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Abstract

Efficient file query is important to the overall perfor-
mance of Peer-to-Peer (P2P) file sharing systems. Clus-
tering peers by their common interests can significantly
enhance the efficiency of file query. On the other hand,
clustering peers by their physical proximity can also im-
prove file query performance. Few current works are able
to cluster peers based on both peer interest and physi-
cal proximity. It is even harder to realize it in structured
P2Ps due to their strictly defined topologies, although
they provide higher file query efficiency than unstructured
P2Ps. In this paper, we introduce a proximity-aware and
interest-clustered P2P file sharing system (PAIS) based
on a structured P2P. It groups peers based on both in-
terest and proximity. PAIS supports sophisticated routing
and clustering strategies based on a hierarchical topol-
0gy. Theoretical analysis and simulation results demon-
strate that PAIS dramatically reduces the overhead and
enhances efficiency in file sharing.

1 Introduction

A peer-to-Peer (P2P) system is a distributed system with-
out any centralized control or hierarchical organization, in
which each node has equal functionality. Over the past
years, the immense popularity of the Internet has pro-
duced a significant stimulus to P2P file sharing systems.
It was reported [1] that the total global P2P simultaneous
users reached 9,670,552 in December 2005, and it repre-
sents an increase of over 1.28 million users, or 13.28%,
since January 2005. For example, the KaZaA [2] applica-
tion has had upwards of 20 million downloads and it can
have anywhere up to 800,000 users connected at one time.

There are two classes of P2P systems: unstructured
and structured. Unstructured P2P networks such as
Gnutella [3] and Freenet [4] do not assign responsibil-
ity for data to specific nodes. Nodes join and leave
the network according to some loose rules. Currently,
their file query method is based on either flooding [3]
where the query is propagated to all neighbors, or random-
walkers [5] where the query is forwarded to randomly
chosen neighbors until the file is found. Flooding-based
search mechanism brings about heavy traffic in a large-

scale system because of exponential increase in messages
generated per query. Though random-walkers reduce
flooding by some extent, they still create heavy overhead
to the network due to the many requesting peers involved.
Furthermore, flooding and random walkers cannot guar-
antee data location. They do not ensure that querying ter-
minates once the file is located, and cannot prevent one
node from receiving the same query multiple times, thus
wasting bandwidth. Structured P2P network [6-9], i.e.
Distributed Hash Tables (DHTS), can overcome the draw-
backs with their features of higher efficiency, scalability
and deterministic data location. They have strictly con-
trolled topologies and their data placement and lookup al-
gorithms are precisely defined based on a DHT data struc-
ture and consistent hashing function [10]. The node re-
sponsible for a key can always be found even if the sys-
tem is in a continuous state of change. Most of the DHT's
require O(logn) hops per lookup request with O(logn)
neighbors per node, where n is the number of nodes in
the system.

A key criterion to judge a P2P file sharing system is
file location efficiency. To improve the efficiency, numer-
ous methods have been proposed. Recently, a new wave
of P2P systems is advancing an architecture of central-
ized topology embedded in decentralized systems; such a
topology forms a super-peer network [11-14]. A super-
peer topology consists of supernodes with fast connec-
tions and regular nodes with slower connections. A su-
pernode connects with other supernodes and some regu-
lar nodes at the same time, and a regular node connects
with a supernode. In a super-peer topology, the nodes at
the center of the network are faster and therefore produce
a more reliable and stable backbone. This allows more
messages to be routed than if the backbone was slower
and therefore allows greater scalability. Super-peer net-
works occupy the middle-ground between centralized and
entirely symmetric P2P networks and have the potential
to combine the efficiency of a centralized search with the
efficiency provided by distributed search.

Another class of methods to improve file location effi-
ciency is proximity-aware structure [15-17]. Recall that



P2P overlay network is a logical structure constructed
upon a physical network. That is, logical proximity ab-
straction derived from a P2P doesn’t necessarily match
the physical proximity information in reality. The short-
est path according to the routing protocol (i.e. the least
hop count routing) is not necessarily the shortest physical
path. This mismatch becomes a big obstacle for the de-
ployment and performance optimization of P2P file shar-
ing systems. A P2P system should utilize proximity infor-
mation to reduce file query overhead and improve its ef-
ficiency. Proximity-aware clustering to group physically
close peers is an effective technique to improve the effi-
ciency. The third class of methods to improve file location
efficiency is to cluster nodes based on their interests [18—
27]. They lead to clusters of peers with similar interests,
and in turn allows to limit the latency of searches required
to find files.

Although numerous proximity-based or interest-based
super-peer topologies have been proposed with different
features, few methods are able to cluster peers accord-
ing to both proximity and interest. In addition, most of
these methods are on unstructured P2P systems that have
no strict policy for topology construction. They cannot
be applied to general DHTs directly though DHTSs pro-
vide higher file location efficiency. The problems ad-
dressed in the paper include whether the interest-based
and proximity-aware clustering methods can be integrated
with super-peer topology, and whether the methods can be
applied to structured P2P for high performance.

This paper presents a proximity-aware and interest-
clustered P2P file sharing system (PAIS) on a structured
P2P. It groups peers not only with the same interests but
also in close proximity. It also places files semantically to-
gether, and organize them in a fashion similar to a Yellow
Pages. More importantly, it keeps all advantages of DHTs
over unstructured P2Ps. Relying on DHT lookup policy
rather than broadcasting, the PAIS construction consumes
much less cost in mapping nodes to clusters and mapping
clusters to semantic descriptions.

The remainder of this paper is structured as follows.
Section 2 presents a concise review of representative ap-
proaches for file location efficiency improvement in P2P
systems. Section 3 describes PAIS, focusing on its struc-
ture and algorithms. Section 4 analyzes the performance
of PAIS in both static and dynamic environments. Sec-
tion 5 provides conclusion of the paper.

2 Related Work

In the past few years, numerous methods have been pro-
posed to improve the performance of P2P systems. One
method is super-peer topology that introduce hierarchy
into the network in the form of supernodes, peers which
have extra capabilities and duties in the network. Fast-
Track [13] is super-peer topology. Its routing is almost
the same as on Gnutella, but broadcasting is between the
supernodes only and a node sends its query to its supern-

ode only. Every supernode searches an index that contains
all the files of its connected nodes. Two file sharing appli-
cations, KaZaA [2] and Morpheus [28] are based on the
FastTrack protocol. It is also proposed to apply the hierar-
chical designs of FastTrack to the Gnutella network [14].
Yang et al. [29] pointed out a potential drawback of super-
peer network; that is, when a supernode fails or simply
leaves, all its clients (the nodes in the same cluster with
that supernode) become temporarily disconnected until
they find a new supernode to connect to. To address this
problem, they proposed method of super-peer redundancy.
Instead of a single supernode in a cluster, there are some
redundant supernode partners with the same responsibility
in a round-robin manner. To reduce the individual query
load, each partner is connected with half of the clients.

The super-peer network in [11] is for efficient and scal-
able file consistency maintenance in structured P2P sys-
tems. A file update message is propagated among super
peers, and the super peers further forward the message
to their own children. Our previous work built a super-
peer network for load balancing [15]. A supernode and
a number of physically close regular nodes constitute a
group. In each group, regular nodes report the information
of their file status to their supernode, which arranges the
file replication between the regular nodes. The fast con-
nection of supernodes lessens the workload produced by
a large amount of messages. In addition, super-peer net-
work uses the node heterogeneity to its advantage as the
nodes with limited capabilities are shielded from query
processing and traffic.

Another class of methods to improve file location ef-
ficiency is to take into account the physical structure
of the underlying network during file locations. Tech-
niques to exploit topology information in overlay rout-
ing include geographic layout, proximity routing and
proximity-neighbor selection. Geographic layout method
maps the overlay’s logical ID space to the physical net-
work so that neighboring nodes in the ID space are
also close in the physical network. It is employed in
topologically-aware CAN [16]. In proximity routing
method, the logical overlay is constructed without consid-
ering the underlying physical topology. In a routing, the
node with the closest physical distance to the object key is
chosen among the next hop candidates in the routing table.
The entries of a routing table are selected based on prox-
imity metric among all nodes that satisfy the constraint
of the logical overlay (e.g., in Pastry [7], the constraint
is the nodelD prefix). This method has been adopted to
Chord [6] and CAN [30]. Its benefits are dependent on
the determination of an appropriate number of the hop
candidates. Proximity neighbor selection is a middle-
ground approach between the above methods. It selects
the routing table entries pointing to the topologically near-
est among all nodes with node ID in the desired portion of
the ID space. Castro et al. [31] implemented this method
in Pastry and Tapestry [8] with low overhead. It maintains



system load balancing and robustness with comparable
lookup latency compared to Geographic layout method.
Xu et al. [32] proposed a method to build topology-aware
overlays using global soft-state. It combines landmark
clustering to generate proximity information and stores
the system information (such as proximity and load in-
formation) as objects on the system itself, which is easy
to update and retrieve. Waldvogel et al. [17] proposed a
topology-aware overlay network called Mithos. Mithos
does not require full topology knowledge. It provides a
close conceptual integration between geographic layout
and proximity routing, as well as a powerful addressing
scheme directly suitable for use in DHTs. It also provides
locality-aware connectivity, thereby ensuring that a mes-
sage reaches its destination with minimal overhead.

The third method to improve P2P file location effi-
ciency is to consider nodes with common interests or se-
mantically close files. One category of such networks is
called schema based networks [24-27, 33, 34]. They use
explicit schemas to describe peers’ contents based on se-
mantic description, and allow the aggregation and integra-
tion of data from autonomous, distributed data sources.
They provide complex query facilities but no sophisti-
cated means for semantic clustering of peers, and their
broadcasting does not scale well. Ramanathan ez al. [21]
proposed a mechanism to let a peer connect to the peer
that frequently provides good results, leading to clusters
of peers with similar interests. Hang et al. [22] proposed
a method for clustering peers that share similar proper-
ties together and a new intelligent query routing strat-
egy. In contrast to broadcasting query message, the query
message will first walk around the network from peer to
peer randomly, once it reaches the target cluster, the query
message is broadcasted by peers inside the cluster. Crespo
et al. [23] proposed a semantic overlay network (SON)
based on the semantic relations among peers. SON estab-
lishes semantic relations between queries and peers, and
routes queries directly to relevant peers. Furthermore, lay-
ered SON is proposed in order to increase the availability
of results. Liu and et al. [18] proposed methods for sup-
porting efficient keyword-based file search in peer-to-peer
file sharing systems. The works in [19, 20] consider node
interest for publish and subscribe. The works collect the
information of nodes with the same or similar interest to-
gether.

The work in [35] provides a survey of the research to-
wards robust peer-to-peer networks. In spite of the efforts
devoted to efficient file location in P2P systems, there are
few works that combine the super-peer topology with both
interest and proximity based clustering methods. In ad-
dition, though DHTs have higher file location efficiency
over unstructured P2Ps, it is a challenge to realize super-
peer topology with both interest and proximity based clus-
tering on them, due to their strictly defined topology and
data allocation policy. This paper presents PAIS tack-
les the challenge by taking advantage of the hierarchical

structure of a DHT. It significantly improves the efficiency
of file location in DHTs.

3 PAIS: A Proximity-aware Interest-
clustered P2P File Sharing System

3.1 PAIS Structure

PAIS is developed based on Cycloid [9] structured P2P
network. Cycloid is a lookup efficient constant-degree
overlay with n=d - 2 nodes, where d is its dimension.
It achieves a time complexity of O(d) per lookup request
by using O(1) neighbors per node. Each Cycloid node
is represented by a pair of indices (k,ag—1a4—2 - ..ag),
where k is a cyclic index and a4_1a4—s......a¢ is a cubi-
cal index. The cyclic index is an integer ranging from O
to d — 1, and the cubical index is a binary number be-
tween 0 and 2¢ — 1. The nodes with the same cubical
index are ordered by their cyclic index mod d on a small
cycle, which we call cluster. All clusters are ordered by
their cubical index mod 2¢ on a large cycle. The Cy-
cloid DHT assigns keys onto its ID space by a consis-
tent hashing function [10]. For a given key, the cyclic
index of its mapped node is set to its hash value modu-
lated by d and the cubical index is set to the hash value
divided by d. A key will be assigned to a node whose
ID is closest to its ID. Cycloid has self-organization
mechanisms to deal with node joins, departures and fail-
ures. It has APIs, including Insert (key, object),
Lookup (key), Join () and Leave (). Cycloid rout-
ing algorithm involves three phases. A file request is
routed along the cluster of the requester, between clus-
ters, and along the cluster in the destination’s cluster. For
more details of Cycloid, please refer to [9].
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Figure 1: Clusters of nodes with common interests.
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A node’s interests are described by a set of attributes
with globally known string description such as “image”
and “music”. The strategies that allow to describe content
in a peer with metadata [24-26]can be used to derive the
interests of each peer. Due to the space limit, we don’t
explain the details of the strategies.

Taking advantage of the hierarchical structure of Cy-
cloid, PAIS gathers physically close nodes in one cluster,
and further groups nodes in each cluster into sub-clusters
based on their interests. We define a sub-cluster (SC) as a
link structure within a network N given a set of links from
client (c) to a particular supernode server (s). That is:

(SC) = ¢;,8; € N|Falink(c;,sj,1)),

Each SCj supports functions: join (¢;, 1), where links



(ci, 55,1) between a server and a client are created, and
leave (¢, 1) where they are dropped.

O
Figure 2: PAIS structure.

One node may appear in more than one sub-cluster if
it has more than one interest. The sub-cluster functions
as a super-peer network that has one server and a number
of clients connected to it. The servers are connected into
a cluster in Cycloid. All nodes in a sub-cluster have the
same Cycloid ID. Figure 2 illustrates the PAIS structure
corresponding to Figure 1 that shows clusters of nodes
with common interests. Physically close nodes are in the
same cluster, and common-interest nodes are grouped into
one sub-cluster. The physically close nodes 1 — 6 are
mapped to cluster 200. The nodes interested in “book™
are further grouped into sub-cluster a. All nodes in sub-
cluster @ have ID (3, 200).

3.2 PAIS Construction and Maintenance

A question is how to build PAIS structure. Before we
present the details of PAIS construction, let’s introduce
a landmarking method to represent node closeness on
the network by indices used in [15]. Landmark cluster-
ing has been widely adopted to generate proximity infor-
mation [16, 36]. It is based on the intuition that nodes
close to each other are likely to have similar distances
to a few selected landmark nodes, although details may
vary from system to system. In DHTs, the landmark
nodes can be selected by overlay itself or the network.
We assume m landmark nodes that are randomly scat-
tered in the Internet. Each node measures its physical
distances to the m landmarks, and uses the vector of dis-
tances < di,ds,...,d,, > as its coordinate in Cartesian
space. Two physically close nodes will have similar vec-
tors. We use space-filling curves [37], such as Hilbert
curve [36], to map m-dimensional landmark vectors to
real numbers. Space-filling curves map points in a m-
dimension Cartesian space into a domain of real numbers;
that is, R™ —— R!, such that the closeness relationship
among the nodes is preserved. This mapping can be re-
garded as filling a curve within the m-dimensional space
until it completely fills the space. We partition the m-
dimensional landmark space into 2™* grids of equal size
(where m refers to the number of landmarks and x con-
trols the number of grids used to partition the landmark
space), and number each node according to the grid into
which it falls. We call this number Hilbert number of the
node, denoted by H. H indicates the physical closeness

of nodes on the Internet.

Consistent hash function such as SHA-1 is widely used
in DHT networks for node or file ID due to its collision-
resistant nature. Using such a hash function, it is com-
putationally infeasible to find two different messages that
produce the same message digest. The consistent hash
function is effective to cluster messages based on message
difference.

Recall that a Cycloid ID is represented by a cyclic in-
dex and a cubical index. The cubical indices differenti-
ate clusters, and the cyclic indices indicate different node
positions in a cluster. Based on the Cycloid topology
and ID determination, PAIS intelligently uses cubical in-
dices to distinguish nodes in different physical location,
and uses cyclic indices to further classify physically close
nodes based on their interests. Specifically, PAIS uses
node ¢’s Hilbert number, ;, as its cubical index, and the
consistent hash value of node #’s interest mod d, S;%d,
as its cyclic index to generate node ¢’s ID, denoted by
(S:%d, H;). If a node has a number of interests, it gener-
ates a set of IDs with different cyclic indices. Using this
ID determination method, the physically close nodes with
the same H will be in a cluster, and those with similar
will be in close clusters in PAIS. Physically close nodes
with the same interest have the same ID, and they consti-
tute a sub-cluster.

When node ¢ joins the system, if there already exit
nodes with IDs equal to (S;%d, H; ), in the case that node
1 is a regular node, it becomes a client in that sub-cluster.
In the case that node ¢ is a supernode, it becomes a backup
for the server in the sub-cluster. Before the server leaves,
one of the backups replaces the leaving server. If there
is no node with IDs equal to (S;%d, H,;), in the case that
node ¢ is a supernode, it becomes the server of the sub-
cluster, and other newly-joint nodes with IDs (S;%d, H;)
will connect to it. If node ¢ is not a supernode, it tem-
porarily functions as the server until there is a joining su-
pernode to replace it.

The clusters in PAIS function as super-peer network.
The server in a sub-cluster acts as a centralized server to
a subset of clients. Clients submit queries to their server
and receive results from it, as in a hybrid system. Servers
are also connected to each other as peers in a Cycloid,
routing messages over this overlay network and submit-
ting and answering queries on behalf of their clients and
themselves.

To build each peer’s routing table in the Cycloid, PAIS
uses proximity-neighbor selection method. That is, it se-
lects the routing table entries pointing to the physically
nearest nodes among all nodes with IDs in the desired por-
tion of the ID space. As a result, in PAIS, the logical prox-
imity between neighbors abstraction derived from overlay
approximately matches the physical proximity informa-
tion in reality. Nodes in one cluster are physically close to
each other, and a node is physically closer to another node
in a neighbor cluster than that in a cluster far away. Due



to uneven distribution of nodes in physical space, nodes
may not be distributed in balance in the ID space of PAIS.

Node failures lead to intact topology and degrade DHT
performance. PAIS uses stabilization to deal with node
failures. Specifically each server refreshes its routing ta-
ble entries and predecessor periodically to make sure they
are correct. PAIS uses lazy-update to handle the influence
of a server failure on its clients. Each client probes its
server periodically. If a client ¢ does not get a reply from
its server s after a certain time period 7', ¢ assumes s fails,
it uses PAIS node join algorithm to connect to another su-
pernode again.

Unlike other methods that use broadcasting to clus-
ter nodes, PAIS leverage the DHT ID determination and
lookup (key) function to cluster nodes based on their
proximity and interest, thus reducing the overhead for
its construction. With the assumption that there are n
servers in PAIS, we analyze the overhead of node dynam-
ics in PAIS and achieve the following results.

Theorem 3.1 In PAIS, with high probability', a node join
will incur overhead of O(log® n,) messages.

Proof When a node joins in PAIS, to find its closest
server for one of its interests, O(logns) messages are
required. If the new node joins as a server, another
O(log2 n,) messages are required for neighbor update.
Thus, if the node has m interests, the number of messages
needed is m(O(log ns) + aO(log® ny))~ O(log® ny), in
which « is the probability that the new node joins as a
server. ||

Theorem 3.2 In PAIS, w.h.p., a node departure will incur
overhead of O(log2 ns) messages, and a node failure will
incur overhead of O(log Ns) messages.

Proof According to the PAIS node leaving algorithm, a
leaving client only needs O(1) message (i.e. notifying its
server). If a leaving server has a backup supernode, it
needs O(log® n,) messages. Otherwise, its clients need
to rejoin the system again. Each client joining requires
O(logns) messages. Therefore, the average number of
messages caused by a node leaving is O(1) x 5+ (1 —
B)(0(log? ny) + v x O(log Ny)) ~ O(log® ny), where
[ is the percent of clients among all nodes, and + is the
average number of clients a server connects. It is easy
to derive that a node failure incurs overhead of O(logn)
messages. i

3.3 File Distribution

In PAIS, file ID is determined using the same way in
Cycloid. That is, a file’s cyclic index is its key’s hash
value modulated by d and its cubical index is set to the
hash value divided by d, represented as (H%d, H/d),

! An event happens with high probability (w.h.p.) when it occurs with
probability 1 — O(n~1).

where H is consistent hash value of its key. A file’s
key can be its name or a string describing its contents.
The file key must be consistent with the node interest. A
node stores its files to the system via Cycloid interface
Insert (fileID, file). According to Cycloid key
assignment policy, each sub-cluster is responsible for the
files whose cyclic indices falls into the key space sector
it supervises. Thus, files with similar keys will be in the
same sub-cluster in a cluster. The supernode in a sub-
cluster further distributes files among its clients in bal-
ance. For example, in Figure 2, a file with key “book” has
ID (3,200), then it will be stored in a node in sub-cluster
a. In node joins and departures, the files are transferred
between nodes based on the key assignment policy.

In PAIS, if node 7 becomes very interested in file f in
its cluster, it joins the sub-cluster (H;%d,H;). If node
1 is not interested in a file category any longer, it departs
the sub-cluster of the interest. By this way, PAIS tunes
to time-varying node interest and file popularity dynami-
cally. PAIS relies on file replication to further improve its
file location efficiency. Basically, when the request fre-
quency of a file from a cluster of nodes with H exceeds
a predefined threshold, the file owner replicates a file in a
node in the sub-cluster closest to (H%d, H) in that clus-
ter.

3.4 File Query Algorithm

When node ¢ requests for a file, it gets the ID for the file:
(H%d, H/d). If the file’s key is one of the requester’s
interest attributes, the node sends the request to its server
in the sub-cluster of the interest. The server has the index
of all files in its sub-cluster. If there is a requested file
in its sub-cluster, the server sends the file location to the
requester directly. Otherwise, node ¢ checks the existence
of a replica of the file. If there is a replica of the file, it is
stored in a sub-cluster closest to ID (H%d, H;). There-
fore, the requester send a request with (H%d, H;) as a
target. If there is no replica of the file requested, the file
request routing is performed based on Cycloid routing al-
gorithm. Every time a server receives a request, it checks
if its sub-cluster has the requested file. This routing al-
gorithm does not lead to more overhead. Routing among
physically close nodes greatly improves file location effi-
ciency.

For example, in Figure 2, different files are classified
into different sub-clusters based on their keys. When
a node queries for a file in “book”, it sends request
Lookup (3, 200) toits server. The requester gets the lo-
cation of the file from the server if there is a requested file
in its sub-cluster. Otherwise, the request is routed along its
own cluster. Each server in the sub-cluster of the cluster
checks if there is a requested file. If there is no requested
file in the cluster, the request will be routed based on Cy-
cloid routing algorithm which will forward the request to
sub-cluster a. Then, the server of the sub-cluster a replies
to the requester of the location of the file. Theorem 3.3
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demonstrates the efficiency of file location in PAIS.

Theorem 3.3 Wh.p., the lookup path length for a file
query in PAIS is bounded by O(d) hops.

Proof In PAIS, it takes a requester one hop to inquire its
server for a requested file, and takes O(d) to check a pos-
sible replicated file. Using Cycloid routing algorithm, the
path length is O(d). Therefore, w.h.p., the lookup path
length for a file query is bounded by O(d) hops. |}

4 Performance Evaluation

This section presents the performance evaluation of PAIS
in average case in comparison with Cycloid. We chose
Cycloid as reference is because it is comparable to PAIS
regarding the fundamental DHT structure and perfor-
mance. The experiment results demonstrate the improve-
ment of PAIS over Cycloid in terms of proximity-aware
performance, file query efficiency, communication cost in
both static and dynamic situations. In the experiments, the
DHT’s dimension was set to 8 and it had 2048 nodes. We
assumed there were 200 interest attributes (i.e. file keys),
and each attribute had 500 files. We assumed a bounded
Pareto distribution for the capacity of nodes. This dis-
tribution reflects the real world situations where machine
capacities vary by different orders of magnitude. The
number of queried files was set to 50, and the number
of queries per file was set to 1000, unless otherwise spec-
ified. The file requesters and the queried files were ran-
domly chosen.

We used two transit-stub topologies generated by GT-
ITM [38]: “tsSk-large” and “tsSk-small”. “ts5k-large” has
5 transit domains, 3 transit nodes per transit domain, 5
stub domains attached to each transit node, and 60 nodes
in each stub domain on average. “tsSk-small” has 120
transit domains, 5 transit nodes per transit domain, 4 stub
domains attached to each transit node, and 2 nodes in each
stub domain on average. “tsSk-large” has a larger back-
bone and sparser edge network (stub) than “ts5k-small.”
“tsSk-large” is used to represent a situation in which DHT
overlay consists of nodes from several big stub domains,
while “tsSk-small” represents a situation in which DHT
overlay consists of nodes scattered in the entire Internet
and only few nodes from the same edge network join
the overlay. To account for the fact that interdomain

(b) tsS5k-small
Figure 3: CDF of total queries distribution.

Figure 4: Hops per file query.

routes have higher latency, each interdomain hop counts
as 3 hops of units of latency while each intradomain hop
counts as 1 hop of unit of latency.

4.1 Effectiveness of Proximity Awareness

In this section, we show the effectiveness of PAIS on
achieving proximity-aware file query in which requesters
get files from physically close nodes. Figure 3(a) and (b)
show the cumulative distribution function (CDF) of the
number of queried files versus the physical distance in
“tsSk-large” and “ts5k-small” respectively. We can see
that in “ts5k-large,” in PAIS, 95% of total files are of-
fered by nodes within 10 hops, while in Cycloid, 15% of
files are offered by nodes within 10 hops. Almost all files
in PAIS are offered by nodes within 15 hops, while only
75% of the total files are offered by nodes within 15 hops
in Cycloid. The results show that most files can be offered
by servers in short physical distances in PAIS, while most
files are offered in long distances in Cycloid. From Fig-
ure 3(b), we can have the same observations as in “ts5k-
large,” although the performance difference between sys-
tems is not so significant as in “tsSk-large.” The more
files offered by nodes in the shorter distances, the higher
proximity-aware performance of a P2P system with less
query cost. The results indicate that PAIS improves Cy-
cloid with regards to the proximity-aware performance in
offering files by physically close nodes either when nodes
are from several big sub domains or when nodes are scat-
tered in the entire Internet.

4.2 Efficiency of File Query

The second experiment was designed to evaluate the ef-
ficiency of file query. In this experiment, we simulated
networks with n = d - 2¢ nodes and varied the dimension
d from 3 to 8. Each node made a total of n/4 lookup re-
quests to random destinations. Figure 4(a) shows the aver-
age logical hops for a file query in average case. “PAIS/R”
represents PAIS with file replication algorithm. The path
length metric is measured by the number of hops traversed
during a search until a file query is resolved. We can see
that PAIS incurs less number of hops than Cycloid. By
clustering common interest nodes, a file query does not
need to be forwarded in the entire system. In most cases,
a query only needs to be routed in the requester’s clus-
ter, thus leading to less lookup path length. We can also
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Figure 5: Communication cost for file query.

observe that PAIS/R generates shorter path length than
PAIS. It illustrates the effectiveness of PAIS to replicate
files in nodes with high query frequency, which enhances
the utilization of replicas and hence reduces the lookup
path length.

4.3 Communication Cost

The cost of file searching is directly related to message
size and physical distance of the message travelled; we
use the product of these two factors of all file queries
to represent communication cost. It is assumed that the
size of a file query is 1 unit. Figure 5(a) and (b) plot the
file searching communication cost of PAIS and Cycloid
in “ts5k-large” and “ts5k-small” respectively. From these
figures, we can see that the cost increases as the number
of file queries increases, and Cycloid incurs considerably
higher cost than PAIS. There are two reasons for the ob-
servation. First, PAIS reduces the lookup path length of
Cycloid. Second, because Cycloid neglects proximity, file
query messages travel long physical distances. In con-
trast, PAIS proactively considers proximity in P2P con-
struction for file query, such that the messages only travel
between physically close nodes. Its shorter lookup path
length and shorter physical message travel distance result
in low-overhead and timely file queries.

4.4 Performance in a Highly Dynamic Environment

This section evaluates the efficiency of PAIS in a highly
dynamic environment. In this experiment, as in [6], file
lookups are generated according to a Poisson process at a
rate of one per second. Node joins and voluntary leaves
are modelled by a Poisson process with a mean rate of R,
which ranges from 0.1 to 0.4. A rate of R = 0.1 corre-
sponds to one node joining and leaving every 10 seconds
on average. Each node invokes the stabilization protocol
once every 30 seconds and each nodes stabilization rou-
tine is at intervals that are uniformly distributed in the 30
seconds interval.

Experiment results show that there were no lookup fail-
ures in all test cases. Figure 6 shows the average num-
ber of logical hops for the requests as R changes. Com-
pared with the logical hops evaluation in Figure 4, we can
see that the measured number of hops in the presence of
node joining and leaving is very close to that value and
does not change greatly with the rate R. The results imply

that DHT self-organization mechanisms can deal with dy-
namics. Figure 7(a) and (b) plot the communication cost
for system maintenance in “tsSk-large” and “ts5k-small”
respectively. The communication cost includes the cost
for file query and system stabilization in dynamics. From
these figures, we can see that the communication cost in-
creases slightly with the node join/leave rate, and that of
Cycloid is dramatically higher than PAIS. Fast node joins
and departures make more nodes involved in system sta-
bilization, leading to more messages and higher commu-
nication cost. Note that the communication cost is due
to the number of messages for file query and stabiliza-
tion and the physical distances between nodes. Cycloid
does not consider physical distance in system construc-
tion, so that nodes need to contact physically far nodes
for file query and system stabilization in dynamics. This
is the main reason for its high total communication cost.
In contrast, PAIS takes into account proximity in system
construction which enables nodes to communicate physi-
cally close nodes for file query and stabilization. There-
fore, PAIS incurs less communication cost for file query
and system stabilization in dynamics. In conclusion, the
experiment results confirm that PAIS can efficiently re-
solve file queries in a dynamic environment with lower
communication cost.

5 Conclusions

To enhance file location efficiency in P2P systems,
interest-clustered super-peer network or proximity-
clustered super-peer networks have been proposed.
Though both strategies improve the performance of P2Ps,
few works cluster peers based on both peer interest and
physical proximity. Moreover, it is harder to realize it
in structured P2Ps due to their strictly defined topolo-
gies, although they have high efficiency of file location
than unstructured P2Ps. In this paper, we introduce a
proximity-aware and interest-clustered P2P file sharing
system (PAIS) based on a structured P2P. It groups peers
based on both interest and proximity by taking advantage
of a hierarchical structure of a structured P2P. Theoretical
analysis and simulation results demonstrate the efficiency
of PAIS in comparison with another P2P file sharing sys-
tem. It dramatically reduces the overhead and yields sig-
nificant improvements in file location efficiency.
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