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Abstract—Since centralized data storage and search schemesin the geographical region X during 7:00pm-8:00pm, March
often lead to high overhead and latency, distributed data astric 4, 2009?”. If the operator receives data for the entire area
storage becomes a preferable approach in large-scale WSNs..q\ered by a large-scale WSN during all the time, the latency

However, most of existing methods lack optimization for spaal- ¢ th ived dat lead t delay t fi
temporal search and similarity search for multi-attribute data. 0 process the received data may lead (o a delay 1o a ime-

Some methods are optimized under circumstances where nodescritical military task. Similarity searching for queryirtata in

are equipped with locating systems (e.g., GPS) which cons@® a certain similarity degree provides more flexibility. ltaften

high energy. This paper proposes a distributed spatial-teoral  more appropriate for a user to formulate search requests in
similarity data storage scheme (SDS). It disseminates evedata less precise terms, rather than defining a sharp limit.

in such a way that the distance between WSN neighborhoods .
represents the similarity of data stored in them. In addition, SDS In spite of the efforts for the deployment of WSNs, there has

carpooling routing algorithm efficiently routes messages whout ~b€en very little research devoted to tackling efficient igppat
the aid of a locating system. SDS provides efficient spatial- temporal similarity data storage in a large-scale WSN. This

temporal and similarity data searching service. Experimetal paper proposes a distributed spatial-temporal similadga
results show that SDS yields significant improvements on the giqra9e scheme (SDS) that accelerates querying speed and
efficiency of data querying compared with existing approachs. N .

reduces communication energy consumption and overhead.
Compared to other distributed data storage schemes, SDS is
advanced in that it optimizes data querying based on not only

A wireless sensor network (WSN) is a wireless networfata name but also data similarity, at the same time it offers
consisting of a large number of distributed low-power ansbatial-temporal data searching. In addition, SDS does not
inexpensive sensor devices. WSNs have been used in masgd GPS to locate the positions of nodes for routing, while
military and civilian application areas such as militaryget achieving comparable efficiency to GPS-based geographical
tracking, habitat monitoring, health monitoring, envineental routing. Thus, SDS reduces energy consumption and enhances
contaminant detection and industrial process control [1]. data searching flexibility in WSNs.

A data storage scheme is an indispensable component iThe remainder of this paper is organized as below. In
WSNs, which offers data storing and searching services. $gction Il, we describe and analyze related data storage
addition to energy efficiency demand, fast data searchingapproaches in WSNs. In Section Ill, we present the design
another requirement for data storage scheme. To overcanedh the SDS scheme. The performance evaluation of SDS is
unnecessary communication cost and the unbalanced engipsented in Section V. Conclusion and future work aremive
consumption of centralized data storage method, disgtutin Section V.
data storage approaches have been proposed (e.g. [2] [3]).

Most distributed data storage schemes hash event data to
locations according to data names. Though these scheme&entralized storage.Centralized storage methods [5] store
enhance the speed of data searching, most of existing ssheale of the data generated by sensor nodes to a single sink
lack optimization for spatial-temporal searching and knity  which locates outside of the WSN and processes data. A data
searching for multi-attribute data. In addition, some sebe query needs to travel to the sink to find the data source,
are optimized under circumstances where nodes are equiptieds the centralized sink may become a hot-spot. In addition
with locating systems [4] (e.g., GPS), which leads to higthe energy cost is not distributed in balance. The energy
energy consumption. Spatial-temporal searching allovessusconsumption of the nodes closer to the sink is greater than
to search data of events occurred in a specified physicaldes far away from the sink, because the latter needs the
location and time period. Similarity searching enablesraisdormer to forward sensed data or queries to the sink. Thegefo

to search similar data in a query rather than the exact datantralized storage methods could only be used in smal-sca
Efficiently achieving these two functions still remains acdal WSNs and low data generation rate.

problem in WSNSs, especially in large-scale distributed VSN Local storage. In local storage schemes, all sensed data
with a tremendous volume of data. For example, a humanstored locally at the sensor nodes that detected the data.
operator may pose a question: “how many pedestrians ame thdence, there is no communication cost for storing sensead dat
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choosing a high-quality path from each source node. PR o oareng
Zhang et al. [7] proposed an index-based data dissemination Figure 1. SDS zones and data transmission.

scheme in which sensed data is stored at the detecting Noggges (g less hot ones. Since the point-to-point DCS is diffic

or close nodes,_ and the data Ioca}t|0n information is pUShE)ddeploy, pathDCS [19] was proposed to provide an approach
to.a _number of index nodes. It avo!ds unnecessary data tragpsst only needs the construction of a standard tree and uses
mission and control message flooding over the entire netwofk,o_hased communication primitives. Ady al. [20] noticed

TAG [8] provides SQL-like semantics. It uses a delivery e importance of uniform data distribution, and proposed
to distribute operators to nodes, and uses aggregatiortheti npcs to use K-D tree to maintain even storage while
to gather query results from leaves to root. avoiding hot spots.

Distributed storage. Recent research focuses on distributed
data storage schemes for WSNs. These techniques diffeg in th I1l. THE DESIGN OFSDS
aggregation mechanisms used, but are loosely based OnAheDesign Goals and Strategies
idea of geographic hashing. One such data storage scheme is =~ ) i i i i .
Geographic Hash Table (GHT) that provides a hash functi(ﬂ') Similarity searching functlonallty. Th|§ f“”Ct'O”‘a}‘“S ,
for mapping event data to locations [4]. GHT hashes a data very useful for collect.mg data_t.hat has inner relationship
name to a key first, and then decides where the data should be SPS relies on locality sensitive hashing [21] to map
stored based on the key. The data having the same name will 9at@ to zones in a locality-preserving manner as shown
be saved at the same location. It uses geographical routing in Figure 1. Th‘?‘t _|s,_the physu_:al closeness of zones
for locating data. Distributed Index of Features (DIFS) [9] repre_sents the S|m|lar|ty.0f data n the. ZONes. ,
and Distributed Multi-dimensional Range Queries (DIM)]10 (2) Spat!al-temporal searching functionality. Th|§ makEs.,.
extend the GHT approach to provide distributed hierarchies POSSible to search data of events occurred in specified
of indexes to data. DIM is geared towards multi-dimensional !0cations and time periods. SDS tackles this challenge
range queries, in which multi-attribute data is mapped to a by building a two-dimensional space n each ZOne, and
k-bit binary vector, each of the* possible binary codes is maps data to the space ba§ed on !ocatlon gnd time.
mapped to a unique zone in the network area. DIFS focuskd) Low overhead. Our carpooling routing algor!thm enables
on semantically rich high-level events. It allows rangeripse messages (o travel together. Moreover, unlike GHT that
and efficient index construction using a spatially distréal depends on GPS for routing, SDS routing leads to
index. DIMENSIONS [11], [12] incorporates long-term stor- ~ comparable routing performance with no geographical
age, which progressively discards old data while presgrvin knowledge available. i ) ,
its key features for future mining. It provides multi-dingon (4) Low latency. Zone-based routing algorithm in SDS takes

data access and sufficiently accurate responses to quéties w  20N€ rather than node as a routing step unit, thus acceler-
low communication overhead [13]. ating message transmission. Fu_rther, it reduce_s congestio
To improve routing performance, GLS [14] arranges each dué 1o many messages as in Directed Diffusion. In
mobile node to periodically update a small set of location addition, unlike GHT tha_t searches each attribute in a
servers with its current location. When a node queries for query and then merges fln.al results, SDS does not lead
the locations of other nodes, it uses predefined identifidr an to long Iaten-cy for processmg located data.
spatial hierarchy to find a location server for those nod&MG B- Data Processing and Mapping
[15] embeds a labelled graph to the topology of network to We consider a large-scale WSN that is deployed in a vast
enable nodes to perform efficient routing by merely knowinfigld, in which sensors are disseminated randomly. Without
the labels of its neighbors. GRAB [16] forwards data alonthe loss of generality, we assume that the field is rectangle.
interleaved mesh to a receiver. It also controls bandwid8DS can also be extended to other shape of the WSN field.
using the credits of data messages, thus allowing senderA shown in Figure 1, SDS divides the field horizontally and
adjust the reliability of data delivery. TSAR [17] has twovertically to rectangular zones. The field is divided in sach
tiers: proxy tier and sensor tier. At the proxy tier, it useway that nodes in any two adjacent zones can communicate
multi-resolution index structure. At the sensor tier, ipparts with each other directly. That is, they are within each other
adaptive summarization that trades off energy cost agaitigtnsmission range. IDs are assigned to successive zones
overhead. A cover-up scheme [18] incorporates an overlaya sequential order. Thus, neighboring zones in the same
and uses virtual coordinate to redirect storage from oaeldd horizontal level have successive IDs.
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Each zone has a head which functions as the server for all @@ ©) * s
other nodes (i.e. clients) in the zone. A zone head is mainly 9@@ e
responsible for message routing, data assigning, and query ©®
responding for the nodes in the zone. A head maintains the Q ARELE N

information of the nodes within its zone, and the heads in its Figure 2. Spatial-temporal data mapping.

neighboring zones. It periodically exchanges “hello” na&s  ithin a zone, the data is further distributed among nodes
with its clients and neighboring zone heads. To save energ¥cording to their time and location. Figure 2 shows the data
consumption, in each zone, all nodes except the head argyfipping within a zone in a spatial-temporal two-dimensiona
sleep mode. Nodes in sleep mode still can sense data, but ¥ginner. Given a zone containiny nodes, the zone head
on the head for other functions. The nodes rotate to wake gficulatesk = |v/N|. The identifiers of nodes in the zone
to act as the zone head in a round-robin manner in ordergdfs normalized to identifiers from 1 t&. The head virtually
balance the workload and energy consumption among nodgganges the nodes intokax & grid as shown in the figure.
Before transferring duty and corresponding informatiorato ossume there aren zones in the WSN in total. The head
new head, the old head notifies its clients and neighboriggides rangg1, m] to k parts evenly. Taking a certain period
heads of the new head. of time, say one month, as a unit of time interZalthe head
Each sensor in the WSN has an identifier which can be thgjidesT to k parts evenly. During’, for a node with identifier
consistent hash value [22] of its IP address. After sensing 2 it is responsible for the data of events occurred during the
event data, a sensor processes the data, maps the data $0 nQggx | + 1)t time interval part and at th@%#%+ 1) location
in a number of zones, and stores the data to the nodes.pEet. For example, in Figure 2, there are 9 nodes with identifi
process sensed data, a sensor derives the keywords of the da§ within a zone, the/N | = 3. For nodet, |4/3|+1 = 2,
by strategies that allow contents of a file to be describetd wif 1,04 3 4+ 1 = 2. Thus, it is responsible for the secoBdof

metadata [23]-{25]. For example, keyworfige car northare  the total time interval during’, and the second of the total
derived from datdive cars are moving towards nortke use range of location. In other words, a data item witand 7D
d to represent the keywords of a sensed data item. A senggfl be stored in the node located in Iim%% and column

data item is represented by a descriptot, I D, t, s, (x,y) >, ID%™ in the two-dimensional space.
whereID is theID of the zone in which the data is sensed,

¢ is the time when the data is senseds the identifier of the C: Data Storage and Routing Algorithm
sensor which sensed the data, dmdy) is the exact location A sensed data item should be sent to and stored in a node for
where the event occurred. Similarity of data itelnto data subsequent data querying. This is performed by the cammoli

item d; is calculated by: routing algorithm in SDS. Recall that one data item has a
\dy (da| series of hash values (sayvalues), and it is mappe_d to th_e
Similarity = ———— (1), nodes based on the hash values. Thus, one data item will be
| stored inn nodes. When a node senses an event, it calculates
where|d| is the number of keyword irl. For example, the n hash values of the data using LSty , ho, hg -« , hy). It
similarity of data itemPeter|C'SCE|2456983|Arkansas to  then sends the event datad, ID,t,s,(x,y) > to its zone
Mary|CSCE|2468972| Arkansas is 2/4 = 0.5. head along with the: destinations. Therefore; copies of

For data mapping, SDS resorts to a locality-sensitive hadhata should be sent to destination zones with IDs equal to
ing function (LSH) [21] to transformd to a series of hash h;(1 <14 < n) respectively. The head determines the next hop
values. Data items having common keywords will have ttemong its neighbor heads based on each hash value. Assume
same hash values, and similar data items will have clode IDs of its neighboring zones areD,(1 < j < 4). The
hash values. The number of hash values of a data item caext hop for each hash valug is the head in the zone with
be flexibly set in LSH. Higher value leads to fine-grainechin|ID; — h;|(1 < j < 4). That is, the next hop is the
data clustering while lower value leads to coarse-grairsd d neighboring head that is the closest to the destination.zone
clustering. Taking one resultant hash value as an exanfpleData copies targeting to different destination zones bat th
the difference betweed;, d, andds is d1 > d2 > ds, their same direction are very likely to have the same next hop.
hash values conform té,, > hg4, > hgq,, Whereh, is the In order to save overhead, rather than sendindata ton
hash value ofi. A detailed description of the LSH approacmodes directly, the head only sends one copy to each differen
can be found in [21]. next hop indicating their destination zones. After the rieg

In the mapping between data and zones, the ID differenceeeives the data, it chooses the next hop in the same masner a
between zones indicates the similarity between the datadtothe original head to forward the data. This process is repeat
in the zones. To achieve this objective, a data item with hashtil the data is forwarded to its destination zones.
valueh is mapped to the first zone withD > h. For example,  Figure 1 presents an example of the SDS carpooling routing
a data item withh, = 5 will be stored in zone 5. If all nodes in algorithm. When a node in zone 23 senses an event, it reports
zone 5 fail, the data will be stored in zone 6. Thus, we can sée event data to its head. The head processes the event data
that the distance between neighboring zones in one hodakordnd calculates the hash values of the data: 9, 12, 13, 32 and
level indicates the similarity of data in the zones. 35. The zone head sends one copy of the event data in the up



direction and one copy in the down direction. After the hedtie event data from other sensors in the new zone. To avoid
in zone 18 receives the data, it further forwards it to zone 1e data loss due to node failure, a zone head can have a copy
Then, the head in zone 13 sends one copy to zone 12, and alsall data in its zone. After a failed node restarts, the node
sends one copy to zone 8, which further forwards the datarequests the ID of the zone and the data it should store from
zone 9. In the up direction, after the head in zone 28 receivib® zone head. This dynamic data management mechanism
the data, it forwards the data to zone 33. The head of zonelps to ensure that all nodes are aware of their ID and data,
33 further forwards one copy to zone 32 and 35 respectivelyhich provides guarantee for successful data searching.
After a data item is routed to the head of its destination zone
the head assigns the data to the node responsible for itgUsin IV. PERFORMANCEEVALUATION
the data assignment method described in Section IlI-B, theQur simulation is based The One simulator [26]. We eval-
head identifies the destination node of the data based on {lged the performance of SDS in comparison with Directed
data’sID andt, and forwards the data to the node. Diffusion (DD) [6] and GHT [4]. For a multi-attribute (i.e.
The operation of data querying is performed in the sami@yword) query, DD uses broadcasting to search all desired
process as data storing. For a queryofl, ID,t,s, (x,y) >, data. GHT hashes each keyword for searching and merges the
the requester uses LSH to retrievehash values of the data.|ocated data as the final results. We also include the results
Taking the hash values as the IDs of the destination zong$,SDS using geographical routing [4] rather than the ID-
the query is forwarded te heads, and then te nodes which based carpooling routing algorithm, denoted$S+GEO It
respond to the queried data relying on the routing algorithiibutes data directly from a requester to destination ndde(s
If a query does not have specification of time and locatioa, ttThe test scenario has a rectangular field of 48@®0m, in
head in the destination zone responds with all the datadstoighich nodes are randomly and independently disseminated.
in the zone. If a query only has time (or location) specifmati Each node is aware of its own zone ID and its identifier within
the destination head forwards the query to nodes in one lia€one. This field is divided into 4, 8, 16, 32, 40 data zones
(or column) in Figure 2. respectively, each of which has an area ofi2%ontaining 25
When a node searches for similar data, it needs to speaifydes. Nodes generate event data randomly and send data at
similarity degree. Recall that the difference of zone IDg-rea speed of 100bps for 1400s. An event data item has size
resents the similarity of data in the zone. Thus, if a reqgrestandomly chosen in [10,100] bytes and contains time and
wants to receive more data with less similarity, it can syexi |ocation together with ten different keywords. The numbkr o
ranger. r indicates the zone range need to be searched duriigsh values of a data item after the LSH operation is set to
data retrieval. For instance, for a hash valye¢he zones with five. Before data querying operation, we gave each test 80s to
ID € [h—r, h +r] are searched. In routing, the head in thgistribute event data. All test queries are randomly geadrat
destination zoné forwards the query to the heads in zoneghe speed of 10 queries per second. The number of nodes was
h —1 and h + 1. These heads further forward the query tget to 400 unless otherwise specified. We use the following
zoneh — 2 and h + 2, and so on until the heads in zonemetrics to test the performance of different methods.
h —randh + r receive the query. After a node receives g1y oyerhead. It is the sum of the product of path length and
query, it checks whether the data it stores meets the sityilar message weight, which is the length of a message divided
requirements using Equation (1) and responds with theetgsir by the average message length. This metric measures the

data. For instance, if a query has cost of querying and reflects energy consumption cost.
(hi,ha, ..., hy), similarity = 50%, 1 = 1, (2) Latency. It is the time period between a query is issued
and response is received. Latency reflects the effective-
then zones with ID equals td; — 1, A; + 1](1 < i < n) will ness of a method in quick data retrieval.
be searched, and data with similarity no less than 50% to thig) Total number of events. It is the number of events that are
query will be retrieved. returned in similarity queries. By comparing this number

D. Dynamic Data Management and the overall number of similar events, we can show
' the effectiveness of SDS similarity searching.

In @ mobile or unstable WSN, a sensor node may fail, leavgy piscovery rate. It is defined as the number of retrieved
or join in the network. It is important to ensure that a node in ° gimilar data items divided by all existing similar data

a zone always has the data that should_ be store_d_ in itself iN ams. This metric reflects the effectiveness of SDS in
order to guarantee successful data querying. Specifigdiign

a new sensor node joins in the network, it contacts the zone ] )
head to identify the zone it resides at, and obtains the dia i SPatial-Temporal and Range Querying

responsible from other nodes. If a sensor node moves, beforén the spatial-temporal querying experiment, we randomly

it moves out of its current zone, it notifies its zone head. Thyenerated 400 queries targeted at events that happenéad avith
head moves the node’s data to other nodes in the zone basme interval of 2s as well as a location range of 20. Figueg 3(

on the data assignment algorithm. After the node moves altows the overhead of different methods versus the number of
of its current zone, it contacts all neighbors until it idéas a queries. We can observe that SDS and SDS+GEO generate the
new zone and head. It then refreshes its database, andexqliast overhead, DD generates the highest overhead, and GHT

similarity data searching.
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Figure 3. Performance of spatial-temporal data search. Figure 5. Performance of data searching.

DD produces dramatically higher overhead than others due to
its broadcasting policy. Also, we find that GHT’s overhead

increases greatly as the number of queries increases. Fhis i
because GHT sends out six more queries for every attribute
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1o 02 T T —cmsioro corresponding to the range size. SDS and SDS+GEO still
5000 O B i generate the least overhead. In range querying, the déstina
Nombor i coorios L S LI zones only need to forward the queries to their neighboring

zones, which generates a little more overhead. In addition,
SDS routing takes zone as a step unit, leading to much less

] } : _routing hops compared with GHT that uses node as step
locates in the middle. DD uses broadcasting for data queyyiqnit. The results show the range querying provided by SDS

leading to significantly more messages, hence more overheadefficient. Figure 4(b) shows that DD’s latency increases
For a query with ten keywords, a requester in GHT senggamatically due to congestion as the traffic grows. GHT and
out one query for each keyword. After the requester recéivgps have similar latencies. GHT takes the shortest path, but
response for each keyword, it merges the returned datador {3 latency is affected by the congestion caused by inctease
results having the specified ten keywords. Further, it $88C affic. SDS does not need to send as many queries as GHT
in the results for its desired data within the specified liocat gince it relies on neighboring forwarding. Thus, it has less
and time period. Therefore, in GHT, much more data is routgdfic and reduces the possibility of congestion. SDS+GEO

back to the requester. In addition, GHT routing takes node Rgs the least latency because of less traffic of SDS and short
a step unit rather than a zone. As a result, it leads to muﬁfhting path of geographical routing.

higher overhead than SDS. SDS always sends five queries and
it only returns the desired data. Moreover, SDS routinggakB. Single-Result Querying Performance
zone as a step unit, leading to much less routing hops. Wen this test, each query returns one data item in order
can also observe that SDS has comparable performanceoctccompare the performance of each approach without the
SDS+GEO which takes the geographically shortest path witifluence of congestion due to returned data. The queries do
the aid of GPS. This result implies the efficiency the SDBot have time and location specification. Figure 5(a) shows
carpooling routing algorithm. It forwards a message towarthe overhead versus the number of queries. We can see that
the direction of the destination between geographicalhgel SDS+GEO and SDS produce the least overhead, while DD
zones, generating almost the same overhead as SDS+GE@erforms the worst. The overhead of DD grows sharply as the
Figure 3(b) shows the latency of different methods versmsimber of queries increases. This is because DD broadcasts
the number of queries. We see DD has much higher laterspyery messages to nodes, which results in more overhead.
than others. When the number of queries increases, theeyateGHT generates more overhead than SDS. SDS sends a query
of DD grows sharply. SDS and GHT have almost the same five zones as a result of LSH operation. It forwards a
latencies, and SDS+GEO leads to the least latency. As meery along zones, and returns desired data to the requester
tioned that GHT has much more returned data. Thus the in- addition, carpooling routing algorithm further redudbs
creased traffic causes congestions, resulting in longendstt overhead. GHT sends a query to ten destination nodes. It
ID-based routing in SDS without the aid of GPS should lead forwards a query along nodes rather than zones. Therefore,
longer latency since it may not take the shortest path. HewevGHT leads to high overhead. We can also observe that the
SDS has less routing traffic, which reduces the possibility overhead of SDS is comparable to SDS+GEO. This confirms
congestion. With geographical routing, SDS+GEO leads the efficiency of the SDS carpooling routing algorithm.
less latency due to its less traffic and hops. Figure 5(b) shows the latency versus the number of queries.
Range query is to find data items within certain range fokle observe that DD leads to the longest latency, and GHT
similar results. The range was set to 3 in this experimelhtas less latency than SDS but performs slightly worse than
Since GHT is not locality-preserving in data storage, ittgea  SDS+GEOQO. As the number of queries increases, DD generates
guerying cannot locate similar data. We still include itsulées much more messages, which leads to congestion and longer
for comparison. Figure 4(a) demonstrates the overheadserkatency. Without GPS, SDS uses ID-based routing algorithm
the number of queries in range querying. We can observe thizt may not take the shortest path. Hence, its latency is not

(a) Overhead (b) Latency
Figure 4. Performance of range querying.
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as short as GHT. SDS+GEO routes query directly to a nodel

along the best path. Since SDS+GEO has less traffic than GHT

due to less messages, it generates the least latency.

C. Similarity Searching

(6]

This test illustrates the effectiveness of SDS in simiarit 7]

searching. We set the query range of SDSrte= 3. All
gueries have specification of 50% similarity. Figure 6(ajveh

the number of discovered data items with similarity abové’!
50% in SDS and the number of actual such data items in the

system. We observe that SDS can always discover 90% of suth
data items. The results confirm that SDS is highly effective i

similarity searching.

Figure 6(b) shows the discovery rate of each approach [#§]
term of similarity. Discovery rate means how many perceﬁtl]

of data items that have a certain similarity to the query can

be discovered. GHT can only return data with 100% similari
due to its exact match feature. Data in GHT is hashed to no

i

using consistent hash functions. Thus, GHT fails to supply

similarity searching which is very important in practicenllée
GHT and SDS, nodes in DD broadcast queries to nod

[13]

Consequently, it has 100% percent discovery rate for each

similarity. However, its high discovery rate comes at thet@s
high overhead. SDS provides an optimized trade-off betwelR!

overhead and discovery rate of similar data. The resultessho

that SDS obtains a discovery rate above 85% percent whil€l
[17]

avoids high overhead in DD.
V. CONCLUSION AND FUTURE WORK

This paper proposes a distributed spatial-temporal siityila [18]

data storage scheme (SDS). Based on LSH, SDS efficierﬁlgl

disseminates data in a WSN such that similar event data is

mapped into the same or nearby neighborhood(s), which &
ables SDS to offer similarity searching service. SDS alsp pr
vides spatial-temporal data searching by classifying ofdtea

[21]

two-dimensional space consisting of nodes in a neighbathoo

Further, SDS carpooling routing algorithm can efficientute
queries or data without relying on GPS. The experiment

271

a

results show that SDS not only provides better performance

than Directed Diffusion and GHT in terms of overhead an[q3]
flexibility, but also exhibits comparable latency to GHT wihni
employs geographical routing. Our future work will be foeds
on improving the accuracy of similarity search and optimigi (24

the performance of SDS in a mobile environment.
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