
SDS: Distributed Spatial-Temporal Similarity Data
Storage in Wireless Sensor Networks

Haiying Shen, Ting Li, Lianyu Zhao and Ze Li
Department of Computer Science and Computer Engineering

University of Arkansas, Fayetteville, AR 72701
Email: {hshen, txl005, lxz014, zxl008}@uark.edu

Abstract—Since centralized data storage and search schemes
often lead to high overhead and latency, distributed data centric
storage becomes a preferable approach in large-scale WSNs.
However, most of existing methods lack optimization for spatial-
temporal search and similarity search for multi-attribute data.
Some methods are optimized under circumstances where nodes
are equipped with locating systems (e.g., GPS) which consumes
high energy. This paper proposes a distributed spatial-temporal
similarity data storage scheme (SDS). It disseminates event data
in such a way that the distance between WSN neighborhoods
represents the similarity of data stored in them. In addition, SDS
carpooling routing algorithm efficiently routes messages without
the aid of a locating system. SDS provides efficient spatial-
temporal and similarity data searching service. Experimental
results show that SDS yields significant improvements on the
efficiency of data querying compared with existing approaches.

I. I NTRODUCTION

A wireless sensor network (WSN) is a wireless network
consisting of a large number of distributed low-power and
inexpensive sensor devices. WSNs have been used in many
military and civilian application areas such as military target
tracking, habitat monitoring, health monitoring, environmental
contaminant detection and industrial process control [1].

A data storage scheme is an indispensable component in
WSNs, which offers data storing and searching services. In
addition to energy efficiency demand, fast data searching is
another requirement for data storage scheme. To overcome the
unnecessary communication cost and the unbalanced energy
consumption of centralized data storage method, distributed
data storage approaches have been proposed (e.g. [2] [3]).
Most distributed data storage schemes hash event data to
locations according to data names. Though these schemes
enhance the speed of data searching, most of existing schemes
lack optimization for spatial-temporal searching and similarity
searching for multi-attribute data. In addition, some schemes
are optimized under circumstances where nodes are equipped
with locating systems [4] (e.g., GPS), which leads to high
energy consumption. Spatial-temporal searching allows users
to search data of events occurred in a specified physical
location and time period. Similarity searching enables users
to search similar data in a query rather than the exact data.
Efficiently achieving these two functions still remains a crucial
problem in WSNs, especially in large-scale distributed WSNs
with a tremendous volume of data. For example, a human
operator may pose a question: “how many pedestrians are there

in the geographical region X during 7:00pm-8:00pm, March
4, 2009?”. If the operator receives data for the entire area
covered by a large-scale WSN during all the time, the latency
to process the received data may lead to a delay to a time-
critical military task. Similarity searching for queryingdata in
a certain similarity degree provides more flexibility. It isoften
more appropriate for a user to formulate search requests in
less precise terms, rather than defining a sharp limit.

In spite of the efforts for the deployment of WSNs, there has
been very little research devoted to tackling efficient spatial-
temporal similarity data storage in a large-scale WSN. This
paper proposes a distributed spatial-temporal similaritydata
storage scheme (SDS) that accelerates querying speed and
reduces communication energy consumption and overhead.
Compared to other distributed data storage schemes, SDS is
advanced in that it optimizes data querying based on not only
data name but also data similarity, at the same time it offers
spatial-temporal data searching. In addition, SDS does not
need GPS to locate the positions of nodes for routing, while
achieving comparable efficiency to GPS-based geographical
routing. Thus, SDS reduces energy consumption and enhances
data searching flexibility in WSNs.

The remainder of this paper is organized as below. In
Section II, we describe and analyze related data storage
approaches in WSNs. In Section III, we present the design
of the SDS scheme. The performance evaluation of SDS is
presented in Section IV. Conclusion and future work are given
in Section V.

II. RELATED WORK

Centralized storage.Centralized storage methods [5] store
all of the data generated by sensor nodes to a single sink
which locates outside of the WSN and processes data. A data
query needs to travel to the sink to find the data source,
thus the centralized sink may become a hot-spot. In addition,
the energy cost is not distributed in balance. The energy
consumption of the nodes closer to the sink is greater than
nodes far away from the sink, because the latter needs the
former to forward sensed data or queries to the sink. Therefore,
centralized storage methods could only be used in small-scale
WSNs and low data generation rate.

Local storage. In local storage schemes, all sensed data
is stored locally at the sensor nodes that detected the data.
Hence, there is no communication cost for storing sensed data.



However, because data can reside anywhere in the network, a
data query must be flooded to all sensor nodes in the network,
leading to high overhead and energy cost. Directed Diffusion
protocol [6] is developed to save the cost in data querying. In
the protocol, nodes disseminate interest messages throughout
the sensor network. The events matching an interest flow
towards the interested nodes along multiple paths. Then, an
interested node determines routes for future data flow by
choosing a high-quality path from each source node.

Zhang et al. [7] proposed an index-based data dissemination
scheme in which sensed data is stored at the detecting nodes
or close nodes, and the data location information is pushed
to a number of index nodes. It avoids unnecessary data trans-
mission and control message flooding over the entire network.
TAG [8] provides SQL-like semantics. It uses a delivery tree
to distribute operators to nodes, and uses aggregation method
to gather query results from leaves to root.

Distributed storage.Recent research focuses on distributed
data storage schemes for WSNs. These techniques differ in the
aggregation mechanisms used, but are loosely based on the
idea of geographic hashing. One such data storage scheme is
Geographic Hash Table (GHT) that provides a hash function
for mapping event data to locations [4]. GHT hashes a data
name to a key first, and then decides where the data should be
stored based on the key. The data having the same name will
be saved at the same location. It uses geographical routing
for locating data. Distributed Index of Features (DIFS) [9]
and Distributed Multi-dimensional Range Queries (DIM) [10]
extend the GHT approach to provide distributed hierarchies
of indexes to data. DIM is geared towards multi-dimensional
range queries, in which multi-attribute data is mapped to a
k-bit binary vector, each of the2k possible binary codes is
mapped to a unique zone in the network area. DIFS focuses
on semantically rich high-level events. It allows range queries
and efficient index construction using a spatially distributed
index. DIMENSIONS [11], [12] incorporates long-term stor-
age, which progressively discards old data while preserving
its key features for future mining. It provides multi-dimension
data access and sufficiently accurate responses to queries with
low communication overhead [13].

To improve routing performance, GLS [14] arranges each
mobile node to periodically update a small set of location
servers with its current location. When a node queries for
the locations of other nodes, it uses predefined identifier and
spatial hierarchy to find a location server for those nodes. GEM
[15] embeds a labelled graph to the topology of network to
enable nodes to perform efficient routing by merely knowing
the labels of its neighbors. GRAB [16] forwards data along
interleaved mesh to a receiver. It also controls bandwidth
using the credits of data messages, thus allowing sender to
adjust the reliability of data delivery. TSAR [17] has two
tiers: proxy tier and sensor tier. At the proxy tier, it uses
multi-resolution index structure. At the sensor tier, it supports
adaptive summarization that trades off energy cost against
overhead. A cover-up scheme [18] incorporates an overlay
and uses virtual coordinate to redirect storage from overloaded

 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

20 16 17 18   19 

21 22 23 24 25 

26 27 28 29 30 

31 32 33 34   35 

36 37 38 39 40 

Grid node Grid head 

Figure 1. SDS zones and data transmission.

nodes to less hot ones. Since the point-to-point DCS is difficult
to deploy, pathDCS [19] was proposed to provide an approach
that only needs the construction of a standard tree and uses
tree-based communication primitives. Alyet al. [20] noticed
the importance of uniform data distribution, and proposed
KDDCS to use K-D tree to maintain even storage while
avoiding hot spots.

III. T HE DESIGN OFSDS

A. Design Goals and Strategies

(1) Similarity searching functionality. This functionality is
very useful for collecting data that has inner relationship,
SDS relies on locality sensitive hashing [21] to map
data to zones in a locality-preserving manner as shown
in Figure 1. That is, the physical closeness of zones
represents the similarity of data in the zones.

(2) Spatial-temporal searching functionality. This makesit
possible to search data of events occurred in specified
locations and time periods. SDS tackles this challenge
by building a two-dimensional space in each zone, and
maps data to the space based on location and time.

(3) Low overhead. Our carpooling routing algorithm enables
messages to travel together. Moreover, unlike GHT that
depends on GPS for routing, SDS routing leads to
comparable routing performance with no geographical
knowledge available.

(4) Low latency. Zone-based routing algorithm in SDS takes
zone rather than node as a routing step unit, thus acceler-
ating message transmission. Further, it reduces congestion
due to many messages as in Directed Diffusion. In
addition, unlike GHT that searches each attribute in a
query and then merges final results, SDS does not lead
to long latency for processing located data.

B. Data Processing and Mapping

We consider a large-scale WSN that is deployed in a vast
field, in which sensors are disseminated randomly. Without
the loss of generality, we assume that the field is rectangle.
SDS can also be extended to other shape of the WSN field.
As shown in Figure 1, SDS divides the field horizontally and
vertically to rectangular zones. The field is divided in sucha
way that nodes in any two adjacent zones can communicate
with each other directly. That is, they are within each other’s
transmission range. IDs are assigned to successive zones
in a sequential order. Thus, neighboring zones in the same
horizontal level have successive IDs.



Each zone has a head which functions as the server for all
other nodes (i.e. clients) in the zone. A zone head is mainly
responsible for message routing, data assigning, and query
responding for the nodes in the zone. A head maintains the
information of the nodes within its zone, and the heads in its
neighboring zones. It periodically exchanges “hello” messages
with its clients and neighboring zone heads. To save energy
consumption, in each zone, all nodes except the head are in
sleep mode. Nodes in sleep mode still can sense data, but rely
on the head for other functions. The nodes rotate to wake up
to act as the zone head in a round-robin manner in order to
balance the workload and energy consumption among nodes.
Before transferring duty and corresponding information toa
new head, the old head notifies its clients and neighboring
heads of the new head.

Each sensor in the WSN has an identifier which can be the
consistent hash value [22] of its IP address. After sensing an
event data, a sensor processes the data, maps the data to nodes
in a number of zones, and stores the data to the nodes. To
process sensed data, a sensor derives the keywords of the data
by strategies that allow contents of a file to be described with
metadata [23]–[25]. For example, keywordsfive car northare
derived from datafive cars are moving towards north. We use
d to represent the keywords of a sensed data item. A sensed
data item is represented by a descriptor< d, ID, t, s, (x, y) >,
whereID is theID of the zone in which the data is sensed,
t is the time when the data is sensed,s is the identifier of the
sensor which sensed the data, and(x, y) is the exact location
where the event occurred. Similarity of data itemd2 to data
item d1 is calculated by:

Similarity =
|d1

⋂
d2|

|d1|
(1),

where |d| is the number of keyword ind. For example, the
similarity of data itemPeter|CSCE|2456983|Arkansas to
Mary|CSCE|2468972|Arkansas is 2/4 = 0.5.

For data mapping, SDS resorts to a locality-sensitive hash-
ing function (LSH) [21] to transformd to a series of hash
values. Data items having common keywords will have the
same hash values, and similar data items will have close
hash values. The number of hash values of a data item can
be flexibly set in LSH. Higher value leads to fine-grained
data clustering while lower value leads to coarse-grained data
clustering. Taking one resultant hash value as an example, if
the difference betweend1, d2 and d3 is d1 > d2 > d3, their
hash values conform tohd1

> hd2
> hd3

, wherehd is the
hash value ofd. A detailed description of the LSH approach
can be found in [21].

In the mapping between data and zones, the ID difference
between zones indicates the similarity between the data stored
in the zones. To achieve this objective, a data item with hash
valueh is mapped to the first zone withID ≥ h. For example,
a data item withh = 5 will be stored in zone 5. If all nodes in
zone 5 fail, the data will be stored in zone 6. Thus, we can see
that the distance between neighboring zones in one horizontal
level indicates the similarity of data in the zones.

 

 
0  

1 

 
8 

 
3 

 
2 

 
5 

 
6 

 
7 

 
4 

   0      1      2 

   3      4      5 

   6      7      8 

Map 

Time 

Location 

Figure 2. Spatial-temporal data mapping.

Within a zone, the data is further distributed among nodes
according to their time and location. Figure 2 shows the data
mapping within a zone in a spatial-temporal two-dimensional
manner. Given a zone containingN nodes, the zone head
calculatesk = ⌊

√
N⌋. The identifiers of nodes in the zone

are normalized to identifiers from 1 toN . The head virtually
arranges the nodes into ak × k grid as shown in the figure.
Assume there arem zones in the WSN in total. The head
divides range[1, m] to k parts evenly. Taking a certain period
of time, say one month, as a unit of time intervalT , the head
dividesT to k parts evenly. DuringT , for a node with identifier
i, it is responsible for the data of events occurred during the
(⌊i/k⌋+1)th time interval part and at the(i%k+1)th location
part. For example, in Figure 2, there are 9 nodes with identifier
0-8 within a zone, then⌊

√
N⌋ = 3. For node4, ⌊4/3⌋+1 = 2,

4 mod 3 + 1 = 2. Thus, it is responsible for the second1

3
of

the total time interval duringT , and the second1
3

of the total
range of location. In other words, a data item witht andID
will be stored in the node located in linet%T

k
and column

ID%m
k

in the two-dimensional space.

C. Data Storage and Routing Algorithm

A sensed data item should be sent to and stored in a node for
subsequent data querying. This is performed by the carpooling
routing algorithm in SDS. Recall that one data item has a
series of hash values (sayn values), and it is mapped to the
nodes based on the hash values. Thus, one data item will be
stored inn nodes. When a node senses an event, it calculates
n hash values of the data using LSH,(h1, h2, h3 · · · , hn). It
then sends the event data< d, ID, t, s, (x, y) > to its zone
head along with then destinations. Therefore,n copies of
data should be sent to destination zones with IDs equal to
hi(1 ≤ i ≤ n) respectively. The head determines the next hop
among its neighbor heads based on each hash value. Assume
the IDs of its neighboring zones areIDj(1 ≤ j ≤ 4). The
next hop for each hash valuehi is the head in the zone with
min|IDj − hi|(1 ≤ j ≤ 4). That is, the next hop is the
neighboring head that is the closest to the destination zone.
Data copies targeting to different destination zones but the
same direction are very likely to have the same next hop.
In order to save overhead, rather than sendingn data ton
nodes directly, the head only sends one copy to each different
next hop indicating their destination zones. After the nexthop
receives the data, it chooses the next hop in the same manner as
the original head to forward the data. This process is repeated
until the data is forwarded to its destination zones.

Figure 1 presents an example of the SDS carpooling routing
algorithm. When a node in zone 23 senses an event, it reports
the event data to its head. The head processes the event data
and calculates the hash values of the data: 9, 12, 13, 32 and
35. The zone head sends one copy of the event data in the up



direction and one copy in the down direction. After the head
in zone 18 receives the data, it further forwards it to zone 13.
Then, the head in zone 13 sends one copy to zone 12, and also
sends one copy to zone 8, which further forwards the data to
zone 9. In the up direction, after the head in zone 28 receives
the data, it forwards the data to zone 33. The head of zone
33 further forwards one copy to zone 32 and 35 respectively.
After a data item is routed to the head of its destination zone,
the head assigns the data to the node responsible for it. Using
the data assignment method described in Section III-B, the
head identifies the destination node of the data based on the
data’sID and t, and forwards the data to the node.

The operation of data querying is performed in the same
process as data storing. For a query of< d, ID, t, s, (x, y) >,
the requester uses LSH to retrieven hash values of the data.
Taking the hash values as the IDs of the destination zones,
the query is forwarded ton heads, and then ton nodes which
respond to the queried data relying on the routing algorithm.
If a query does not have specification of time and location, the
head in the destination zone responds with all the data stored
in the zone. If a query only has time (or location) specification,
the destination head forwards the query to nodes in one line
(or column) in Figure 2.

When a node searches for similar data, it needs to specify
similarity degree. Recall that the difference of zone IDs rep-
resents the similarity of data in the zone. Thus, if a requester
wants to receive more data with less similarity, it can specify a
ranger. r indicates the zone range need to be searched during
data retrieval. For instance, for a hash valueh, the zones with
ID ∈ [h − r, h + r] are searched. In routing, the head in the
destination zoneh forwards the query to the heads in zones
h − 1 and h + 1. These heads further forward the query to
zone h − 2 and h + 2, and so on until the heads in zone
h − r and h + r receive the query. After a node receives a
query, it checks whether the data it stores meets the similarity
requirements using Equation (1) and responds with the desired
data. For instance, if a query has

〈h1, h2, ..., hn〉, similarity = 50%, r = 1,

then zones with ID equals to[hi − 1, hi + 1](1 ≤ i ≤ n) will
be searched, and data with similarity no less than 50% to the
query will be retrieved.

D. Dynamic Data Management

In a mobile or unstable WSN, a sensor node may fail, leave
or join in the network. It is important to ensure that a node in
a zone always has the data that should be stored in itself in
order to guarantee successful data querying. Specifically,when
a new sensor node joins in the network, it contacts the zone
head to identify the zone it resides at, and obtains the data it is
responsible from other nodes. If a sensor node moves, before
it moves out of its current zone, it notifies its zone head. The
head moves the node’s data to other nodes in the zone based
on the data assignment algorithm. After the node moves out
of its current zone, it contacts all neighbors until it identifies a
new zone and head. It then refreshes its database, and acquires

the event data from other sensors in the new zone. To avoid
the data loss due to node failure, a zone head can have a copy
of all data in its zone. After a failed node restarts, the node
requests the ID of the zone and the data it should store from
the zone head. This dynamic data management mechanism
helps to ensure that all nodes are aware of their ID and data,
which provides guarantee for successful data searching.

IV. PERFORMANCEEVALUATION

Our simulation is based The One simulator [26]. We eval-
uated the performance of SDS in comparison with Directed
Diffusion (DD) [6] and GHT [4]. For a multi-attribute (i.e.
keyword) query, DD uses broadcasting to search all desired
data. GHT hashes each keyword for searching and merges the
located data as the final results. We also include the results
of SDS using geographical routing [4] rather than the ID-
based carpooling routing algorithm, denoted bySDS+GEO. It
routes data directly from a requester to destination node(s).
The test scenario has a rectangular field of 400m×400m, in
which nodes are randomly and independently disseminated.
Each node is aware of its own zone ID and its identifier within
a zone. This field is divided into 4, 8, 16, 32, 40 data zones
respectively, each of which has an area of 25m2 containing 25
nodes. Nodes generate event data randomly and send data at
a speed of 100bps for 1400s. An event data item has size
randomly chosen in [10,100] bytes and contains time and
location together with ten different keywords. The number of
hash values of a data item after the LSH operation is set to
five. Before data querying operation, we gave each test 80s to
distribute event data. All test queries are randomly generated at
the speed of 10 queries per second. The number of nodes was
set to 400 unless otherwise specified. We use the following
metrics to test the performance of different methods.

(1) Overhead. It is the sum of the product of path length and
message weight, which is the length of a message divided
by the average message length. This metric measures the
cost of querying and reflects energy consumption cost.

(2) Latency. It is the time period between a query is issued
and response is received. Latency reflects the effective-
ness of a method in quick data retrieval.

(3) Total number of events. It is the number of events that are
returned in similarity queries. By comparing this number
and the overall number of similar events, we can show
the effectiveness of SDS similarity searching.

(4) Discovery rate. It is defined as the number of retrieved
similar data items divided by all existing similar data
items. This metric reflects the effectiveness of SDS in
similarity data searching.

A. Spatial-Temporal and Range Querying

In the spatial-temporal querying experiment, we randomly
generated 400 queries targeted at events that happened within a
time interval of 2s as well as a location range of 20. Figure 3(a)
shows the overhead of different methods versus the number of
queries. We can observe that SDS and SDS+GEO generate the
least overhead, DD generates the highest overhead, and GHT



 

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16

O
v
e
rh

e
a
d

Number of queries

SDS+GEO
SDS
GHT
DD

(a) Overhead

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16

L
a
te

n
c
y
 (

s
e
c
.)

Number of queries

SDS+GEO
SDS
GHT
DD

(b) Latency
Figure 3. Performance of spatial-temporal data search.

 

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4 8 16

O
v
e
rh

e
a
d

Number of queries

SDS+GEO
SDS
GHT
DD

(a) Overhead

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16

L
a
te

n
c
y
 (

s
e
c
.)

Number of queries

SDS+GEO
SDS
GHT
DD

(b) Latency
Figure 4. Performance of range querying.

locates in the middle. DD uses broadcasting for data querying,
leading to significantly more messages, hence more overhead.
For a query with ten keywords, a requester in GHT sends
out one query for each keyword. After the requester receives
response for each keyword, it merges the returned data for the
results having the specified ten keywords. Further, it searches
in the results for its desired data within the specified location
and time period. Therefore, in GHT, much more data is routed
back to the requester. In addition, GHT routing takes node as
a step unit rather than a zone. As a result, it leads to much
higher overhead than SDS. SDS always sends five queries and
it only returns the desired data. Moreover, SDS routing takes
zone as a step unit, leading to much less routing hops. We
can also observe that SDS has comparable performance to
SDS+GEO which takes the geographically shortest path with
the aid of GPS. This result implies the efficiency the SDS
carpooling routing algorithm. It forwards a message towards
the direction of the destination between geographically close
zones, generating almost the same overhead as SDS+GEO.

Figure 3(b) shows the latency of different methods versus
the number of queries. We see DD has much higher latency
than others. When the number of queries increases, the latency
of DD grows sharply. SDS and GHT have almost the same
latencies, and SDS+GEO leads to the least latency. As men-
tioned that GHT has much more returned data. Thus the in-
creased traffic causes congestions, resulting in longer latency.
ID-based routing in SDS without the aid of GPS should lead to
longer latency since it may not take the shortest path. However,
SDS has less routing traffic, which reduces the possibility of
congestion. With geographical routing, SDS+GEO leads to
less latency due to its less traffic and hops.

Range query is to find data items within certain range for
similar results. The range was set to 3 in this experiment.
Since GHT is not locality-preserving in data storage, its range
querying cannot locate similar data. We still include its results
for comparison. Figure 4(a) demonstrates the overhead versus
the number of queries in range querying. We can observe that

 

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

O
v
e
rh

e
a
d

Number of queries

SDS+GEO
SDS
GHT
DD

(a) Overhead

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16

L
a
te

n
c
y
 (

s
e
c
.)

Number of queries

SDS+GEO SDS
GHT DD

(b) Latency
Figure 5. Performance of data searching.

DD produces dramatically higher overhead than others due to
its broadcasting policy. Also, we find that GHT’s overhead
increases greatly as the number of queries increases. This is
because GHT sends out six more queries for every attribute
corresponding to the range size. SDS and SDS+GEO still
generate the least overhead. In range querying, the destination
zones only need to forward the queries to their neighboring
zones, which generates a little more overhead. In addition,
SDS routing takes zone as a step unit, leading to much less
routing hops compared with GHT that uses node as step
unit. The results show the range querying provided by SDS
is efficient. Figure 4(b) shows that DD’s latency increases
dramatically due to congestion as the traffic grows. GHT and
SDS have similar latencies. GHT takes the shortest path, but
its latency is affected by the congestion caused by increased
traffic. SDS does not need to send as many queries as GHT
since it relies on neighboring forwarding. Thus, it has less
traffic and reduces the possibility of congestion. SDS+GEO
has the least latency because of less traffic of SDS and short
routing path of geographical routing.

B. Single-Result Querying Performance

In this test, each query returns one data item in order
to compare the performance of each approach without the
influence of congestion due to returned data. The queries do
not have time and location specification. Figure 5(a) shows
the overhead versus the number of queries. We can see that
SDS+GEO and SDS produce the least overhead, while DD
performs the worst. The overhead of DD grows sharply as the
number of queries increases. This is because DD broadcasts
query messages to nodes, which results in more overhead.
GHT generates more overhead than SDS. SDS sends a query
to five zones as a result of LSH operation. It forwards a
query along zones, and returns desired data to the requester.
In addition, carpooling routing algorithm further reducesthe
overhead. GHT sends a query to ten destination nodes. It
forwards a query along nodes rather than zones. Therefore,
GHT leads to high overhead. We can also observe that the
overhead of SDS is comparable to SDS+GEO. This confirms
the efficiency of the SDS carpooling routing algorithm.

Figure 5(b) shows the latency versus the number of queries.
We observe that DD leads to the longest latency, and GHT
has less latency than SDS but performs slightly worse than
SDS+GEO. As the number of queries increases, DD generates
much more messages, which leads to congestion and longer
latency. Without GPS, SDS uses ID-based routing algorithm
that may not take the shortest path. Hence, its latency is not



 

0

500

1000

1500

2000

2500

3000

2 4 8 16 32 64

T
o
ta

l 
n
u
m

b
e
r 

o
f 

e
v
e
n
ts

Number of queries

Expected

Discovered (Similarity above 50%)

(a) Number of discovered events

 

 

 !"

 !#

 !$

 !%

&

&!"

  !"  !#  !$  !% &

'
()
*
+
,
-
./
0.
1
2-

3(4(51.(2/

'' 3'3 678

(b) Discovery rate
Figure 6. Performance of similarity searching.

as short as GHT. SDS+GEO routes query directly to a node
along the best path. Since SDS+GEO has less traffic than GHT
due to less messages, it generates the least latency.

C. Similarity Searching

This test illustrates the effectiveness of SDS in similarity
searching. We set the query range of SDS tor = 3. All
queries have specification of 50% similarity. Figure 6(a) shows
the number of discovered data items with similarity above
50% in SDS and the number of actual such data items in the
system. We observe that SDS can always discover 90% of such
data items. The results confirm that SDS is highly effective in
similarity searching.

Figure 6(b) shows the discovery rate of each approach in
term of similarity. Discovery rate means how many percent
of data items that have a certain similarity to the query can
be discovered. GHT can only return data with 100% similarity
due to its exact match feature. Data in GHT is hashed to nodes
using consistent hash functions. Thus, GHT fails to supply
similarity searching which is very important in practice. Unlike
GHT and SDS, nodes in DD broadcast queries to nodes.
Consequently, it has 100% percent discovery rate for each
similarity. However, its high discovery rate comes at the cost of
high overhead. SDS provides an optimized trade-off between
overhead and discovery rate of similar data. The results show
that SDS obtains a discovery rate above 85% percent while
avoids high overhead in DD.

V. CONCLUSION AND FUTURE WORK

This paper proposes a distributed spatial-temporal similarity
data storage scheme (SDS). Based on LSH, SDS efficiently
disseminates data in a WSN such that similar event data is
mapped into the same or nearby neighborhood(s), which en-
ables SDS to offer similarity searching service. SDS also pro-
vides spatial-temporal data searching by classifying datainto a
two-dimensional space consisting of nodes in a neighborhood.
Further, SDS carpooling routing algorithm can efficiently route
queries or data without relying on GPS. The experimental
results show that SDS not only provides better performance
than Directed Diffusion and GHT in terms of overhead and
flexibility, but also exhibits comparable latency to GHT which
employs geographical routing. Our future work will be focused
on improving the accuracy of similarity search and optimizing
the performance of SDS in a mobile environment.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
CNS-0834592 and CNS-0832109.

REFERENCES

[1] B. Krishnamachari, “networking wireless sensors,”Cambridge Univer-
sity Press, ISBN-10 0-521-83847-9, 2005.

[2] Y. Yao, X. Tang, and E. peng Lim, “In-network processing of nearest
neighbor queries for wireless sensor networks,” inProc. of DASFAA06,
2006.

[3] M. Chen, T. Kwon, Y. Yuan, and V. C. Leung, “Mobile Agent Based
Wireless Sensor Networks,”JOURNAL OF COMPUTERS, vol. 1, pp.
14–21, 2006.

[4] S. Ratnasamy, B. Karp, and D. Estrin, “GHT: A geographic hash table
for data-centric storage.” ACM Press, 2002, pp. 78–87.

[5] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from
a Sensor Network Expedition,” inProc. of the 1st IEEE European
Workshop on Wireless Sensor Networks and Applications, 2004, pp.
307–322.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proc. of MOBICOM2000. ACM, 2000, pp. 56–67.

[7] W. Zhang, G. Cao, and T. L. Porta, “Data Dissemination with Ring-
Based Index for Wireless Sensor Networks,” inProc. of ICNP2003,
2003, pp. 305–314.

[8] S. Madden, M. J. Franklin, and J. M. H. W. Hong, “TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks,” inProc. of OSDI,
2002.

[9] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, andS. Shenker,
“DIFS: A distributed index for features in sensor networks,” in Proc. of
First IEEE International Workshop on Sensor Network Protocols and
Applications, 2003.

[10] X. Li, Y. J. Kim, and W. Hong, “Multi-dimensional range queries in
sensor networks,” inProc. of SenSys03. ACM Press, 2003, pp. 63–75.

[11] D. Ganesan, “DIMENSIONS: Why do we need a new data handling
architecture for sensor networks,” inProc. of the ACM HotNets. ACM,
2002, pp. 143–148.

[12] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin,and J. Heide-
mann, “An evaluation of multi-resolution storage for sensor networks,”
in Proc. of SenSys03. ACM Press, 2003, pp. 89–102.

[13] D. Ganesan, A. Cerpa, Y. Yu, D. Estrin, W. Ye, and J. Zhao,“Networking
issues in wireless sensor networks,”JPDC, vol. 64, pp. 799–814, 2004.

[14] J. Li, J. Jannotti, D. S. J. De, C. David, R. Karger, and R.Morris, “A
scalable location service for geographic ad hoc routing,” in Proc. of
MobiCom2000, 2000, pp. 120–130.

[15] J. Newsome and D. Song, “GEM: Graph EMbedding for routing and
data-centric storage in sensor networks without geographic information,”
in Proc. of SenSys03. ACM Press, 2003, pp. 76–88.

[16] F. Y. G. Zhong, “GRAdient Broadcast: A Robust Data Delivery Protocol
for Large Scale Sensor Networks,”WINET, vol. 11, pp. 285–298, 2005.

[17] P. Desnoyers, D. Ganesan, and P. Shenoy, “Tsar: A two tier sensor
storage architecture using interval skip graphs,” inProc. of SenSys05.
ACM Press, 2005, pp. 39–50.

[18] W.-H. Liao and W.-C. Wu, “A cover-up scheme for data-centric storage
in wireless sensor networks,” inProc. of ISCC2007, 2007, pp. 963–968.

[19] C. T. Ee and S. Ratnasamy, “Practical data-centric storage,” in Proc. of
NSDI, 2006.

[20] M. Aly, K. Pruhs, and P. K. Chrysanthis, “KDDCS: A load-balanced
in-network data-centric storage scheme in sensor network,” in Proc. of
CIKM, 2006, pp. 317–326.

[21] H. Shen, T. Li, and T. Schweiger, “An Efficient Similarity Searching
Scheme Based on Locality Sensitive Hashing,” inProc. of ICDT2008,
2008.

[22] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy, “Consistent Hashing and Random Trees: DistributedCaching
Protocols for Relieving Hot Spots on the World Wide Web,” inProc.
of STOC97, 1997, pp. 654–663.

[23] W. Nejdl, W. Siberski, M. Wolpers, and C. Schmnitz, “Routing and
clustering in schema-based super peer networks,” inProc. of IPTPS03,
2003.

[24] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu, “Data management for peer-to-peer com-
puting: A vision,” in Proc. of the 5th International Workshop on the
Web and Databases, 2002.

[25] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, “Piazza: Data
management infrastructure for semantic web applications,” 2003.

[26] “http://www.netlab.tkk.fi/tutkimus/dtn/theone/.”


