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Abstract—Resource discovery is critical to the usability and
accessibility of grid computing systems. Distributed Hash Table
(DHT) has been applied to grid systems as a distributed
mechanism for providing scalable range-query and multi-
attribute resource discovery. Multi-DHT-based approaches de-
pend on multiple DHT networks with each network responsible
for a single attribute. Single-DHT-based approaches keep
the resource information of all attributes in a single node.
Both classes of approaches lead to high overhead. Recently,
we proposed a heuristic Low-Overhead Range-query Multi-
attribute DHT-based resource discovery approach (LORM). It
relies on a single hierarchical DHT network and distributes
resource information among nodes in balance by taking ad-
vantage of the hierarchical structure. We demonstrated its
effectiveness and efficiency via simulation. In this paper, we
analyze the performance of the LORM approach rigorously
by comparing it with other multi-DHT-based and single-DHT-
based approaches with respect to their overhead and efficiency.
The analytical results are consistent with simulation results.
The results prove the superiority of the LORM approach in
theory.

Keywords-Resource discovery, Grids, Peer-to-peer system,
Distributed hash table

I. INTRODUCTION

Grid systems integrate computers, clusters, storage sys-
tems and instruments to provide a highly available infras-
tructure for large scientific computing centers. They make
possible the sharing of existing resources such as CPU
time, storage, equipment, data, and software applications.
In many grid systems, resources are highly dynamic and
vary significantly over time such as available CPU time and
memory. Because of this variability, scalable and efficient
resource discovery is critical to providing usability and
accessibility for large-scale grid computing systems.

The resources required by applications are often described
by a set of attributes such as available computing power
and memory with range for each attribute (multi-attribute
range queries). A fundamental service of resource discovery
is to locate resources across multiple administrative domains
according to the attribute inputs. Recently, Distributed Hash
Table (DHT) architecture has been applied to grid systems
for large-scale and dynamic resource discovery due to its
high scalability and dynamism-resilience features. DHT can

efficiently route messages to the unique owner of any given
object. Because of its single deterministic object location,
the object can be either resource attribute or value. There-
fore, it is a challenge to realize resource discovery with both
range-query and multi-attribute features.

Most DHT-based approaches can be classified into
multi-DHT-based, single-DHT-based centralized and single-
DHT-based decentralized approaches. Multi-DHT-based ap-
proaches support multi-attribute range queries by relying on
multiple DHT networks with each network responsible for
a single attribute [1, 2, 7, 13]. To locate resources specified
by several attributes and ranges, each query for a resource
is presented to the appropriate DHT and then the results
are concatenated in a database-like “join” operation. Single-
DHT-based centralized approaches [6] keep the resource
information of all values for a specific attribute in a single
node. Single-DHT-based decentralized approach [3, 4] is
based on one DHT and provides range searching. It maps
resource attribute and value of a resource separately to one
DHT, and processes a query by searching them separately.

To reduce overhead and enhance efficiency of resource
discovery in grids, we recently proposed a DHT-based
resource discovery approach with features of Low-Overhead,
Range-query and Multi-attribute (LORM) [9]. Unlike the
three types of approaches mentioned, LORM is built on a
single DHT called Cycloid [10]. LORM arranges each node
to be responsible for the information of a specific attribute
within a value range by taking advantage of the hierarchical
structure of Cycloid. We demonstrated its effectiveness and
efficiency via simulation. In this paper, we analyze the
performance of the LORM approach rigorously and compare
it with multi-DHT-based and single-DHT-based approaches
with respect to their overhead and efficiency. The analytical
results are consistent with the simulation results. The results
prove the superiority of the LORM approach in theory.

The remainder of this paper is structured as follows.
Section II describes a review of representative DHT-based
resource discovery approaches for grid systems. Section III
presents an overview of the DHT-based LORM resource
discovery approach and theoretical analysis of its features.
Section IV presents the performance analysis of LORM



in comparison to other representative resource discovery
methods. Section V presents the performance comparison
between LORM and other approaches with regards to the
consistency between analysis results and simulation results.
Section VI concludes the paper and provides remarks on
possible future work.

II. DHT-BASED RESOURCE DISCOVERY APPROACHES

As a successful model that achieves scalability, robust-
ness, and deterministic data location, DHT has been widely
adopted for resource discovery in grids [1, 2, 7, 13, 6, 3, 4,
9, 11, 8]. Since the resources required by applications are
often described in the form of multi-attribute range queries,
two important issues investigated recently are range queries
and multi-attribute resource discovery. Range queries look
for resources specified by a range of attribute values (e.g.,
a CPU with speed from 1.2GHz to 3.2GHz). Since there is
only one unique key for each data in DHTs, either the value
or the attribute can be regarded as the key to distribute the
resource information to nodes. Therefore, DHTs cannot be
simply applied to grids for both multi-attribute query and
range query. This problem has posed a challenge to support
both range queries and multi-attribute queries.

Current approaches to achieve multi-attribute range-query
can be generally classified into three groups: (1) Multi-DHT-
based approach that adopts one DHT for each attribute,
and processes multi-attribute range queries in parallel in
corresponding DHTs [1, 2, 7, 13]. In this approach, mul-
tiple DHTs for multiple attributes need to be maintained,
and the key in each DHT functions is used as the index
for resource value for range queries. To locate resources
specified by several attributes, the approach uses multi-
attribute queries and presents each query for a resource to
the appropriate DHT and then concatenates the results in
a database-like “join” operation. (2) Single-DHT-based cen-
tralized approach that pools together resource information
of all values for a specific resource attribute in a single
node [6]. In this approach, the key in the DHT functions
as the index for resource attribute. (3) Single-DHT-based
decentralized approach that separately maps the resource
attribute and value in a resource information to a single DHT,
and processes a query by searching them separately [3, 4].
There are other methods [11, 8] that focus on multi-attribute
resource discovery without considering range.

Cycloid [10] has a hierarchical structure and is featured
by high scalability with constant maintenance overhead and
balanced key load distribution. LORM [9] takes advantage
of the Cycloid’s hierarchical structure to use two indices to
represent resource attribute and value for resource informa-
tion, and to distribute overhead for resource discovery and
information maintenance among nodes in balance. There-
fore, it only relies a single DHT to realize multi-attribute
range-query resource discovery with low overhead.

III. OVERVIEW AND PROPERTIES OF LORM
Cycloid [10] is a lookup efficient constant-degree overlay

with n=d · 2d nodes, where d is dimension. Each Cycloid
node is represented by a pair of indices (k, ad−1ad−2 . . . a0),
where k is a cyclic index and ad−1ad−2......a0 is a cubical
index. The cyclic index is an integer, ranging from 0 to d−1
and the cubical index is a binary number between 0 and
2d − 1. The nodes with the same cubical index are ordered
by their cyclic index mod d on a small cycle, which is called
cluster. All clusters are ordered by their cubical index mod
2d on a large cycle. Figure 2 shows the partial routing links
of a Cycloid. The Cycloid DHT assigns keys onto its ID
space by a consistent hashing function [5]. A key will be
assigned to a node whose ID is closest to its ID. Cycloid has
APIs including Insert(key,object), Lookup(key).
LORM relies on a single Cycloid with constant maintenance
overhead.

Resource Hash
CPU 50
Memory 150
Disk 450
External memory 700
Software package 1000
Web service 1200
Bandwidth 1850
Database 2000

Figure 1. Resources hash val-
ues.
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Figure 2. Resource information allocation in
LORM.

A computing resource has a specific value for each
attribute, for example, “OS=Linux”, “CPU=1000MHz”, and
“Free memory=1024MB”. Without loss of generality, we
assume that each resource is described by a set of attributes
with globally known types denoted by a, and values/ranges
or string description denoted by πa. For example, “Free
memory> 2MB” or “OS=Linux”. We define resource infor-
mation as information of available resources and resource
queries, denoted by rescInfo. Resource information of
a resource requester j is represented in a set of 3-tuple
representation: < a, πa, ip addr(j) >. The available re-
source information of node i is represented in the form of
< a, δπa, ip addr(i) >, in which ip addr(i) denotes the
IP address of node i, and δπa is the πa of its available
resource. Usually, the operation in resource discovery is to
pool together information of available resources in a number
of directory nodes, and direct resource requests to those
nodes.

A Cycloid consists of a number of clusters, which to-
gether constitute a large cycle. LORM lets each cluster be
responsible for the information of a attribute, and distributes
the information between nodes within the cluster based on
resource value/range or string description. Recall that in a
Cycloid ID, the cubical indices differentiate clusters, and the



cyclic indices indicate different node positions in a cluster.
LORM uses cubical indices to represent a, and uses cyclic
indices to represent πa. Consistent hash function, denoted by
H , is used to generate the hash value of attributes. Locality
preserving hashing function [3], denoted by H, is used to
generate the hash value of attribute value. Thus, the ID of a
resource rescID=(Hπa

, Ha).
A node reports its available resources to the system

periodically via interface Insert(rescID,rescInfo).
Therefore, the information of the same attribute will be
mapped to the same cluster. We call the node or the ID
of the node as the root of the rescID or rescInfo. Within
each cluster, each node is responsible for the information of
a resource whose cyclic index falls into the ID space sector it
supervises. For example, for the resources and their hashed
values listed in Figure 1, the resource information will be
stored in nodes as illustrated in Figure 2. In the clusters
responsible for memory and CPU, each node is responsible
for the resource information in its range. For instance, the
resource information with resource ID (H2,Hmem)=(2,150)
will be routed to and stored in node a.

Proposition 3.1: In LORM, given a range query [π1, π2]
for a resource where πmin 6 π1 6 π2 6 πmax, a node that
contains attribute value π within [π1, π2] must have an ID
that satisfies root(Hπ2 ,Ha) > ID > root(Hπ1 ,Ha).

Proof: In LORM with n = d · 2d nodes, a node
reports its resource information using the Cycloid inter-
face Insert((Hδπa

,Ha),rescInfo). Attribute a with
value δπa will be stored in root(Hδπa

,Ha) whose ID is the
closest to (Hδπa

,Ha). According to the locality preserving
hashing, because π1 6 π 6 π2, the resource information of
value v will be stored in node i that satisfies to the condition
root(H(π1)) 6 i 6 root(H(π2)).

A node uses Lookup(rescID) to query for resources,
and the query is routed to the directory node for the desired
resource. A multi-attribute query is composed of a set
of sub-queries on each attribute, which are processed in
parallel. For example, when a node k needs a multiple-
attribute resource, say 1.8GHz CPU and 2GB memory, it
sends requests
Lookup(H1.8,Hcpu,<cpu,πcpu,ip_addr(k)>) and
Lookup(H2,Umem,<mem,πmem,ip_addr(k)>),
which will be resolved in parallel. The queries will
arrive at node a and node e, which reply to the
requester node k with the requested resource information
< mem, δπmem, ip_addr(i) > where δπmem = 2
and < CPU, δπCPU , ip_addr(j) > where δπCPU =
1.8. The requester node then concatenates the results in
a database-like “join” operation based on ip addr. The
results are the nodes that have desired resource by the
requester. For range queries such as “CPU>1.8GHz” and
“Free memory>2GB”, in addition to responding with
satisfied resource information in their own directories, node
a and e forward the resource queries to their immediate

successors in their own clusters. The successors repeat the
same process. This process is repeated until a successor
has no satisfied resource information. If the requested
resource range is less than a value, then nodes forward
queries to their predecessors. If the queries have lower
and upper bounds such as “1GHZ6CPU61.8GHz” and
“1GB6memory62GB”, the queries will be forwarded in
both directions. Cycloid has a self-organization mechanism
to maintain its structure and stored objects, which helps
LORM to handle dynamism with node joins and departures.

IV. COMPARATIVE STUDY AND ANALYSIS

We use Mercury [2], SWORD [6], MAAN [3] as rep-
resentatives of multiple-DHT-based, single-DHT-based cen-
tralized and single-DHT-based decentralized classes, and
analyze LORM in comparison with the approaches. LORM
maps resource attribute and value or string description to two
levels of a hierarchical Cycloid DHT. Mercury uses multiple
DHTs with one DHT responsible for each attribute and
maps resource value to each DHT. SWORD maps resource
information including both attribute and value in a flat DHT,
and MAAN maps attribute and value separately to a flat
DHT. To be comparable, we use Chord for attribute hubs
in Mercury, and we replace Bamboo DHT with Chord in
SWORD.

In Mercury, for higher efficiency of resource query, a node
within one of the hubs can hold the data record while the
other hubs can hold a pointer to the node. This strategy
can also be applied to other methods. To make the different
methods be comparable, we don’t consider this strategy in
the comparative study. We analyze their performance in
terms of structure maintenance overhead, resource informa-
tion maintenance overhead, and the efficiency of resource
discovery. In the analysis, we use “attribute value” to rep-
resent the locality preserving hash value of both attribute
value and attribute string description. We use directory size
to represent the number of resource information pieces in a
directory.

A. Maintenance Overhead

Theorem 4.1: In a grid system with n nodes and m re-
source attributes, with high probability1, LORM can improve
the structure maintenance overhead of multiple-DHT-based
methods (e.g. Mercury) by no less than m times.

Proof: LORM is based on Cycloid, in which each node
is responsible for maintaining d ≤ log(n) neighbors. In
multiple-DHT-based methods such as Mercury, each node
is responsible for maintaining log(n) neighbors for each
DHT of one resource. Therefore, each node has m log(n)
neighbors. The structure maintenance overhead that can be
saved is m log(n)

d ≥ m log(n)
log(n) = m times.

1An event happens with high probability (w.h.p.) when it occurs with
probability 1−O(n−1).



Theorem 4.2: In a grid system, the total number of re-
source information pieces in single-DHT-based decentral-
ized resource discovery methods (e.g. MAAN) is twice of
those in LORM, single-DHT-based centralized methods (e.g.
SWORD) and multi-DHT-based methods (e.g. Mercury).

Proof: For each piece of resource information, MAAN
splits its a and πa, and stores the two pieces of information
separately, while LORM, single-DHT-based centralized (e.g.
SWORD) and multi-DHT-based methods (e.g. Mercury)
only store one information piece. Therefore, the size of the
total resource information of MAAN is twice of others.

Theorem 4.3: In a grid system with n nodes and m
resource attributes, with the assumption that each type of
resource attribute has k pieces of resource information and
its values are uniformly distributed, w.h.p., LORM can
reduce the number of resource information pieces in a di-
rectory node in the single-DHT-based decentralized resource
discovery methods (e.g. MAAN) by d(1 + m

n ) times.
Proof: For k pieces of resource information of a re-

source attribute, MAAN splits the attribute and value. k
pieces are stored in the same node, and the other k pieces are
uniformly distributed among the n nodes based on the value.
A directory node has a total of k + m · kn pieces. LORM
does not split the information, and all resource information
of a particular resource attribute is in a cluster with d nodes.
With the uniform distribution assumption, each node is re-
sponsible for k/d pieces of resource information. Therefore,
LORM can reduce the total size of resource information in
a directory node in MAAN by k+m· k

n

k/d = d(1 + m
n ) times.

Theorem 4.4: In a grid system with n nodes and m
resource attributes, with the assumption that each type of
resource attribute has k pieces of resource information and
its values are uniformly distributed, w.h.p., LORM can
reduce the resource information size in a directory node in
single-DHT-based centralized methods (e.g. SWORD) by d
times.

Proof: In LORM, all resource information of a partic-
ular resource attribute is in a cluster with d nodes. With
the uniform distribution assumption, each node has k/d
pieces of resource information. In SWORD, all resource
information of a particular resource attribute is in a single
node. Thus, LORM can reduce the resource information size
in a directory node in SWORD by k

k/d = d times.
Theorem 4.5: For any set of n nodes and m resource

attributes, with the assumption that each type of resource
attribute has k pieces of resource information and its values
are uniformly distributed, w.h.p., multi-DHT-based methods
(e.g. Mercury) can achieve more balanced resource informa-
tion distribution than LORM by n

dm times.
Proof: In LORM, all resource information of a partic-

ular resource attribute is in a cluster with d nodes. Since
the resource values are uniformly distributed, each node is
responsible for k/d pieces of resource information. In Mer-

cury, for one attribute, a node is responsible for k
n pieces of

resource information. Given m resource attributes, each node
is responsible for mk

n pieces of resource information. Thus,
Mercury can achieve more balanced resource information
distribution than LORM by k/d

mk
n

= n
dm times.

Theorem 4.6: Multi-DHT-based methods (e.g. Mercury)
and LORM achieve more balanced resource information
distribution than the single-DHT-based decentralized re-
source discovery methods (e.g. MAAN) and single-DHT-
based centralized methods (e.g. SWORD).

Proof: Theorems 4.3 and 4.4 show that LORM achieves
more balanced resource information distribution than the
single-DHT-based decentralized (e.g. MAAN) and central-
ized methods (e.g. SWORD). Theorem 4.5 shows that multi-
DHT-based methods (e.g. Mercury) achieves more balanced
distribution than LORM. Therefore, multi-DHT-based meth-
ods and LORM achieve more balanced resource information
distribution than the single-DHT-based decentralized and
centralized methods.

B. Efficiency of Resource Discovery

Theorem 4.7: To discover resources for an m-attribute
non-range resource query in an n-node network, w.h.p.,
LORM can reduce the total number of contacted nodes of
single-DHT-based decentralized resource discovery methods
(e.g. MAAN) by logn

d times.
Proof: For each non-range resource query, LORM

needs one DHT lookup, while MAAN needs two DHT
lookups for each attribute: attribute name and value. For an
m-attribute resource query, LORM needs m DHT lookups,
and MAAN needs 2m DHT lookups. Hence, for one re-
source query, the number of lookups in MAAN is 2m

m =2
times of LORM. On the average case, one lookup needs
log n/2 hops in Chord [12] and d hops in Cycloid [10]. Thus,
LORM can reduce the total number of contacted nodes of
MAAN by 2 logn/2

d = logn
d times.

Theorem 4.8: To discover resources for an m-attribute
non-range resource query in an n-node network, w.h.p.,
multi-DHT-based methods (e.g. Mercury) and single-DHT-
based centralized methods (e.g. SWORD) can reduce the
total number of contacted nodes of single-DHT-based decen-
tralized resource discovery methods (e.g. MAAN) by twice.

Proof: For each non-range resource query, the multi-
DHT-based methods (e.g. Mercury) and single-DHT-based
centralized methods (e.g. SWORD) need one DHT lookup,
while MAAN needs two DHT lookups for each attribute. For
an m-attribute resource query, the former methods need m
DHT lookups, and MAAN needs 2m DHT lookups. Hence,
the former methods can reduce the number of contacted
nodes in MAAN by twice.

When a range resource query is routed to its root, the
root node checks its directory for the range query. Then,
in SWORD, the resource searching stops; in Mercury and
MAAN, the node forwards the query to its successor or



predecessor according to their closeness to the queried range;
in LORM, the node forwards the query to its successor or
predecessor in its cluster according to their closeness to the
queried range. The nodes receiving the query will repeat the
process. We call the nodes that receive a resource query and
check their directories for the queried resource as visited
nodes of the resource query.

Theorem 4.9: In an n-node network, w.h.p., LORM can
reduce at least m(n−d)

4 visited nodes to discover required
resource for an m-attribute range resource query in system-
wide range resource discovery methods (e.g. MAAN and
Mercury), and SWORD can reduce md

4 visited nodes in
LORM, in the average case.

Proof: In Mercury, for a range query, the number of
contacted nodes needed is n

2 in the worst case. Thus, on the
average case, the total number of visited nodes for an m-
attribute resource range query on the average case is m(1+
n
4 ). MAAN has two lookups for each attribute query. m-
attribute resource query needs m(2 + n

4 ) hops. In LORM,
the nodes needed to be visited for a resource query is m(1+
d
4 ) on the average case. Therefore, LORM can reduce at
least m(1 + n

4 )−m(1 + d
4 ) = m(n−d)

4 visited nodes for an
m-attribute resource query in system-wide range resource
discovery methods such as MAAN and Mercury. Because
SWORD doesn’t need to forward query for range query. It
reduces m(1+ d

4 )−m = md
4 contacted nodes in LORM.

Theorem 4.10: In an n-node network, w.h.p., LORM can
reduce at least mn contacted nodes to discover required
resource for an m-attribute resource range query in system-
wide range resource discovery methods (e.g. MAAN and
Mercury), in the worst case.

Proof: Mercury uses one DHT for each attribute. For
each attribute in a resource requester, it needs log n hops
for the request to reach its root node [12]. After that,
n nodes need to be probed for the range query, in the
worst case, because all resource information of the attribute
spreads over the n nodes. Therefore, for each attribute
query, log n + n hops are needed in the worst case. For a
resource query with m attributes, Mercury needs to contact
m(log n + n) nodes. MAAN has two lookups for each
attribute query since it lookups attribute name and value or
string description separately. Only one lookup needs system-
wide probing on n nodes. Consequently, each query of an
attribute needs (2 log n+ n) hops, and m-attribute resource
query needs m(2 log n+n)> m(log n+n) hops in MAAN.
The nodes need to contact in LORM for a resource query is
m · d ≤ m · log n in the worst case. Therefore, LORM can
reduce at least m(log n + n) − m · log n = mn contacted
nodes for an m-attribute resource query in system-wide
range resource discovery methods, in the worse case.

V. PERFORMANCE COMPARISON

This section presents the performance evaluation of
LORM in average case in comparison with Mercury [2],

SWORD [6], MAAN [3]. To be comparable, we used Chord
for Mercury and SWORD. The dimension was set to 8 in
Cycloid and 11 in Chord, and each DHT had 2048 nodes.
We assumed there were m = 200 resource attributes, and
each attribute had k = 500 values. We used Bounded Pareto
distribution function to generate resource values owned by
a node and requested by a node. The resource attributes in
a node resource request were randomly generated.

A. Maintenance Overhead

In DHT overlays, each node needs to maintain a num-
ber of neighbors (outlinks) which constitute a large part
of the DHT overlay maintenance overhead. Theorem 4.1
shows that LORM can reduce the DHT maintenance over-
head of Mercury by no less than m times. We use
“Analysis>LORM” to represent the experiment results of
Mercury divided by m = 200. Figure 3(a) plots the
number of outlinks maintained by each node in Mercury,
“Analysis>LORM” and LORM versus network size. From
the figure, we can see that the number of outlinks per
node in LORM is less than that of “Analysis>LORM”. The
experiment results are consistent with Theorem 4.1. Recall
that Mercury has multiple DHTs with each DHT responsible
for one resource attribute, such that each node has a total
number of outlinks equals to the product of routing table
size and the number of DHTs. As a result, each node in
Mercury maintains dramatically more outlinks than that of
LORM.

In addition to the outlinks, a directory node needs to
maintain resource information. It is desirable to distribute the
information among nodes uniformly so that the information
maintenance overhead as well as resource discovery load
can be distributed among nodes to avoid bottlenecks. The
average directory size are the total number of resource
information pieces divided by the total number of nodes.

Figure 3(b) plots the experiment results of the average
and the 1st and 99th percentiles of directory size per node
in MAAN and LORM. It also plots the analysis results of
LORM based on MAAN according to Theorems 4.2 and 4.3.
The analysis results of the 1st and 99th percentiles are
the experiment results of MAAN divided by the factor of
d(1 + m

n ) = 8× (1 + 200
2048 ) = 8.78, and the analysis results

of the average directory size are the experiment results of
MAAN divided by 2. We can see that the experiment results
of the average directory size of LORM match the analysis
results. Recall that MAAN separates resource attribute and
value or string description of a piece of resource information,
and stores the information separately. Therefore, MAAN
doubles the total resource information size and needs infor-
mation maintenance overhead twice as high as others. The
experiment results of the 1st and 99th percentiles are close
to the analysis results. The experiment results of the 99th
percentile of LORM are slightly higher than the analysis
results. This is because that the resource values are randomly
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Figure 3. Overhead in different resource discovery approaches.

chosen in the experiment and are not completely uniformly
distributed. In addition, all resource information of the same
attribute is collected in one cluster. It is very likely that a
node has much more resource information than other nodes
in the same cluster.

Theorem 4.4 proved that LORM can reduce the directory
size of SWORD by d times. Figure 3(c) plots the experiment
results of the average and the 1st and 99th percentiles of
directory size per node in SWORD and LORM. It also
plots the analysis results of LORM based on the experiment
results of SWORD. The analysis results of the 1st and 99th
percentiles are the experiment results of SWORD divided
by the factor of d, and the analysis results of the average
directory size equal to the experiment results of SWORD
according to Theorem 4.2. We can see that the experiment
results of the average directory size of LORM match the
analysis results in Theorem 4.2. The experiment results of
the 99th percentile are only slightly higher than the analysis
results in Theorem 4.4. This is due to the reason that the
attribute values are randomly distributed among d nodes,
and some nodes have more resource information than others
with random distribution.

Theorem 4.5 proved that Mercury can achieve more
balanced resource information distribution than LORM by
n
dm times. Figure 3(d) plots the experiment results of the
average and the 1st and 99th percentiles of directory size per
node in Mercury and LORM. It also plots the analysis results
of LORM based on Mercury. The analysis results of the 1st
and 99th percentiles are the experiment results of Mercury
multiplied and divided by the factor of n

dm = 2048
8×200 = 1.28

respectively, and the analysis results of average directory
size are the experiment results of Mercury according to
Theorem 4.2. We can see that the experiment results of the
average directory size of LORM match the analysis results in
Theorem 4.2. The experiment results of the 99th percentile
are also only slightly higher than the analysis results due to
the same reason observed in Figure 3(b) and (c). In addition,
the results of the 1st percentile are lower than the analysis
results in Theorem 4.4. This is because when attribute values
are randomly selected, some values may not be chosen and
hence some nodes in a cluster in LORM may not be assigned
resource information.

In general, the experiment results of LORM mach the

analysis results. From Figures 3(b), (c) and (d), we can
observe that MAAN and SWORD exhibit significantly larger
variance of directory size than Mercury and LORM. MAAN
and SWORD distribute resource information to directory
nodes based on resource attribute. As there are 200 resource
attributes, the information is accumulated in 200 nodes
among 2048 nodes, leading to large variance of directory
size. On the other hand, Mercury uses one DHT for each at-
tribute, and classifies resource information based on value in
each DHT. The widespread information distribution helps to
distribute resource information uniformly. LORM arranges
different Cycloid clusters to be responsible for resource
information based on resource attribute and allocates in-
formation to a node based on its range, leading to more
balanced information distribution. Therefore, Mercury and
LORM can achieve more balanced distribution of load due
to resource information maintenance and resource discovery
operation. This result is in agreement with Theorem 4.6.

B. Efficiency of Resource Discovery

For a non-range query, Theorem 4.7 shows that LORM
can reduce the total number of contacted nodes of MAAN
by logn

d = 11
8 times; Theorem 4.8 shows that Mercury and

SWORD can reduce the total number of contacted nodes
of MAAN by twice. We varied the number of attributes
in a query from 1 to 10 with step size of 1. The logical
hop metric is measured by the number of hops traversed
by a query in a resource search. We randomly chose
100 nodes and let each node send 10 resource queries.
Figures 4(a) and (b) show the experiment results of the
average and total logical hops for multi-attribute resource
queries versus the number of attributes in a resource query
in different approaches. The figures also plot the analysis
results of LORM and SWORD/Mercury based on the ex-
periment results of MAAN denoted by “Analysis-LORM”
and “Analysis-SWORD/Mercury”, which are the experiment
results of MAAN divided by 11

8 and 2 respectively. Because
the difference between Mercury, SWORD and “Analysis-
SWORD/Mercury” is no more than 0.3 in Figure 4(a), and
their difference is no more than 800 in Figure 4(b), these
curves are completely overlapped. In order to make the
figure clear, we only draw the curve of Mercury and use it to
represent SWORD and “Analysis-SWORD/Mercury”. From



0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
Number of attributes per resource query

A
ve

ra
ge

 lo
gi

ca
l h

op
s 

fo
r m

ul
ti-

at
tri

bu
te

 
re

so
ur

ce
 q

ue
ry

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM

(a) Average number of contacted nodes
(Theorems 4.7 and 4.8)

Figure 4. The number of hops for query rout-
ing in different resource discovery approaches.
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Figure 5. Searching cost in different resource discovery approaches.

the figure, we can see that the experiment results of LORM is
very close to the analysis results, and the experiment results
of SWORD/Mercury exactly match the analysis results in
Theorem 4.7 and 4.8.

Comparing the different methods, we can see that
MAAN generates the highest number of contacted hops and
SWORD/Mercury produce the least number of contacted
hops. This is because MAAN needs two lookups for resource
attribute and value, and others only need one lookup. The
reason that LORM has higher number of hops than Mercury
and SWORD is due to their time complexity of lookups.
Chord has a time complexity of O(log n) per query, and
Cycloid has a time complexity of O(d) per query. These
results are consistent with the file lookup path length in [10].
The figures also show that the average and total number of
logical hops increases as the number of attributes in each
resource request grows. This is because a node needs to
send out multiple queries for multiple attributes.

For a range resource query, a root node needs to probe
other nodes after receiving a query. We use the number of
visited nodes to represent resource searching efficiency. The
proof in Theorem 4.9 shows that to query an m-attribute
resource with range requirement in an n-node network, the
total number of visited nodes is m(1+ n

4 ) in Mercury, m(2+
n
4 ) in MAAN, m(1+ d

4 ) in LORM and m in SWORD. Based
on the analysis, we calculated the number of visited nodes
for one query. It is m(1 + n

4 ) = 513m in Mercury, m(2 +
n
4 ) = 514m in MAAN, m(1 + d

4 ) = 3m in LORM, and
m in SWORD. The total number of visited nodes for 1000
queries is the product of the result and 1000. Figure 5(a) and
Figure 5(b) plot the experiment results and analysis results of
the number of visited nodes versus the number of attributes
per query. In Figure 5(a), the results of MAAN, Mercury,
“Analysis-MAAN” and “Analysis-Mercury” are completely
overlapped because their values differ no more than 70000.
Therefore, in order to make the figure clear, we only show
the results of MAAN to represent itself and the others. In the
figure, the y axis is shown in logarithmic scale and MAAN
and Mercury have a very large number of visited nodes.
From Figure 5(b), we can see that the experiment results of
LORM are a little lower than its analysis results.

The experiment results of other methods are consis-

tent with their analysis results. Mercury and MAAN visit
tremendously more nodes than SWORD and LORM. Recall
that Mercury and MAAN accumulate resource information
based on attribute value, which spreads along the entire
DHT ID space. They need to probe nodes along a very
large ID space. In contrast, SWORD accumulates resource
information based on node attribute. All information of a
particular attribute is in one directory node, and no node
needs to be probed. Therefore, a resource query for an m-
attribute resource needs m visited nodes, and its experiment
results are exactly matches the analysis results. LORM stores
resource information of a specific attribute name in a cluster,
and only the nodes in the cluster should be probed. This
limits the node probing scope to a cluster rather than the
entire system. As a result, SWORD and LORM incur much
less cost for a range query than Mercury and MAAN.

C. Performance in a Highly Dynamic Environment

This section evaluates the efficiency of the LORM in
a highly dynamic environment in comparison with other
approaches. In this experiment, the resource join/departure
rate R was modelled as a Poisson process as in [12].
For example, there is one resource join and one resource
departure every 2.5 seconds with R=0.4. We varied R from
0.1 to 0.5, with step size of 0.1. We set the number of
total resource requests to 10000. Experiment results show
that there were no failures in all test cases. Figure 6(a)
shows the experiment and analysis results of the average
number of logical hops for a non-range resource query as
R changes. The analysis results are drawn from the proof
of Theorem 4.7 and 4.8. Compared with the logical hop
evaluation in Figure 4, we can see that the measured number
of hops in a dynamic environment is very close to that in a
static environment and does not change with the rate R. We
can also observe that the analysis results are slightly higher
than the experiment results. This is because that the lookup
path is reduced sometimes due to the node departures. The
results are also consistent with Theorem 4.7 and 4.8 in terms
of the number of contacted hops for a resource query.

Figure 6(b) shows the analysis results and experiment
results of the average visited nodes per range resource
query. The results of Mercury, MAAN, “Analysis-Mercury”
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Figure 6. Efficiency of different resource discovery approaches in churn.

and “Analysis-Mercury” are overlapped since their results
differ no more than 30. Thus, we only draw the result of
Mercury. The analysis results are drawn from the proof of
Theorem 4.9. First, we can see that the experiment results
are consistent with the analysis results. Because Mercury and
MAAN are system-wide range resource discovery methods
that distribute resource information in all nodes based on
attribute values, they incur much more node communication
for a resource query due to system-wide probing. Second,
the results are consistent with the results in Figure 5 in
static situation. Thus, dynamism generates little adverse
effect on the efficiency of resource querying. In conclusion,
the experiment results confirm that LORM can effectively
resolve resource queries in a dynamic environment.

VI. CONCLUSIONS

Resource discovery is a critical issue for grid systems in
which applications are composed of hardware and software
resources. Previous resource discovery approaches either
depend on multiple DHTs with each DHT responsible
for a resource or rely on one DHT by pooling resource
information of an attribute in a single node, leading to
high maintenance overhead or inefficiency due to load
imbalance. Recently, we proposed a Low-Overhead Range-
query Multi-resource discovery approach (LORM). LORM
relies on a single DHT with constant maintenance overhead
to achieve range-query multi-attribute resource discovery
with low overhead. In this paper, we analytically study the
performance of LORM in comparison with the previous
resource discovery methods with regards to their structure
maintenance overhead, resource information maintenance
overhead and resource searching efficiency. We also show
the consistency of the analysis results with the experiment
results. Analytical results show the superiority of LORM in
comparison with other representative approaches in terms
of overhead cost and efficiency of range-query and multi-
attribute resource discovery. We plan to further explore and
elaborate upon the LORM design to discover resources
based on semantic information.
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