
A DHT-Aided Chunk-Driven Overlay for Scalable
and Efficient Peer-to-Peer Live Streaming

Haiying Shen, Lianyu Zhao and Ze Li
Department of Electrical and Computer Engineering

Clemson University Clemson, SC 29634
{shenh, lianyuz, zel}@clemson.edu

Jin Li
Microsoft Research

Redmond, WA 98052
jinl@microsoft.com

Abstract—Internet-based video streaming applications is be-
coming more and more popular and attract millions of online
viewers every day. The incredible growth of viewers, dynamics of
participants, and high video quality-of-service (QoS) requirement
pose scalability, availability and low-latency challenges to peer-
to-peer (P2P) live video streaming systems. Tree-based systems
have low-delay but are vulnerable to churn, while mesh-based
systems are churn-resilient but suffers high delay and overhead.
Both systems cannot make full utilization of the bandwidth in
the system. To tackle the challenges, we propose a DHT-aided
Chunk-driven Overlay (DCO). It introduces a scalable DHT
ring structure into a mesh-based overlay to efficiently manage
video stream sharing. DCO includes a hierarchical DHT-based
infrastructure and a chunk sharing algorithm. Aided by DHT,
DCO guarantees stream chunk availability. In this way, DCO
flexibly takes full advantage of available bandwidth in the system
and at the same time provides high scalability and low-latency.
Simulation results show the superiority of DCO compared with
mesh-based and tree-based systems.

Keywords: DHT; P2P; Live streaming; Chunk-driven.

I. INTRODUCTION

Internet-based video streaming applications is becoming
more and more popular and attract millions of online viewers
every day [1]. The number of unique viewers of online video
increased 5.2% year-over-year, from 137.4 million unique
viewers in January 2009 to 142.7 million in January 2010 [2].
Take YouTube as an example, 120.5 million viewers watched
videos on YouTube in the month of August of 2009 [3],
and the number is expected to rise to at least one billion
viewers worldwide in 2013 [4]. Live streaming applications
provide live broadcasting streams from live channels such as
TV and live events. For instance, YouTube’s live streaming
of Ireland U2 Concert performance was watched by 10 mil-
lion people [5]. Recently, peer-to-peer (P2P) techniques have
attracted significant interests for live video broadcasting over
the Internet due to its high scalability. In a P2P live video
streaming system, a streaming media server generates a series
of chunks, each of which is a small video stream fragment
containing the media contents of a certain length. The peers
watching the same video program form an overlay for video
stream sharing between each other in the form of chunks. The
P2P paradigm dramatically reduces the bandwidth burden on
the centralized content provider and generates more available

bandwidth as the number of viewers increase. Typical P2P
video streaming applications include PPLive [6], Joost [7],
SopCast [8], UUSee [9], ESM [10] and CoolStreaming [11].
As an example, UUSee simultaneously sustains 500 live
stream channels [9] and routinely serves millions of users [12]
each day. As users spend more and more time watching videos
online, they are becoming increasingly unsatisfied with the
quality-of-service (QoS) (i.e., image freezes and poor resolu-
tion) [13, 14]. The incredible growth of viewers, dynamism
of participants, and high-QoS requirement pose scalability,
availability and low-latency challenges to the widespread
adoption of the applications.

• Scalability. The performance of a system will not degrade
or will even improve as the number of users grows to a
large scale.

• Availability. The live streaming service with acceptable
streaming quality is always available to users under
all network conditions, including node dynamics (i.e.,
churn).

• Low-latency. High quality video streaming with stringent
real-time performance demand requires that video stream
is transferred under timing and bandwidth constraints.

However, the capability of existing P2P live streaming
systems [11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29] is insufficient to tackle these challenges. Most
current systems construct their overlays into either tree-based
structure or mesh-based structure.

In a tree-based structure [15, 16, 17, 18, 19, 20, 21], all peers
are arranged in a tree and the source distributes the live stream
from the tree root. The internal nodes receive media pieces
from parents and relay them to child nodes. This solution
can rapidly deliver contents if the tree is stable and the links
between nodes have sufficient bandwidth. However, it has a
number of inherent limitations: (i) It is vulnerable to churn. If
a parent leaves or fails, its children cannot receive live stream
in time before the tree is repaired. (ii) Fixed tree structure and
stream flow direction makes it difficult to flexibly take full
advantage of bandwidth. (iii) Since the performance is limited
by the minimum throughput among the upstream connections,
an inappropriately constructed tree may result in inefficient
bandwidth utilization and long delay.

In a mesh-based structure [11, 13, 22, 23, 24, 25, 26, 27,
28, 29], each node maintains a list of their overlay neighbors.
Each node maintains a buffer map which summarizes the
chunks that it currently has cached and makes them available
for sharing. Nodes periodically exchange and compare the
buffer maps with their neighbors and retrieve video data
accordingly. Specifically, peers share chunks through either
pull-based [11, 22, 23, 24, 25, 26, 27, 28] approaches or push-
based [29, 13] approaches. In the former, each peer sends
requests to its neighbors to constantly seek for new chunks;
while in the latter, a peer pushes chunks to its neighbors once
there is available upload bandwidth. A mesh-based structure
is naturally resilient to churn without a strict topology, but it
also has a number of limitations. (i) A peer may suffer long
latency if its desired chunks are not available in its neighbors.
(ii) Periodical information exchange generates high overhead
and consumes much bandwidth. (iii) Push-based approaches
may cause a node to receive many identical chunk, producing
extra overhead.

Several recently proposed works [23, 24, 30, 31] seek to
combine mesh and tree structures to enhance their individual
performance. However, the nodes in the mesh still need to ex-
change information periodically and the tree structure needs to
be maintained and frequently adjusted. These hybrid methods
cannot overcome the inherent problems in both structures.

Distributed Hash Table (DHT) [32, 33] is a structure for
managing information and is deployed in many file sharing
applications. It is well-known for high scalability, reliability
and self-organizing. In order to solve the drawbacks of current
live streaming solutions and tackle the aforementioned three
challenges, we propose a DHT-aided Chunk-driven Overlay
(DCO). DCO includes a hierarchical DHT-based infrastructure
and a chunk sharing algorithm. The DHT structure is formed
by stable nodes to help efficiently locate optimal chunk
providers among all available candidates in the system in order
to guarantee content availability and low-latency. Basically,
nodes report their available chunks to the DHT and also
resorts to the DHT for locating a chunk provider for its
requested chunk. The DHT always returns a chunk provider
with sufficient bandwidth. In this way, DCO flexibly takes full
advantage of available bandwidth in the system and at the same
time provides high scalability, availability and low-latency.

Tree-based systems rigidly determine node locations in the
tree. Thus it is unable to flexibly adapt to continuous changes
in bandwidth status and churn. DCO is churn-resilient since
a node can always find a chunk provider with sufficient
bandwidth even in churn. Mesh-based systems consume high
bandwidth for frequent message exchanges and cannot guaran-
tee chunk availability due to local neighbor search. Unlike the
mesh-based systems, DCO does not need frequent message
exchanges while ensuring chunk availability due to system-
wide search with the aid of DHT. As far as we know, this is
the first work that leverages DHT to increase scalability and
availability and reduce latency in P2P live streaming systems.

The rest of this paper is organized as follows. Section II
gives a brief overview of the existing approaches for P2P

live streaming. Section III presents the DCO system in detail.
Section IV presents simulation results of DCO in comparison
with other approaches. Section V concludes the paper with
remarks on our plans for the future work.

II. RELATED WORKS

P2P live video streaming systems can be mainly classified
into two categories: tree-based and mesh-based [34]. The
early P2P streaming solutions are single-tree based, such as
multicast overlay [16, 15], Narada [17] and ZIGZAG [18].
They feature a single multicast tree with the server at the
root position. The single-tree approach suffers from sub-
optimal performance of throughput and is vulnerable to churn.
Later works including CoopNet [19], SplitStream [20] and
THAG [21] employ multiple description coding (MDC) to
divide media contents into multiple sub-streams, which are
delivered through multiple multicast trees. Although they are
more robust to churn, they generate high maintenance cost and
involve complex protocols.

A mesh-based system such as CoolStreaming [11], Any-
See [35] and Chainsaw [22] constructs a mesh out of the
overlay nodes and swarms media contents by interchanging
chunks with neighbors. CliqueStream [25] builds a live stream-
ing network on top of eQuus [36], which is a clustered locality-
aware P2P overlay. To improve resource utilization between
peers, a number of packet scheduling algorithms have been
proposed, such as AQCS [26], RUPF [27] and DP/LU [13],
and their performances are compared extensively in [13, 28].

A number of recently proposed works [23, 24, 30, 31]
combine tree and mesh structures to construct hybrid overlays.
PRIME [23] is a two-phase mesh-based live P2P streaming
system. It builds a tree with nodes being located in different
levels according to their distances in hops to the server. In the
first phase, data segments of a chunk are rapidly transmitted
from the server in the top-down manner along the tree. The
second phase is swarming content delivery, in which peers
pull their data segments of the chunk from their neighbors in
the same level. Chunkyspread [24] forms multiple trees over
a mesh. The server multi-casts video stream to its neighbors,
each is the root of each tree. Each node periodically checks
to find overloaded parent and recommends a set of candidate
nodes in the tree to its parent for the replacement. In [30, 31],
Wang et al. proposed a two-tier structure. In the first tier,
stable nodes constitute a tree-based backbone, which pushes
most data downwards. All transient (and stable) nodes form a
mesh overlay in order to enhance the resilience to churn and
provide high utilization of bandwidth among overlay nodes. To
reconcile mesh pull and tree push methods, each node collects
the chunks pushed to it and uses a pointer to indicate the
latest chunk obtained through the push method. The missing
chunks, which precede the pointer’s chunk, are filled by the
pull method.

The heterogeneous nature of a P2P network has been stud-
ied, and peers with different outgoing bandwidth are treated
differently in some designs. Banerjee et al. [37] used supern-
odes or dedicated proxies to provide efficient data distribution

2

services to a set of end-hosts. In the method proposed in [38],
peers with larger outgoing bandwidth adaptively move closer
to the source to reduce the mesh delay of the whole system.
This method takes some time to reach the optimum state
because every node only has knowledge of its neighbors.
Yeung and Kwok [39] proposed to assign more parent nodes
to peers with large outgoing bandwidth in order to ensure they
receive stream in node dynamism.

III. THE SYSTEM DESIGN

A. Background

1) P2P Video Streaming System: In a P2P video streaming
system, live channel sources are broadcasting various media
programs. A server in the live streaming network slices the
media stream in a live channel into small chunks, each contains
media contents of a certain length. The chunks are then
delivered to the users who are watching the channel in the
network. The users watching the same channel constitute an
overlay for chunk sharing between each other. This process
of chunk production and delivery is shown in Figure 1. Each
chunk is named uniquely in the format of channel name plus
its generation timestamp. For example, if a chunk has a session
length of one second, the name of the chunk of NBC channel
beginning at 01:30:01 on January 1st, 2009 is labeled as
NBC20090101013001. The naming mechanism ensures that
every chunk name is unique. Chunks are constantly generated
from channel servers at a certain streaming rate. Every node
watching the channel keeps a playing buffer which contains a
certain number of chunks whose timestamps are within a short
time window. These chunks are called active chunks. The time
window steadily moves forward as new chunks are received
for streaming playback.

Network

NBC20090101013000

NBC20090101013001

CNN20090101013001

CNN20090101013000

NBC
Server

CNN
Server

Fig. 1. The process of chunk production and delivery.

2) The DHT Systems: DHT systems allow for file sharing
on a large scale without being controlled by a centralized
organization. In a DHT, every node maintains a routing table,
in which the number of entries amounts to log n, where n is the
number of nodes in the system. Each node and file is assigned
with a unique ID which is the consistent hash value [40] of
its IP address or file name, respectively. A file is stored in
the node whose ID equals or immediately succeeds the file’s
ID. We call this node the owner of the file or the file’s ID.
A DHT system provides two main functions: Insert(ID,object)
and Lookup(ID) to store a file to the ID’s owner and to retrieve

the file. The message of the functions is forwarded based
on the DHT routing algorithm. The number of hops in a
routing in the worst case is log n. DHT systems have a self-
maintenance mechanism to deal with churn including node
joins, departures and failures for structure maintenance. We
use Chord DHT [32] in this work, although any other DHT
system can be adopted for this work. As shown in Figure 2, in
Chord, all nodes constitute a virtual ring in the network. Each
node Ni has a predecessor predecessor(Ni) and a successor
successor(Ni).

B. DHT-Aided Chunk-Driven Overlay

By taking advantage of the file storage and lookup functions
of DHTs, we build a DHT-aided chunk-driven overlay for
scalable and efficient chunk sharing in P2P live streaming
systems. DCO builds a hierarchical DHT-based infrastructure
as shown in Figre 2, where stable nodes form a Chord DHT
in the upper tier and other nodes connect to the DHT nodes
in the lower tier. DCO organizes all nodes’ chunk information
elegantly in the DHT so that a node can always find providers
with sufficient outgoing bandwidth in a short time. An active
chunk in a node has a chunk index indicating its name, its
owner node, its owner’s buffer map, available bandwidth and
so on. The index of each active chunk in a node is regarded as
a file for storage through Insert(ID,index) and lookup through
Lookup(ID) in the DHT. Using the name of a missing chunk as
a file name, a node can always find a chunk provider from the
DHT. While the node is watching the channel and receiving
chunks from its provider, it continuously reports its buffered
chunks to the DHT and provides the chunks to other nodes
upon receiving their requests.

1) Hierarchical DHT-based Infrastructure: The importance
of stable peers in the overlay is recognized and they are given
priorities in the peer selection process [31, 41, 42, 43, 44]. Our
design selects stable nodes to form a DHT ring structure for
high chunk availability and QoS. Specifically, a small number
of stable nodes watching the same channel are selected to form
the DHT ring structure and to manage indices of active chunks.
We call these nodes coordinators. There are two main reasons
for choosing partial stable nodes rather than all nodes to form
the DHT structure. First, the number of active chunks in a
live stream channel at a time is limited. As each node’s time
window of a fixed length steadily moves forward, new chunks
are created and outdated chunks are discarded, hence the total
number of active chunks in the system at a time does not vary
greatly. The second reason is stability. While watching live
videos, every node in the network consults the coordinators
for chunk indices and reports its chunks to the coordinators
for chunk sharing. Therefore, the stability of the coordinators
is critical to the availability of chunks and the quality of the
live stream.

a) Stable Node Identification: Previous works in [44, 31,
43, 42] have proposed methods to identify stable nodes. It
is indicated that the longer a node stays in the overlay, the
longer it would stay in the future [44]. We adopt the method
in [42] to calculate the probability that a node will stay long

3

in the network. We call it longevity probability. We consider
two factors that are proved effective in identifying stable
nodes [42]: (1) streaming quality, which is the buffering level
defined as the number of consecutive blocks in the playback
buffer starting from the current playback position, and (2)
joining time, which is the time of a day when the node joins in
the network. The longevity probability pl(t) that a node will
stay in the network after time t can be calculated by the Cox
proportional hazards model [45].

pl(t) = 1− h0(t) exp(βT z) (1)

where h0(t) is a non-negative baseline hazard function whose
value is chosen so that pl(t) ≤ 1; z = (z1, . . . , zp) is a
covariate vector containing the aforementioned two influential
factors affecting the lifetime of a node; β = (β1, . . . , βp) is a
column vector of coefficients corresponding to the covariates
values in z. Based on pl(t), stable nodes can be identified.

b) Infrastructure Construction and Maintenance:
Node Join. In current P2P live streaming applications such

as UUSee, the server keeps track of tens to hundreds of nodes
in each channel and provides up to 50 nodes to a newly joined
node so that it can join in the overlay of the channel. In DCO,
the server (that also functions as a coordinator) provides one
coordinator Ni to each newly joined node Nj in a round-robin
manner in order to achieve load balance between coordinators.
Then, Nj connects to Ni and becomes Ni’s client in the
lower tier. Nj requests chunks from the DHT and reports
chunks to the DHT via Ni. DCO aims to minimize the DHT
network size in order to minimize its maintenance overhead
and avoid overloading any coordinator upon many chunk
requests. Driven by this goal, the network size of DHT in DCO
is not fixed. Rather, it adapts to the actual load in the system.
Specifically, when a node in the upper tier is overloaded, one
of its stable clients in the lower tier joins in the DHT to release
its load. For example, Nj periodically calculates its longevity
probability. If the probability exceeds a pre-defined threshold,
Nj reports to Ni. If Ni is overloaded, it acts as a bootstrap
node and makes Nj as its successor or predecessor in the
DHT. The process of node joins in the DHT is the same
as that in general DHTs. Then, Nj becomes an coordinator
and can directly communicates with the coordinators without
relying on Ni. Regarding chunk indices as files in DHTs, Nj

receives its responsible chunk indices from Ni based on the
DHT file assignment policy, and will handle all requests for
these chunks. Thus, partial load in Ni is transferred to Nj .

Node Departure. A node may leave a channel either grace-
fully by informing its neighbors or abruptly without any notice.
When Ni gracefully leaves the network, it notifies nodes
that are currently pulling chunks from it, so that they can
request for new chunk providers from the DHT. Meanwhile,
it informs the coordinators to which it has reported its chunks
before, so that the coordinators remove Ni from their index
tables. If Ni is a coordinator, it needs to conduct three
more operations. (1) It notifies its clients, and recommends
successor(Ni) and predecessor(Ni) to each group of half of

its clients respectively for new connections. (2) It transfers its
chunk indices to its successor and predecessor according to
the DHT file assignment policy. That is, the chunk indices
are stored in their new owners after Ni leaves. Thus, the
chunk availability is guaranteed since the requests for the
chunks will automatically be forwarded to their new owners
according to the DHT routing algorithm. (3) It performs the
standard leaving process in Chord by notifying its successor
and predecessor, so that relevant DHT nodes are aware of Ni’s
departure.

Node Failure. When node Ni fails or abruptly departs, node
Nj pulling chunks from Ni will notice a timeout failure in
fetching chunks. Then, Nj will inform the chunk’s coordinator
about the failure of Ni and meanwhile receive a new chunk
provider. The coordinator removes Ni from its index table. If
Ni is a coordinator in the DHT, its client Nk will also notice
its failure or departure upon communication failure. Then, Nk

contacts the server for a new coordinator to connect to. The
stabilization operation in DHTs helps to maintain the DHT
infrastructure due to node joins, departures and failures. In
stabilization, each node periodically probes its neighbors and
update them if they are outdated.

N0

N4

N9

N14

N20

N32

N80
ID Name

001 CNN0001 …
002 CNN2215 …
004 CNN1430 …

Index Table (N4)

Index Table (N14)
ID Name

010 CNN0200 …
011 CNN1652 …
013 CNN2021 …
014 CNN0526 …

1. Node C sends a
lookup(010) request
for chunk ‘CNN0200’.

3. Reply with a chunk provider to C.

C

2. Forward the request to
coordinator N14 along
log(n) nodes.

1. Node N80 sends a
lookup(004) request
for chunk ‘CNN1430’

2. Reply with a chunk
provider to N80.

Fig. 2. Chunk sharing in the DHT-aided chunk-driven overlay.

2) Efficient Chunk Sharing: In DCO, the coordinators
function as index servers by collecting chunk indices in order
to facilitate chunk discovery. Each coordinator maintains an
index table where each entry holds the indices of a chunk.
Figure 3 illustrates an example of an index table in a node.
Each chunk has an ID that is the consistent hash value of
its name. A chunk index includes the chunk’s ID, name
(e.g., CNN0240), the IP address of its holder node (e.g.,
192.168.0.2), the chunk owner’s buffer map and available
bandwidth.

Figure 2 shows an example of the DCO infrastructure along
with index tables in coordinators N4 and N14. When a video
server generates a new chunk or a node receives a new chunk
from another node, it stores the index of the new chunk in
the DHT. Specifically, it generates the ID of the chunk by
applying the consistent hash function to the chunk’s name.

4

Algorithm 1: Pseudo-code for the chunk sharing algo-
rithm.
Every node N :
if N needs to buffer the next chunk then1

// contact the coordinator
Generate the chunk ID and send Lookup(ID) query2

// contact the chunk provider
if receive the response from the coordinator then3

Send a request to chunk provider4

end5

if receive the chunk then6

Register to the coordinator as a chunk provider7

end8

end9

if N receives a chunk requester then10

if have idle bandwidth then11

Send the requested chunk to the requester12

end13

end14

if N is a coordinator & it receives a message then15

if N is the destination of the message then16

if the message is a Lookup(ID) request then17

Send a chunk provider with sufficient18

bandwidth to the requester
end19

if the message is a Insert(ID,index) message for a20

chunk then
Add the index of the chunk to its index table21

end22

end23

else24

Forward the message to the next hop25

end26

end27

if N wants to join in the system then28

Contact the server and obtain a coordinator29

Build a connection with the coordinator30

end31

if N wants to leave the system then32

Notify nodes that are receiving chunks from N33

Notify the coordinators of its chunks34

if N is a coordinator then35

Recommend its clients to its successor and36

predecessor
Transfer the chunk indices in its index table to37

successor and predecessor
Execute standard leaving process in DHT38

end39

end40

It then sends the chunk’s index to the DHT by the function
Insert(ID,index). By the DHT routing algorithm, the index
will be forwarded to the coordinator which is the owner
of the ID. The coordinator adds the chunk’s index to the
corresponding entry in its index table. As a result, the indices
of a specific chunk of different nodes in the system gather in
the same coordinator, which facilitates the chunk discovery.
In Figure 2, different providers’ chunk indices of the chunk
with ID=001 and name=CNN0001 are in the first entry. Since
N4 is the owner of IDs 001, 002 and 004, it stores the
chunk indices of chunks with these IDs. Similarly, the chunk
indices for chunks 010, 011, 013 and 014 are in coordinator
N14. Key distribution based on the consistent hash function
in DHT leads to comparatively balanced key distribution, i.e.,
log n imbalance [32]. Hence, the chunk indices are distributed
among coordinators in comparative balance. If a coordinator is
overloaded due to the number of lookup inquiries from peers,
new coordinators can always be added to the DHT to release
its load.

The Index table in a coordinator

ID Name IP address Buffer map Bandwidth

00001234 CNN0021
192.168.0.2 … …

The Index table in a coordinator

00001234 CNN0021
… … …

00001237 CNN0240
123.83.2.4 … …

… … …

00001238 CNN9343
195.163.2.1 … …

… … …

00001240 CNN2034
100.94.3.24 … …

… … …

Fig. 3. An example of an index table.

When a node needs chunks to play for a certain time, it
consults the DHT. Specifically, it calculates the ID of the
chunk by applying the consistent hash function on the chunk’s
name. Then, it sends Lookup(ID) request to the DHT. Through
the DHT routing algorithm, the request will be forwarded to
the owner of the ID, i.e., the coordinator of the chunk. For
example, in Figure 2, node C requests chunk CNN0200. It
generates the ID of the chunk, 010, and then asks N32 to
send out request Lookup(010). This request is forwarded to the
coordinator N14, the owner of ID 010. Then, N14 responds
to C a chunk provider with sufficient available bandwidth
for the chunk transmission. A coordinator can directly send
Lookup(ID) requests to DHT for chunks. As the figure shows,
the coordinator N80 sends Lookup(ID) request to coordinator
N4. The coordinator processes the request and sends the
information of chunk provider to the requester.

After receiving the information of a provider from the co-
ordinator, the requester sends a chunk request to the provider.
Once a requester receives new chunks, it reports the chunks
to the DHT using Insert(ID,index) for chunk sharing. When a
coordinator gracefully leaves, it transfers its chunk indices to
its predecessor or successor based on the DHT file assignment
policy. Then, the requests for the chunks will be forwarded

5

Prefetching window

t

1t

Fig. 4. Prefetching mechanism.

to the departed node’s predecessor or successor accordingly
based on the DHT routing algorithm. If a coordinator fails
or abruptly leaves, the requests for the chunks whose indices
were originally in the coordinator will be forwarded to a new
coordinator, and at the same time, new chunk indices of the
requested chunk will also be reported to the new coordinator.
In conclusion, unlike tree-based systems, DCO can guarantee
chunk availability even in churn. Also, the DHT is able to
collect the active chunks of all nodes in the network and offer
requested chunks to the participants all the time. This system-
wide chunk search significantly enhances chunk availability
of mesh-based methods, which only allow nodes to search
chunks within their local neighbors. Algorithm 1 shows the
pseudo-code for the chunk sharing process.

3) Prefetching Mechanism: We use the prefetching mecha-
nism [46, 47] to enhance the QoS of live streaming. In DCO,
the prefetching mechanism helps to reduce the possibility of
disruption in playback caused by the unavailability of chunks.
Thus, when a node turns to a new chunk provider when its
current chunk provider fails, the playback process will not be
affected. Recall that a node’s message needs to take log n hops
in the DHT overlay before arriving at the coordinator. The
prefetching mechanism also helps to offset this delay. Figure 4
shows the prefetching window of a node, and t1 indicates the
chunk that is being played. The prefetching window size, ∆t,
should be sufficient to offset the delay caused by the log n
hop routing and chunk provider switch. In UUSee, each chunk
represents 1/3 of a second of video content, and the typical
∆t of its prefetching window is 20s [12], hence the number of
chunks in the buffer is usually 60. Users usually have different
lags in the video playback, we consider the largest lag among
the users, which is typically on the order of minutes [48].
If the lag difference is 10 minutes, the number of chunks of
the same channel in the network at a time is approximately
60 + 10×60

1/3 = 1860. Assume one chunk provider is in charge
of each chunk, then 1860 chunk providers are needed in the
DHT. Considering that the typical delay in today’s broadband
Internet connection is below 0.1s [49], the longest delay in
the DHT is 0.1× log2 1860 ≈ 1.09s� 20s. The result shows
that the log n hop delay in DHT can be easily covered by the
current prefetching mechanism.

We propose an adaptive prefetching window mechanism.
First, the system pre-defines the size of the prefetching window
based on the fetching delay. Then, each node adjusts the size
based on two factors: (1) Its download bandwidth denoted
by b. (2) The probability of the chunk fetching failure pf it

has experienced. Nodes with lower download bandwidth and
more chunk fetching failures need a larger prefetching window.
Therefore, each node calculates its prefetching window size
Wpf by:

Wpf =
W ×B

b× (1− pf)
, (2)

where W is a predefined prefetching window size, and B is the
average bandwidth in the network. Therefore, nodes periodi-
cally adjust the size of their prefetching window dynamically
in order to guarantee high QoS while minimizing window size
for low overhead.

IV. PERFORMANCE EVALUATION

To measure the performance of DCO, we developed our
simulator based on P2PSim [50] and compared DCO’s perfor-
mance with pull-based, push-based, and tree-based methods.
The number of nodes in the network was set to 512 unless
otherwise specified. To make results comparable, all nodes
form a DHT in DCO. We regard the neighbors in a node’s
successor list in DCO as the node’s neighbors. In the pull-
based and push-based mesh overlays, every node is randomly
connected with its neighbors. In these overlays and DCO, the
number of neighbors per node was varied from 8 to 64 with
a step increment of 8. The tree-based method is constructed
such that each node has the same out-degree, which is 1

8 of
the number of neighbors in the other three methods. Nodes in
the pull/push-based methods exchange buffer maps with their
neighbors every second. In the push-based method, every node
sends missing chunks to their neighbors regardless whether
they have received chunks from others; while in the pull-based
method, every node sends a request to each of its neighbors
asking for its missing chunk in a round robin manner until it
receives the chunk. In the tree-based method, the chunks are
pushed top-down from the server. In the simulation, a chunk
is a video fragment that can be played for one second. Since
today’s online video is approximately 300kbps, the size of a
video chunk was set to 300kb and was generated from server
node every second for 100 seconds unless otherwise specified.
We set both the upload and download bandwidths of the server
to 4000kbps, and those of all other nodes to 600kbps. When
a node is overloaded, it will queue its chunks in its buffer and
will not perform any chunk transmission until it has sufficient
bandwidth. We evaluate our proposed approach by examining
the following performance metrics.
(1) Mesh delay: The time interval from the time when a

chunk is generated at the server until it reaches all
nodes in the overlay. This metric measures the stream
dissemination latency of a live streaming system.

(2) Fill ratio: The ratio of nodes holding a chunk at a certain
time. This metric indicates the spreading rate of video
chunks.

(3) Extra overhead: The number of communication messages
other than video chunks. In the push and pull methods,
it includes messages for buffer map exchanges and sub-

6

1

10

100

1000

10000

8 16 24 32 40 48 56 64

M
e
sh

 d
e

la
y

Number of neighbors

push
pull
DCO
tree*
tree

Fig. 5. Mesh delay vs. the number of neighbors.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 24 32 40 48 56 64

F
ill

 r
a

tio

Number of neighbors

push pull

DCO tree

Fig. 6. Fill ratio vs. the number of neighbors.

sequent requests. In DCO, it includes messages between
nodes and both coordinators and chunk owners. The tree-
based method does not generate any extra overhead due
to its top-down push method. One message forwarding
operation is regarded as one unit of extra overhead. This
metric reflects the cost, scalability and efficiency of a live
streaming system.

(4) Percentage of received chunks: The number of chunks
successfully received by all the recipients over the total
number of chunks. It shows the churn resilience perfor-
mance of a live streaming system.

A. Performance of Latency

Figure 5 shows the mesh delay versus the number of
neighbors per node. Here “tree*” denotes a tree-based method
in which the number of children each node has is the same
as the number of neighbors in the other three methods, while
“tree” denotes our experiment setting for the tree method in
which the number of children of each node is 1

8 of the number
of neighbors in the other three methods. As the result shows,
the mesh delays in the push and pull methods are very high
when the number of neighbors is small. The mesh delay of
DCO stably remains in a very low level all the time, even
though DCO has log n hops delay in routing. The reason is
that DCO can almost guarantee the availability of a chunk
due to its system-wide search, while nodes in push/pull may
not always get desired chunks due to their local search among
neighbors. A chunk request in DCO is always answered with
a chunk provider. However, in the push and pull methods, a
peer may take a relatively longer time to find a neighbor with
a requested chunk, especially when the size of the neighbor
list is small. We also observe that the pull method generates
higher mesh delay than the push method. This is due to the
fact that nodes in the pull method need to pull their neighbors
one by one and wait for their responses, which takes a longer
time than directly accepting chunks from neighbors in the push
method.

In the tree-based method, when the number of children is
set to the same number of neighbors as other methods, the
performance of tree is degraded significantly. This is because
the parent nodes need a long time to be able to push a specific

chunk to a large number of children. However, when the
number of children is set to 1

8 of the number of neighbors
of other methods, tree can achieve the best mesh delay when
the number of children is less than 32

8 . This is because when
the number of children is larger, the bandwidth limit constrains
the spreading of chunks from parents to children. Therefore,
to make the results comparable, in the following experiments,
we set the number of children of the tree method to 1

8 of other
methods, and set the default number of children to 3.

B. Performance of Availability

By measuring the fill ratio at a certain moment, we test
the speed that chunks are made available to nodes in different
approaches. We evaluate the fill ratio versus the number of
neighbors per node and the elapsed time, respectively. In the
experiment, a server generates 100 chunks. Figure 6 shows the
measured fill ratios two seconds after a chunk is generated and
the number of neighbors. Clearly, the performance of DCO is
most stable when the number of neighbors is under 32, and
beyond that the push method has nearly the same fill ratio as
DCO. The fill ratio of the push method grows sharply when the
number of neighbors increases from 8 to 32. This is because
when a node has many neighbors, the push method is able to
push the chunks to every node in the network in a few steps,
functioning as flooding. When a node has fewer neighbors,
the push method needs more time to spread a chunk. The pull
method always shows the worst performance. This is because
a node has to pull from its neighbors for a chunk and then wait
for the response. If the neighbor does not have the chunk, the
requester needs to pull from another neighbor. Thus, chunk
spreading takes a long time. For the tree-based method, when
the number of children is less than 32

8 , its fill ratio reaches
nearly 100%, which is higher than the other three methods.
Without buffer map exchanges and log n hop request routing,
the tree-based method directly pushes a chunk to nodes along
the tree. Thus, it generates a higher fill ratio than others.
However, when the number of children is larger than 32

8 , the
fill ratio drops dramatically. This is because when the number
of children is small, a node can rapidly deliver a chunk to
its children with low bandwidth constraint. However, when
the number of children is large, because of the bandwidth

7

0

0.2

0.4

0.6

0.8

1

1.2

100 101 102 103 104

F
ill

 r
a

tio

Time (sec.)

push

pull

DCO

tree

Fig. 7. Fill ratio vs. time.

0E+00

5E+05

1E+06

2E+06

2E+06

3E+06

3E+06

4E+06

4E+06

8 16 24 32 40 48 56 64

E
xt

ra
 o

ve
rh

e
a

d

Number of neighbors

push

pull

DCO

tree

Fig. 8. Extra overhead vs. the number of neighbors.

0E+00

5E+05

1E+06

2E+06

2E+06

3E+06

3E+06

4E+06

4E+06

5E+06

64 192 320 448 576 704 832 960

E
xt

ra
 o

ve
rh

e
a

d

Number of nodes

push

pull

DCO

tree

Fig. 9. Extra overhead vs. the number of nodes.

0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

6E+07

0 400 800 1200 1600
E

xt
ra

 o
ve

rh
e

a
d

Time (sec.)

push

pull

DCO

tree

Fig. 10. Extra overhead vs. time.

constraint, the pushing process is significantly slowed down.
Figure 7 shows that the fill ratio increases as time elapses.

Since it took the server 100 seconds to create all 100 chunks,
we measured the fill ratio every second from the time instant
of 100 seconds. In the tree-based method, when the number
of children is set to the default value 3, it achieves the fastest
chunk spreading speed for the same reason in Figure 6. The
push method and DCO show better performance. It takes a
chunk only three seconds to swarm the entire network after
its generation. One interesting observation is that at the 101st

second, the fill ratio of push is better than DCO. This is
because the log n routing hops in the DHT overlay make the
initial chunk disseminating speed of DCO slower. At the 102nd

second, DCO is able to catch up with the push method, because
there are more and more providers of the chunk as time goes
on, which helps to achieve faster chunk disseminating speed by
effectively utilizing more nodes’ bandwidth. Due to the same
reason in Figure 6, the pull method’s fill ratio is significantly
lower than others. It confirms the low speed of the pull method
in spreading chunks.

C. Performance of Scalability and Overhead

In this experiment, we measured the total extra overhead for
all nodes in the system to receive 100 newly generated chunks.
Figure 8, 9 and 10 show the extra overhead as a function of the
number of neighbors per node, the number of participants and
elapsed time, respectively. As Figure 8 shows, the tree-based
method can achieve zero extra cost, because tree-based method

only pushes in a top-down manner without redundant traffic.
For the other three methods, when the number of neighbors
per node is 8, the push and pull methods perform better than
DCO; as the number increases to 16, the three methods behave
almost the same; as the number increases more, DCO presents
the best performance. Moreover, the extra overhead of the push
and pull methods mount up when there are more neighbors
per node, while that of DCO decreases. When the number of
neighbors climbs to 64, the overhead of DCO is almost one
third of the push method and one fifth of the pull method.
This result tells that DCO works better when there are more
neighbors. This is because when a node has more neighbors,
it needs to exchange messages with more nodes in the pull
and push methods, but it needs less hops for forwarding its
messages in DCO.

Figure 9 illustrates the relationship between extra overhead
and the number of participants in the network, which is a
measurement of scalability. The number of neighbors was
set to 32. We can observe that the extra overhead of each
method increases linearly as the number of nodes grows. The
tree-based method again produces 0 extra overhead since its
top-down chunk dissemination is the most efficient. DCO
generates less extra overhead than the push method, which
produces less extra overhead than pull. The reason is that the
chunk lookup mechanism in DCO can always provide a valid
provider to the requester, and it does not need frequent buffer
map exchanges as in push and pull methods. This result also

8

0%

20%

40%

60%

80%

100%

200 220 240 260 280 300

P
e
rc

e
n
ta

g
e
 o

f
re

ce
iv

e
d

ch
u
n
ks

Time (sec.)

push pull
DCO tree

Fig. 11. Percent of received chunks vs. time.

0%

20%

40%

60%

80%

100%

60 70 80 90 100 110 120

P
e
rc

e
n
ta

g
e
 o

f
re

ce
iv

e
d

ch
u

n
ks

Average node life

push pull
DCO tree

Fig. 12. Percent of received chunks vs. node life.

shows that DCO is more scalable than push and pull methods.
Figure 10 shows the extra overhead as time elapses. The

four methods exhibit similar behaviors as in Figure 9. The
result further verifies that apart from tree, which does not incur
extra overhead, DCO produces the lowest overhead, showing
its high efficiency. The reason why DCO always generates
less extra overhead than other methods is that it can guarantee
a node to receive its requested chunks while other methods
cannot. In addition, DCO can provide better parent candidates.
The periodic exchanges of buffer maps between neighbors
generate significantly high extra overhead in the push and pull
methods. The fact that the push method is better than the pull
method is because the pull method needs one more step of
request after buffer map exchange.

D. The Impact of Churn
In this experiment, we set the number of chunks to dissem-

inate to 200, and allow up to 300 seconds for nodes to retrieve
the chunks. Also, the node life span is set to an exponential
distribution [32] with mean ranging from 60s to 120s, and the
join interval of nodes is set to the same distribution. Therefore,
nodes are constantly leaving and joining the network, and the
network scale remains relatively stable.

Figure 11 shows the percentage of received chunks given
chunk dissemination time ranging from 200s to 300s with
increment of 10s in each step and node life span equal to 60s.
It can be observed that DCO achieves comparable performance
with the pull-based method. Nodes in DCO actively request
missing chunks from the chunk providers, which enables them
to obtain chunks in time. It can also be seen that DCO has a
little lower performance compared with the pull method at the
beginning. This is because the chunk spreading speed of DCO
is first slowed down by the log n delay in DHT overlay routing,
but this is soon remedied because as the number of chunk
holders increases, the chunks can be disseminated much faster.
The push-based method has slower speed in receiving chunks
than DCO and the pull method. This is because nodes in the
push-based method passively receive chunks from neighbors.
Some chunks may not be sent quickly by certain nodes. The
tree-based method has the worst performance because churn
will break its topology, and a great number of nodes will not
be able to receive chunks from their parents.

Figure 12 shows the relationship between the percentage
of received chunks and the expected life of each node as
the average node life ranges from 60s to 120s with 10s
increment in each step. DCO and the pull method gain a higher
percentage than the push-based method. This is because the
primary goal of push is to distribute fresh chunks so that some
nodes may depart before they have sent all the chunks to their
neighbors. The tree-based method is not resilient to churn due
to the reason in Figure 11.

The above experimental results of churn-resilience on the
percentage of received chunks show that DCO achieves com-
parable churn-resilience as the pull-based method. Push-based
method is also resilient to churn, while the fragile structure of
the tree-based method makes itself vulnerable to churn.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a DHT-aided chunk-driven overlay
for P2P live streaming, targeting higher scalability, availability
and low latency. The design consists a hierarchical DHT-based
infrastructure and a chunk sharing algorithm. The hierarchical
DHT-based infrastructure offers high scalability. The chunk
sharing algorithm provides service for chunk index collection
and discovery, which guarantees high availability. As a re-
sult, the overlay can provide high quality video streaming.
DCO is superior over tree-based systems in dealing with
churn, and mesh-based systems (pull and push) in bandwidth
consumption and latency. More importantly, it can flexibly
take full advantage of system bandwidth by dynamically
matching chunk requesters and providers. The experimental
results show that DCO improves the performance of the mesh-
based systems and tree-based systems, in term of scalability,
availability, latency and overhead.

In the future, the performance under churn and the efficiency
of the overlay will be investigated from various aspects.
Furthermore, an optimal peer selection algorithm will be
developed by considering actual situations in the real world.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
CNS-1025652, CNS-1025649, and CNS-0917056, Microsoft

9

Corporation PO # 8300751, and Sandia National Laborato-
ries, 10002282. We would like to thank Linlin Yang and
Shuangyang Yang for their valuable help on this work.

REFERENCES

[1] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A Mea-
surement Study of a Large-Scale P2P IPTV System,” IEEE
Transactions on Multimedia, 2007.

[2] “Total Viewers Of Online Video Increased 5 Percent Year-Over-
Year,” http://blog.nielsen.com/nielsenwire/online mobile.

[3] “YouTube Still the King of Online Videos,”
http://www.searchenginejournal.com/.

[4] “1 Billion Online Video Viewers Served by 2013,”
http://www.straightupsearch.com/archives/2008/05/.

[5] “10 million people see U2 Concert on YouTube,”
http://mashable.com/2009/10/29/u2-youtube-10-million/.

[6] “PPLive,” http://www.pplive.com.
[7] “Joost,” http://www.joost.com.
[8] “SopCast,” http://www.sopcast.com.
[9] “UUSee,” http://www.uusee.com.

[10] Y.-H. Chu, S. G.Rao, and H. Zhang, “A Case For End System
Multicast,” in Proceedings of ACM SIGMETRICS, 2000.

[11] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet:
a data-driven overlay network for peer-to-peer live media
streaming,” in Proc. of INFOCOM, 2005.

[12] C. Wu and B. Li, “Exploring large-scale peer-to-peer live
streaming topologies,” ACM Transactions on Multimedia Com-
puting, vol. 4, no. 3, 2008.

[13] F. Picconi and L. Massoulie, “Is there a future for mesh-based
live video streaming?” in Proc. of P2P, 2008.

[14] J. Wang, C. Huang, and J. Li, “On ISP-Friendly Rate Allocation
for Peer-Assisted VoD,” in Proc. of ACM Multimedia, 2008.

[15] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” in Proc. of SIGCOMM’02, Pitts-
burgh, PA, USA, 2002.

[16] Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhang,
and H. Zhang., “Early experience with an internet broadcast
system based on overlay multicast,” in Proc. of USENIX, 2004.

[17] Y. Chu, S. Rao, and H. Zhang, “A case for end system
multicast,” in Proc. of ACM SIGMETRICS, 2000.

[18] D. Tran, K. Hua, and T. Do, “Zigzag: An efficient peer-to-peer
scheme for media streaming,” in Proc. of INFOCOM, 2003.

[19] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanid-
kulchai, “Distributed streaming media content using cooperative
networking,” in Proc. of ACM NOSSDAV, 2002.

[20] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in coop-
erative environments,” in Proc. of SOSP, 2003.

[21] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, and W. Zhu,
“Robust and efficient path diversity in application-layer multi-
cast for video streaming,” IEEE TCSVT, 2005.

[22] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr, “Chainsaw: eliminating trees from overlay multicast,” in
Proc. of IPTPS, 2005.

[23] N. Magharei and R. Rejaie, “PRIME: peer-to-peer receiver-
driven mesh-based streaming,” in Proc. of INFOCOM, 2007.

[24] J. Venkataraman and P. Francis, “Chunkyspread: multi-tree
unstructured peer-to-peer multicast,” in Proc. of IPTPS, 2006.

[25] S. Asaduzzaman, Y. Qiao, and G. Bochmann, “CliqueStream: an
efficient and fault-resilient live streaming network on a clustered
peer-to-peer overlay,” in Proc. of P2P, 2008.

[26] Y. Guo, C. Liang, and Y. Liu, “Adaptive queue-based chunk
scheduling for P2P live streaming,” in Proc. of IFIP Networking,
2008.

[27] L. Massoulie, A. Twig, C. Gkantsidis, and P. Rodriguez, “Ran-

domized decentralized broadcasting algorithms,” in Proc. of
IEEE INFOCOM, 2007.

[28] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient
in P2P video streaming?” in Proc. of ICDCS, 2008.

[29] A. Silva, E. Leonardi, M. Mellia, and M. Meo, “A bandwidth-
aware scheduling strategy for P2P-TV systems,” in Proc. of
P2P, 2008.

[30] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A hybrid tree/mesh
overlay for application-layer live video multicast,” in Proc. of
IEEE ICDCS, 2007, p. 49.

[31] F. Wang, J. Liu, and Y. Xiong, “Stable Peers: Existence, Impor-
tance, and Application in Peer-to-Peer Live Video Streaming,”
in Proc. of INFOCOM, 2008, pp. 1364–1372.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-
peer lookup protocol for Internet applications,” IEEE/ACM
Transactions on networking, vol. 11, no. 1, pp. 17–32, 2003.

[33] A. Rowstron and P. Druschel, “Pastry: scalable, decentralized
object location and routing for large-scale peer-to-peer systems,”
in Proc. of IFIP/ACM Middleware, 2001, pp. 329–350.

[34] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and
challenges of peer-to-peer internet video broadcast,” in Proc.
of Special Issue on Recent Advances in Distributed Multimedia
Communications, 2007.

[35] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-
to-Peer Live Streaming,” in Proc. of IEEE INFOCOM, 2006.

[36] T. Locher, S. Schmid, and R. Wattenhofer, “eQuus: a provably
robust and locality-aware peer-to-peer system,” in Proc. of P2P,
2006.

[37] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller, “Construction of an efficient overlay multicast
infrastructure for real-time applications,” in Proc. of IEEE
INFOCOM, 2003.

[38] D. Ren, Y. H. Li, and S. G. Chan, “On reducing mesh delay
for peer-to-peer live streaming,” in Proc. of IEEE INFOCOM,
2008.

[39] M. K. Yeung and Y. Kwok, “Game theoretic peer selection
for resilient peer-to-peer media streaming systems,” in Proc.
of ICDCS, 2008.

[40] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
P. R., “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in
Proc. of STOC, 1997, pp. 654–663.

[41] F. Wang, J. Liu, and Y. Xiong, “Stable peers: existence, impor-
tance, and application in peer-to-peer live video streaming,” in
Proc. of IEEE INFOCOM, 2008.

[42] Z. Liu, C. Wu, B. Li, and S. Zhao, “Distilling superior peers
in large-scale P2P streaming systems,” in Proc. of IEEE INFO-
COM, 2009.

[43] F. Wang, Y. Xiong, and J. Liu, “mTreebone: a hybrid tree/mesh
overlay for application-layer live video multicast,” in Proc. of
ICDCS, 2007.

[44] M. Bishop, S. Rao, and K. Sripanidkulchai, “Considering
priority in overlay multicast protocols under heterogeneous
environments,” in Proc. of IEEE INFOCOM, 2006.

[45] D. R. Cox, “Regression models and life-tables,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 34,
no. 2, pp. 187–220, 1972.

[46] X. Cheng and J. Liu, “Nettube: Exploring social networks for
peer-to-peer short video sharing,” in Proc. of INFOCOM, 2009.

[47] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-
demand be profitable?” in Proc. of SIGCOMM, 2007.

[48] E. Setton, J. Noh, and B. Girod, “Low latency video streaming
over peer-to-peer networks,” in Proc. of ICME, 2006.

[49] “What is a computer ping test?”
http://compnetworking.about.com/od/.../pingtest.htm.

[50] p2psim, http://pdos.csail.mit.edu/p2psim/.

10

