
Efficient and Effective File Replication in Structured P2P File Sharing Systems

Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson SC 29634
shenh@clemson.edu

Abstract

In peer-to-peer file sharing systems, file replication helps
to avoid overloading file owners and improve file query
efficiency. Aiming to achieve high replica utilization and
efficient file query with low overhead, this paper presents
a file replication mechanism based on swarm intelligence,
namely SWARM. Recognizing the power of collective be-
haviors, SWARM identifies node swarms with common node
interests and close proximity. It determines the location of a
file replica based on the accumulated query rates of nodes
in a swarm. Replicas are shared by the nodes in a swarm,
leading to less replicas and high query efficiency. Simula-
tion results demonstrate the efficiency and effectiveness of
the SWARM mechanism in comparison with other file repli-
cation methods.

1 Introduction

Over the past years, the immense popularity of Internet

has produced a significant stimulus to peer-to-peer (P2P)

networks. One of the most popular applications of P2P net-

works is file sharing such as BitTorrent [1], KaZaA [8] and

Morpheus [9]. In such systems, if a node receives a large

volume of requests for a file at one time, it would become a

hot spot, leading to delayed response.

File replication is an effective strategy to deal with the

problem of overload due to hot files. It replicates a hot file

to other nodes to distribute the load, and improve file query

efficiency by reducing query latency. Current file replica-

tion methods mainly can be classified into three classes de-

noted by ServerEnd [13, 4, 16], Path [12, 19, 3] and Clien-
tEnd [6, 5]. Recently, we proposed Efficient and Adaptive

Decentralized file replication algorithm (EAD) [14]. EAD
selects the query traffic hubs that receive many queries of

a file and frequent requesters as replica nodes. However,

these methods cannot guarantee that a file query encoun-

ters a replica node when the file has a replica. To further

enhance the efficiency and effectiveness of file replication,

this paper presents a file replication mechanism based on

swarm intelligence, namely SWARM. Swarm intelligence

is the property of a system whereby the collective behaviors

of agents cause coherent functional global patterns [2]. Rec-

ognizing the power of collective behaviors, SWARM iden-

tifies node swarms with common interests and close prox-

imity for file replication and replica sharing.

2 Related Work

As mentioned above, previous file replication methods

generally can be classified into three categories: ServerEnd,

ClientEnd and Path. In the ServerEnd category, PAST [13]

replicates each file on a set number of nodes whose IDs

match most closely to the file owner’s ID. It has load balanc-

ing algorithm for non-uniform storage node capacities and

file sizes. Similarly, CFS [4] replicates blocks of a file on

nodes immediately after the block’s successor on the Chord

ring [17]. Stading et al. [16] proposed to replicate a file in

proximity-close nodes near the file owner. In the ClientEnd
category, LAR [6] and Gnutella [5] replicate a file in over-

loaded nodes at the file requesters. Backslash [16] proposed

to push cache to one hop closer to requester nodes as soon

as nodes are overloaded. In the Path category, CFS [4],

PAST [13], LAR [6], CUP [12] and DUP [19] perform

caching along the query path. Cox et al. [3] studied pro-

viding DNS service over a P2P network. They cache index

entries, which are DNS mappings, along search query paths.

EAD [14] enhances the utilization of file replicas by se-

lecting query traffic hubs and frequent requesters as replica

nodes, and dynamically adapting to non-uniform and time-

varying file popularity and node interest.

3 Efficient and Effective File Replication

Figure 1 shows the basic idea of the SWARM mechanism

based on swarm intelligence. The nodes a−h, p and s have

the same interest “book”. Node s is the owner of a “book”

file, and other nodes frequently request the file. SWARM



s

a
b

h
p

c
d

e
f

g

Figure 1. File replications in SWARM.

forms common-interest and proximity-close nodes into a

node swarm, and makes one replica for each swarm. The

swarms with the same interest further constitute a node

colony. A replica is shared by all nodes in a swarm and

by all swarms in a colony. Thus, SWARM reduces replicas

and replication overhead, and enhances replica utilization.

SWARM builds the swarm structure using a landmark-

ing method [15, 11, 18] that represents node closeness on

the network by indices. Landmark clustering is based on

the intuition that nodes close to each other are likely to

have similar distances to a few selected landmark nodes.

Sophisticated strategies [10] can be used for landmark

node selection. We assume m landmark nodes are scat-

tered in the Internet. Each node measures its physical dis-

tances to the m landmarks, and uses the vector of distances

< d1, d2, ..., dm > as its landmark vector. Two physi-

cally close nodes have similar landmark vectors. Hilbert

curve [18] is then used to map m-dimensional landmark

vectors to real numbers, such that the closeness relation-

ship among the nodes is preserved. The number is called

the Hilbert number of the node, denoted by H, that indi-

cates the physical closeness of nodes on the Internet. Two

physically close nodes have closeHs.

Without loss of generality, we assume that a node’s inter-

ests are described by a set of attributes described by glob-

ally known strings such as “image”, “music” and “book”.

Each interest corresponds to a category of files. Using con-

sistent hash function [7], it is computationally infeasible to

find two different messages that produce the same message

digest. Therefore, the hash function is effective to group in-

terest attributes. Same interest attributes will have the same

consistent hash value, while different interest attributes will

have different hash values.

SWARM uses the Hilbert number and consistent hash

function to build node swarms based on node interest and

physical proximity. To facilitate such structure construc-

tion, the information of physically close nodes with a com-

mon interest should be marshaled in one node in the DHT

network, which facilitates these nodes to locate each other

to constitute a swarm. Although logically close nodes may

not have common interest or be physically close to each

other, SWARM enables common-interest nodes to report

their information to the same node, which further clusters

the information of proximity-close nodes into a group.

1531
30

25

13

50

0

Chord DHT

56 1

10
40

60

(56,4)

(56,4)

(56,10)

2

20

32

41(56,10)

(56,15)(56,15)

(56,20)

(56,20)

(56,20)

(H, H )

s
a

b
h

p

c

d

e
f

g

(56,1)
H nodes
1 s*
4 a*, b
10 c*, d
15 e, f*
20 g, h, p*

*: swarm server

Figure 2. Information marshaling for swarm
construction. By Insert(H,Info), the infor-
mation of nodes with a common interest is marshalled
in node 56, which further clusters the information of
the sameH into a group.

In a DHT overlay, an object with a DHT key is allocated

to a node by the interface of Insert(key,object),

and the object can be located by Lookup(key). If two

objects have the same key, they are stored in the same node.

We use H to denote the consistent hash value of a node’s

interest, and Info to denote the information of a node:

Info =< H, IP, ID >,

where IP and ID are the IP address and ID of the node.

Because H distinguishes node interests, if nodes report

their information to the DHT with their H as the key by

Insert(H,Info), the information of common-interest

nodes with the same H will reach the same node, which is

called repository node. The repository node further clus-

ters the information with the same H into a group. As a

result, a group of information in a repository node is the

information of physically close nodes with a common inter-

est. Figure 2 shows an example of information marshaling

in Chord with the nodes in Figure 1. These nodes have in-

terest “book” and H(book) = 56. 2-tuple notation such

as (56,4) in the figure represents (H,H) of a node. The

nodes send their information with their H = 56 as key us-

ing Insert(56,Info). All of the nodes’ information

will arrive at node 56 which further groups the information

based on H as shown in the table. Consequently, the infor-

mation of physically close nodes with a common interest is

clustered in one group in the repository node.

If a node has a number of interests, it reports its infor-

mation based on each interest. When a node becomes very

interested in a file category, it reports its information to a

repository node based on this interest. When the node is

no longer interested in a file category, it asks the reposi-

tory node of the interest to remove its information. By this

way, SWARM mechanism tunes to time-varying node in-

terest dynamically, and a node colony always consists of

frequent requesters.

Therefore, a node can find other physically close

nodes with the same interest in its repository node by

Lookup(H). After these nodes discover each other, they



constitute a swarm. All swarms of a interest constitute a

colony. Specifically, in each swarm, the highest-capacity

node is elected as the server of other nodes (i.e. clients)

in the swarm. Swarm servers are responsible for file query

among swarms in a colony. A server maintains an index of

all files and file replicas in its clients.

Rather than replicating a file in individual requesters,

SWARM considers the request frequency of a node swarm,

and makes replicas for the swarm. We define a requester’s

query rate of file f , qf , as the number of queries for file

f that the requester initiates during a unit time, say one

second. The rate calculation method based on exponential

moving average technique [14] can be used to reasonably

determine the query rate. We define swarm query rate of

file f , sf , as the number of f queries initiated by the nodes

in a swarm during one second. Physically close nodes have

the same H, so that a requester includes its H in its file re-

quest in order to facilitate computing sf .

In addition to file owners, SWARM enables replica

nodes to replicate their replica files. A node periodically

calculates a file requester’s qf for a file and sf based on H.

That is:
(sf =

∑
qf i|Hi = v),

where v is a specific value of H. When overloaded, the

node replicates the file in the most frequent requester in the

swarm with the highest sf . This arrangement is to increase

the replica utilization by making it shared by more frequent

requesters. Specifically, the node chooses the swarm with

the highest sf , then orders the swarm nodes in descending

order of qf , and selects a non-replica node in a top-down

fashion. The replica node will report to its server of its new

replica.

When node i requests for a file, if the file is not in the

requester’s interests, the node uses DHT Lookup(key)
function to query the file. Otherwise, node i first queries the

file in its swarm among physically close nodes interested in

the file, and then in its colony among nodes interested in the

file. Specifically, node i first sends a request to its swarm

server of the interest. The server searches the index for the

requested file in its swarm. If the searching fails, the server

queries for the file replica in a nearby swarm.

4 Performance Evaluation

This section presents the performance evaluation of

SWARM in comparison with ClientEnd, ServerEnd, Path
and EAD in file replication. We use replica hit rate to denote

the percentage of the number of queries among total queries

that are resolved by replica nodes. In the experiment, when

overloaded, a node conducts a file replicating operation. In

one file replicating operation, SWARM, ServerEnd, Clien-
tEnd and EAD replicate a file to one node while Path repli-

cates a file to a number of nodes along a query path. The

Table 1. Simulated environment and parame-
ters.

Parameter Default value
Object arrival location Uniform over ID space

Node capacity c Bounded Pareto: shape 2

lower bound: 500

upper bound: 50000

Number of queried files 50

Number of queries per file 1000

α 0.5

Tsf /Ts/d 8/10/2

number of nodes was set to 2048. We assumed there were

200 interest attributes, and each attribute had 500 files. We

assumed a bounded Pareto distribution for the capacity of

nodes. Table 1 lists the parameters of the simulation and

their default values, unless otherwise specified.

Figure 3(a) plots the average path length of different ap-

proaches. We can see that Path and EAD generate shorter

path length than ServerEnd and ClientEnd, and SWARM

leads to the shortest path length. Unlike others that repli-

cate a file only in one node in each file replicating operation,

Path replicates file in nodes along a query path. Therefore,

it increases replica hit rate and produces shorter path length.

However, it is unable to guarantee that every query can en-

counter a replica. By replicating a file in traffic hubs that

forward many queries of the file, EAD leads to high hit rate

and short path length. The result that SWARM achieves

much higher lookup efficiency confirms its effectiveness

in replicating files for a group of common-interest and

proximity-close nodes based on their accumulated query

rate. A node can get a file directly from a node in its own

swarm which enhances the utilization of replicas and also

reduces the lookup path length. ServerEnd replicates a file

close to the file’s owner, such that the file’s request will en-

counter a replica node before arriving at the owner, shorten-

ing lookup path length. However, since the replica nodes lo-

cate close to the file owner, the requests need to travel more

hops than in other methods. Therefore, it is not able to sig-

nificantly reduce lookup path length. Surprisingly, Clien-
tEnd generates much longer lookup path length than oth-

ers. This is because files are replicated in requesters, and

requests from other nodes may not pass through the replica

nodes with high probability. Consequently, ClientEnd is not

able to make full use of file replicas to reduce lookup path

length. In contrast, SWARM enables a replica be shared

within a group of frequent requesters, which dramatically

increases the utilization of replicas and reduces path length.

Figure 3(b) demonstrates the replica hit rate of different

approaches. We can observe that ClientEnd generates the

least hit rate, Path leads to higher hit rate than EAD, Clien-
tEnd and ServerEnd, and SWARM leads to the highest hit

rate. For the same reason observed in Figure 3(a), Clien-



1
1.5

2
2.5

3
3.5

4
4.5

5

5 10 15 20 25
Number of replicating operations when overloaded

A
ve

. p
at

h 
le

ng
th

SWARM
ServerEnd
ClientEnd
Path
EAD

(a) Ave. path length

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25
Number of replicating operations when overloaded

R
ep

lic
a 

hi
t r

at
e

SWARM
ServerEnd
ClientEnd
Path
EAD

(b) Replica hit rate

Figure 3. Efficiency and effectiveness of file replication approaches.

tEnd has very low replica hit rate. ServerEnd replicates a

file near its owner, such that a query for the file can en-

counter a replica node before it arrives at the owner with

high probability. EAD replicates a file in traffic hubs that

forward many queries of the file. Therefore, EAD produces

high probability that many queries meet replica nodes, lead-

ing to high hit rate. Path replicates files at nodes along the

routing path, more replica nodes render higher possibility

for a file request of meeting a replica node. However, its

efficiency is outweighed by its high overhead of replicat-

ing much more replicas. In addition, it cannot ensure that

each request can be resolved by a replica node. SWARM

replicates a file for a group of common-interest nodes and

enables a node to actively retrieves the locations of replica

nodes, which significantly improves the probability that the

file query is resolved by a replica node, leading to much

higher hit rate.

5 Conclusions

Current file replication methods for P2P file sharing sys-

tems are not sufficiently effective in improving file query

and replica utilization. This paper proposes a swarm in-

telligence based file replication called SWARM. SWARM

builds common-interest and proximity-close nodes into a

swarm, and relies on super nodes to connect swarms with

the same interest into a colony. It replicates a file in a

swarm with the highest accumulated file query rates of the

swarm nodes, and makes the replica being shared among

the nodes in a swarm and colony. Simulation results demon-

strate the superiority of SWARM in comparison with other

approaches. It reduces the overhead of file replication, and

produces significant improvements in lookup efficiency and

replica hit rate.

Acknowledgment

The authors are grateful to the anonymous reviewers for

their valuable comments and suggestions. This research

was supported in part by U.S. NSF grants CNS-0834592

and CNS-0832109.

References

[1] Bittorrent. http://en.wikipedia.org/wiki/Bittorrent.
[2] Swarm Intelligence. http://www.sce.carleton.ca/netmanage/

tony/swarm.html.
[3] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS

using a Peer-to-Peer Lookup Service. In Proc. of IPTPS,

2002.
[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-

ica. Wide-area cooperative storage with CFS. In Proc. of
SOSP, 2001.

[5] Gnutella home page. http://www.gnutella.com.
[6] V. Gopalakrishnan, B. Silaghi, and et al. Adaptive Replica-

tion in Peer-to-Peer Systems. In Proc. of ICDCS, 2004.
[7] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,

and R. Panigrahy. Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on

the World Wide Web. In Proc. of STOC, 1997.
[8] Kazaa. Kazaa home page: www.kazaa.com.
[9] Morpheus home page. http://www.musiccity.com.

[10] T. S. E. Ng and H. Zhang. Towards global network posi-

tioning. In Proc. of the 1st ACM SIGCOMM Workshop on
Internet Measurement, 2001.

[11] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Topologically-aware overlay construction and server selec-

tion. In Proc. of INFOCOM, 2002.
[12] M. Roussopoulos and M. Baker. CUP: Controlled Update

Propagation in Peer to Peer Networks. In Proc. of USENIX,

2003.
[13] A. Rowstron and P. Druschel. Storage Management and

Caching in PAST, a Large-scale, Persistent Peer-to-Peer

Storage Utility. In Proc. of SOSP, 2001.
[14] H. Shen. An efficient and adaptive decentralized file repli-

cation algorithm in p2p file sharing systems. TPDS, 2009.
[15] H. Shen and C.-Z. Xu. Hash-based Proximity Clustering for

Efficient Load Balancing in Heterogeneous DHT Networks.

JPDC, 2008.
[16] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer Caching

Schemes to Address Flash Crowds. In Proc. of IPTPS, 2002.
[17] I. Stoica, R. Morris, D. Liben-Nowell, and et al. Chord: A

Scalable Peer-to-Peer Lookup Protocol for Internet Applica-

tions. TON, 1(1):17–32, 2003.
[18] Z. Xu and et al. Turning Heterogeneity into an Advantage

in Overlay Routing. In Proc. of INFOCOM, 2003.
[19] L. Yin and G. Cao. DUP: Dynamic-tree Based Update Prop-

agation in Peer-to-Peer Networks. In Proc. of ICDE, 2005.


