Results

We summarize our results before presenting the details:
(1) Both TTI and QDI outperform random walk significantly.
In addition, QDI gains higher recall than SETS when
searching a small percentage of nodes. (2) With the presence
of query locality and similar queries, QDI improves recall
dramatically by progressively refining document indices,
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with up to 2× recall improvement over TTI. (3) iSearch
uses a very small set of index terms per document (typically
of 4), without impairing search performance while reducing
index storage and maintenance cost. (4) QDI is responsive to
change of query locality. As query locality changes, iSearch
may dilute impact of past queries and weigh more on recent
queries to better determine index terms, thereby improving
search performance.

3.2.1. Impact of Query Locality. In the first set of ex-
periments, we used three sets of Zipf distributed queries
with different values of α, i.e., 0.3, 0.7, and 1.0. Each set
contains 492 queries. As shown in Figure 2, query terms
are dispersed in top terms of their relevant documents, and
are unnecessarily on top K ranked terms. We intentionally
made queries which have less query terms intersecting
with top 4 ranked terms of their relevant documents more
frequent in Zipf distribution. This is biased against TTI
since TTI always chooses top K ranked terms as index
terms for a document. We randomly split each set of queries
into two equally-sized groups: The first group of queries
are used for index training, and the results are collected
based on the second group. Figure 3 shows results for
α = 0.3, 0.7, and 1.0 respectively. Note that the number of
index terms per document is 4. Three main observations can
be made: (1) iSearch outperforms random walk significantly;
(2) iSearch w/ QDI outperforms iSearch w/ TTI, by up
to 2× recall improvement when visiting less than 50%
nodes. (3) Different Zipf distributions have little impact on
iSearch’s performance. This makes a distinction between
iSearch and caching, as caching is more effective as query
locality increases (i.e., as α increases).

Figure 4 shows comparison with SETS. We observed
similar characteristics with different α values. SETS out-
performs TTI due to its node clustering by which queries
can be efficiently forwarded to relevant node groups for
answers; QDI greatly outperforms SETS when 50% of nodes
or less are visited for a query. This is because QDI’s precise
document indices can guide queries toward the most relevant
nodes for answers. In the rest of the paper, we focus our
evaluation on iSearch with different workloads.

The second set of experiments study the impact of number
of index terms per document. Figure 5 shows results for
α = 0.7. We observed similar characteristics for α=0.3
and 1.0. The x-axis denotes number of indexing terms per
document. The number in parenthesis represents the percent-
age of nodes contacted by iSearch for a query processing.
The figure shows two representative cases: 10% and 50%,
Contacting less than 50% nodes shows similar characteristics
as 10% while contacting more than 50% nodes shows similar
characteristics as 50%. Two main observations can be made:
(1) The number of index terms per document has little
impact on iSearch w/ QDI except that the number of index
term is 3. This is two fold. First, the average number of
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Figure 4. Performance comparison with SETS. The
number of index terms per document in iSearch is 4 and
α= 0.7

query terms is 3.5, so a number of 3 index terms per
document is insufficient. Second, iSearch w/ QDI is capable
of well defining index terms for documents as long as the
number of index terms per document is sufficient (i.e., 4).
In the remainder of the paper, we focus our experiments on
the number of index terms of 4 per document. (2) When
visiting a small number of nodes (< 50%), iSearch w/TTI
improves recall as the number of index terms increases. This
is consistent with Figure 2 that query terms are dispersed
among top term lists of the relevant documents, and more
top terms as index terms are able to provide more hints
for iSearch due to more complete indices. Simply choosing
several top terms as document indices is insufficient. While
visiting a sufficiently large number of nodes (50% or more),
the number of index terms has little impact on iSearch
w/ TTI. This is because the sufficiently large number of
visited nodes compensates the incomplete document indices
by fewer terms.
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Figure 5. Recall yielded with respect to the number of
index terms per document.

We also study Zipf distributions of 492 TREC-3 ad hoc
queries with different query popularity from the aforemen-
tioned query sets. That is, the queries with more query
terms in top 4 ranked terms of their relevant documents
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Figure 3. Performance comparison between iSearch and random walk. The number of index terms per document
in iSearch is 4. (a) α= 0.3. (b) α= 0.7. (c) α= 1.0 .

are more frequent. This favors iSearch w/ TTI. Again, the
set of 492 queries are randomly split into two groups: The
first group is used for shaping indices, and the results are
collected based on the second group. Figure 6 shows results
for α= 0.7. The results for other values of α are similar,
and omitted here due to space constraints. When contacting
10% nodes or less, iSearch w/ QDI and iSearch w/ TTI
have similar performance. This is because a large percentage
of queries have their terms falling among top 4 ranked
terms of their relevant documents. The top 4 ranked terms
in many documents are very good indices. However, when
visiting more than 10% nodes, iSearch w/ QDI dramatically
outperforms iSearch w/ TTI. The is resulted from more
accurate indices shaped by QDI.
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Figure 6. Performance comparison for α= 0.7 with re-
spect to % of nodes visited by each query. The number
of index terms per document is 4.

3.2.2. Impact of Similar Queries. In the first set of ex-
periments for similar query workload, we randomly split
the 500 queries into two groups: The first group is used
for index shaping, and the results are collected based on
the second group. Figure 7 shows the results. Two main
observations are made: (1) iSearch w/ QDI and iSearch
w/ TTI substantially improve recall over random walk. (2)
iSearch w/ QDI outperforms iSearch w/ TTI dramatically,

by up to 2× recall improvement.
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Figure 7. Performance comparison for similar queries
with respect to % of nodes visited by each query. The
number of index terms per document is 4.

The second set of experiments evaluate the performance
of iSearch w/ QDI as query locality changes. We first
randomly split the 50 original TREC-3 ad hoc queries into
two identically-sized groups (G1 and G2), and then added
their derived similar queries into same groups. This resulted
in two equally-size groups each with 250 queries. As the
original 50 TREC-3 queries are different from each other,
we expect that the two groups G1 and G2 constitute different
query localities. Each group was further randomly divided
into two equally-sized sets, resulting in four equally-sized
sets: G11, G12, G21, and G22, each with 125 queries. Then,
the iSearch simulator ran four iterations, each fed with a
set (in the order of G11, G12, G21, G22). iSearch starts with
TTI for the first query set, and then works with QDI for the
successive sets. All the past queries in previous iterations
are used by QDI to refine document indices. Figure 8 shows
recall achieved for various percentages of nodes visited by
iSearch. Again, QDI outperforms TTI greatly (comparing
recall at iteration 2 with iteration 1). More importantly,
iSearch w/ QDI is responsive to change of query locality
(e.g., the performance dip at iteration 3 is due to the
fact that past queries in iterations 1 and 2 have different
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query locality form those in iterations 3 and 4, providing
some inaccurate or obsolete information about document
indices), and improves recall significantly at iteration 4. This
demonstrates iSearch’s ability in adapting document indices
by progressively exploiting past queries.
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Figure 8. Performance of iSearch for four query sets.
The number of index term per document is 4. The i-th
data point represents the average recall yielded for the
queries in i-th query set.

A question is naturally raised: Can we further improve
the performance of iSearch w/ QDI by weighing more on
recent queries and diluting effect of past queries in earlier
iterations as query locality changes? We use exponentially
moving average (EMA) to emphasize importance of more
recent queries, by putting more weight (e.g., 0.9) on term
scores calculated in the last iteration. Figure 9 shows EMA
improves recall, especially when iSearch w/ QDI visits a
small number of nodes for query processing. While EMA
may not be the optimal solution, we believe that it is
beneficial for iSearch w/ QDI to weigh more on more recent
queries to adjust index terms as query locality changes.
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Figure 9. Performance impact of EMA on iSearch w/
QDI for the query set at the 4-th iteration with respect to
percentage of nodes visited per query processing. The
number of index term per document is 4.

4. Related Work

Search on Gnutella-like P2P networks can be categorized
into two groups: blind search (without index assisting) and
index-assisted search. Query flooding and random walk [1]
fall into the former group. Index-assisted search is centered
on building good document indices to improve search.
Crespo et al. [2] proposed three document index schemes to
assist search, including compound routing indices, hop-count
routing indices and exponential routing indices. PlanetP [3]
uses bloom filters to summarize content on each node and
floods the bloom filters to the entire network. However,
search performance enhancement comes at the price of stor-
age cost and summary distribution bandwidth cost. iSearch
borrows the concept of attenuated bloom filters from [8]
to distribute document indices within certain radius, thus
reducing cost in index storage and distribution bandwidth.

Systems such as [12], [11], [13] take a different approach
by organizing nodes into groups to improve search perfor-
mance. iSearch differs from such systems in that it retains
the simple overlay structures of Gnutella-like P2P networks.
In particular, GES [12] and SETS [11] use the concept
of node vector to summarize the content on each node.
The node vector is derived based on term statistics of the
documents on a node. iSearch w/ TTI shares similar wisdom
that top terms are good index term candidates and provide
good hints for queries.

5. Conclusions

In this paper, we present iSearch which performs text
retrievals on Gnutella-like P2P networks with high recall
by using a very small index size per document. iSearch
explores two options to build such document indices: TTI
and QDI. We show that both TTI and QDI improve search
performance over random walk significantly. Due to the
presence of query locality and similar queries submitted
by Internet users, as well as the fact that query terms are
dispersed among top terms of their relevant documents, QDI
builds more precise document indices, thereby outperform-
ing TTI dramatically, by up to 2× recall improvement. Our
simulations also show that iSearch w/ QDI is very responsive
to change of query locality, by quickly adapting document
indices.
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