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Abstract—File sharing applications in mobile ad hoc networks
(MANETs) have attracted more and more attention in recent
years. The efficiency of file querying suffers from the distinctive
properties of MANETs including node mobility and limited com-
munication range and resource. An intuitive method to alleviate
this problem is to create file replicas in the network. However,
despite the efforts on file replication, no research has focused
on the global optimal replica sharing with minimum average
querying delay. Specifically, current file replication protocols in
MANETs have two shortcomings. First, they lack a rule to allocate
limited resource to different files in order to minimize the average
querying delay. Second, they simply consider storage as resource
for replicas, but neglect the fact that the file holders’ frequency of
meeting other nodes also plays an important role in determining
file availability. A node having a higher meeting frequency with
others provides higher availability to its files. In this paper,
we introduce a new concept of resource for file replication,
which considers both node storage and meeting frequency. We
theoretically study the influence of resource allocation on the
average querying delay and derive a resource allocation rule
to minimize the average querying delay. We further propose a
distributed file replication protocol that follows the rule. The
trace-driven experiments on both the real-world GENI testbed
and NS-2 show that our protocol can achieve shorter average
querying delay at lower cost than current replication protocols,
which justifies the correctness of our theoretical analysis and the
effectiveness of the proposed protocol.

I. INTRODUCTION

File sharing applications, like Qik [1] and Flixwagon [2],
in mobile ad hoc networks (MANETs) have attracted more
and more attention in recent years. Among many feasible
techniques, peer-to-peer (P2P) file sharing between nodes
in MANETs is promising since it avoids the problem of
overloading servers (i.e., base stations) in current client-server
based file sharing in the infrastructure wireless networks.
Without the dependency on central servers, nodes can freely
and unobtrusively access and share files. For example, tourists
can share their travel experiences with other tourists or convey
emergency information through their digital devices directly
even when no base station is available in remote areas.

However, the distinctive properties of MANETs, including
node mobility, limited communication range and resource, have
rendered many difficulties in realizing such a P2P file sharing
system. For example, file searching turns out to be non-trivial
and time consuming since nodes in MANETs move around
freely and can exchange information with others only when
they are within the communication range. Broadcasting can

quickly discover files, but it generates the broadcast storm
problem [3] with high energy consumption. Probabilistic rout-
ing and file discovery protocols [4]–[6] avoid broadcasting by
forwarding a query to a node with higher probability of meeting
the destination. But the opportunistic encountering of nodes in
MANETs may lead to large file discovery delay.

File replication is an effective way to enhance file availability
and reduce the file querying delay. It creates replicas for a file
to improve its probability of being encountered by requests.
Unfortunately, it is impractical and inefficient to enable every
node to hold the replicas of all files in the system considering
limited node resource. Also, file querying delay is always
a main concern in a file sharing system. Users often desire
to receive their requested files quickly no matter the files
are popular or unpopular. Thus, a critical issue is raised for
further investigation: how to allocate the limited resource in
the network to different files for replication so that the overall
average file querying delay is minimized?

Recently, a number of file replication protocols have been
proposed for MANETs [7]–[11]. In these protocols, each
individual node replicates files it frequently queries [7]–[9], or
a group of nodes create one replica for each file they frequently
query [9]–[11]. In the former, neighboring nodes easily create
redundant replicas in the system and waste resource. Though
group based file replication solves the problems by sharing
replicas to be shared among neighbors, neighboring nodes may
separate from each other due to node mobility. In spite of the
efforts, current file replication protocols lack a rule to allocate
limited resource to different files for replica creation in order
to achieve the minimum global average querying delay, i.e.,
global search efficiency optimization under limited resource.
Moreover, they simply consider storage as resource for replicas,
but neglect that a node’s ability (i.e., frequency) to meet other
nodes (meeting ability in short) also influences the availability
of its files. Files in a node with a higher meeting ability have
higher file availability.

In this paper, we introduce a new concept of resource for
file replication, which considers both node storage and node
meeting ability. The meeting ability of a node is measured
by the average number nodes it can meet in a unit time. We
theoretically study the influence of resource allocation on the
average querying delay and derive an optimal file replication
rule that decides the amount of resource for each file based
on its popularity and size. To the best of our knowledge, this



work is the first attempt to theoretically investigate the problem
of resource allocation for replica creation to achieve global
file searching optimization in MANETs. We further propose
a file replication protocol that can approximately realize the
rule and achieve the minimum global querying delay in a
fully distributed manner. Our experiment and simulation results
show the superior performance of the proposed protocol in
comparison with other representative replication protocols.

II. RELATED WORK

The topic of file replication for efficient file sharing appli-
cations in MANETs has been studied recently. In the proposed
file replication protocols [9]–[11], individual or a group of
nodes decide the list of files to replicate according to file
visiting frequency. Hara [9] proposed three file replication
protocols: Static Access Frequency (SAF), Dynamic Access
Frequency and Neighborhood (DAFN) and Dynamic Connec-
tivity based Grouping (DCG). In SAF, each node replicates
its frequently queried files until its available storage is used
up. SAF may lead to many duplicate replicas among neigh-
boring nodes when they have the same interested files. DAFN
eliminates duplicate replicas among neighbors. DCG further
reduces duplicate replicas in a group of nodes with frequent
connections. It sums the access frequencies of all nodes in a
group and creates replicas for files in the descending order.
Though DAFN and DCG enable replicas to be shared among
neighbors, neighboring nodes may separate from each other
due to node mobility. Also, they incur high traffic load in
identifying duplicates or managing groups.

Zhang et al [10] proposed to let each node collect access
statistics from neighbors to decide the creation or relinquish-
ment of a replica. Duong and Demeure [11] proposed to group
nodes with stable connections and let each node checks its
group members’ potential possibility of requesting a file and
their storage status to decide replicate the file or not. Also, each
node notifies all other nodes in the system about its newly
created files by broadcasting. Yin and Cao [8] proposed to
cache popular files on the intersection nodes of file retrieval
paths. Though it is effective for popular files, it fails to utilize
all storage space in nodes other than the intersection nodes.

Gianuzzi [12] investigated the probability of acquiring a
file, which has n replicas in the network, from the potentially
partitioned network. He also studied the file retrieval perfor-
mance when erasure coding [13] is employed to segment files.
Chen [14] discussed how to decide the minimal number of
mobile servers needed to satisfy the requirement that every data
item can be obtained within at most k (k ≥ 1) hops by any
node in the system. Khan et al. [15] exploited game theory and
derived a payment scheme to solve the negative effects brought
about by selfish mobile servers. Moussaoui et al. [7] proposed
two steps of file replication, primary replication and dynamic
replication, to disseminate replicas in the network in order to
meet user needs and prevent data loss in the case of network
partition. In the primary replication step, newly created files
are distributed evenly among nodes that are three hops away
from each other through replication. Later, when the network
topology changes, dynamic replication is conducted, in which
each node checks its visiting frequency to a file or the density

of a file (i.e., the number of hops a request for the file has
traveled) to make the replication decision.

III. THEORETICAL ANALYSIS OF GLOBALLY OPTIMAL
FILE REPLICATION

A. Node Movement Model
We define the meeting ability of a node in MANETs as the

average number of nodes it can meet in a unit time. Different
nodes have different meeting abilities due to various reasons
(e.g., velocity and active level). Node movement pattern also
influences the node meeting ability. We consider a MANET
scenario in which the node movement pattern follows the
modified random waypoint model (RWP) [16], which has been
used in several MANET replication protocol [9], [10], [12].
In RWP, nodes repeatedly select a randomly destination and
move to it at a random speed straightly. So the each node has
roughly similar meeting ability. We let each node has a fixed
speed, which is randomly obtained from a range, in the RWP
model. So from the perspectively of one node, it has the same
probability of meeting any other node, which means no local
gathering exists in the system. Although nodes move randomly
in the modified RWP model, they may have different meeting
abilities due to different velocities. For example, nodes with
faster speed can meet other nodes more frequently (i.e., with
short average separation period). We regard our work based
on the modified RWP as a fundamental work and will briefly
introduce how to adapt our fundamental analysis to other node
movement models in the end of this section.

B. Theoretical Analysis

TABLE I: Notations in analysis.

Notation Meaning
qj The probability of querying file j in the system
mi The probability that the next encountered node is node i
pj The probability of obtaining file j in the next encountered node
N Total number of nodes
Vi Node i’s meeting ability (i.e., frequency of meeting nodes)
Si Storage space of node i

V Average meeting ability of all nodes in the system
F Total number of files in the system
bj Size of file j
Xij Whether node i contains file j or not
Vjk Meeting ability of the kth node that holds file j
nj The number of replicas for file j
Aj Allocated resource for file j for replication
Tj Average number of time intervals needed to meet file j

T Average number of time intervals needed to meet a file (average Tj )
R Total amount of resource in the system
Pj Priority Value of file j, Pj =

√
qj/bj

We first theoretically analyze the influence of the file replica
distribution on the overall query efficiency. We assume there is
no update on files in the system. Please refer to Table I for the
meanings of notations used in our analysis. If a node is able to
meet more nodes during a time period unit, it means the node
has higher probability of being encountered by other nodes
later on. We use mi to denote the probability that the next node
a request holder meets is node i. Then, mi is proportional to
node i’s ability to meet nodes (i.e., Vi). Then



mi =
Vi

V N
(1)

where N denotes the total number of nodes and V denotes the
average meeting ability of all nodes in the system.

We use vector (Vj0, Vj1, . . . , Vjk, . . . ) to denote the meeting
abilities of a group of nodes holding file j or its replica.
Then, the probability that a node obtains its requested file j
from its encountering node is the sum of the probabilities of
encountering nodes that hold file j or its replica. That is,

pj =

N∑
i=1

miXij =

N∑
i=1

Vi

V N
Xij =

nj∑
k=1

Vjk

V N
(2)

where Xij is a zero-one variable that denotes whether node
i contains file j or its replica and nj is the number of file j
(including replicas) in the system.

As stated above, a node’s probability of being encountered
by other nodes is proportional to the meeting ability of the
node. This indicates that files residing in nodes with higher
meeting ability have higher availability than files in nodes with
lower meeting ability. So we take into account both node’s
meeting ability and storage in measuring a node’s resource.
When a replica is created in a node, ts probability of being
met by others is decided by the node’s meeting ability. So we
regard it consumes both storage resource and meeting ability
resource of the node. Therefore, we denote the resource on
a node by SiVi, in which Si denotes node i’s storage space
and Vi denotes its meeting ability. Then, the total amount of
resource in the system (R) is:

R =

N∑
i=1

SiVi (3)

Thus, the total resource allocated to file j is:

Rj = bj

nj∑
k=1

Vjk (4)

where bj is the size of file j. Based on Equation (4), Equa-
tion (2) can be represented as

pj =

bj

nj∑
k=1

Vjk

bjV N
=

Rj

bjV N
(5)

Thus, the probability of encountering file j after k (k =
1, 2, 3, · · · ) intervals is

(1− pj)
k−1pj

and the average number of time intervals needed for a node to
meet a node containing file j is

Tj =

∞∑
k=1

k(1− pj)
k−1pj =

1

pj
=

bjV N

Rj
(6)

We use qj to denote the probability of originating a request for
file j. Then, the average number of intervals needed to satisfy
a request is

T =

F∑
j=1

qjTj =

F∑
j=1

qj
bjV N

Rj
= V N

F∑
j=1

qjbj
Rj

(7)

We aim to minimize the global file querying delay (i.e., T )
by file replication. According to Equation (7), T is decided by

qj , bj and Rj , and the values of qj and bj are decided by the
system. Thus, the problem of optimal resource allocation is
then converted to finding the optimal amount of resource (Rj)
for each file j under the restriction of total available resource
in order to achieve the minimum average querying delay.

Suppose Bj = qjbj , with Equations (3) and (7), the problem
of optimal resource allocation is expressed by

min(T ) = min{
F∑

j=1

qjbj
Rj
} = min{

F∑
j=1

Bj

Rj
} (8)

subject to:
F∑

j=1

Rj ≤ R.

Equation (7) also indicates that each Rj should be as large as
possible in order to minimize T . Therefore, we let the sum of
all Rj equals R.

F∑
j=1

Rj = R (9)

By applying Formula (9), Formula (8) is changed to

min(T ) = min{
B1

R1
+

B2

R2
+ · · ·+

BF

R− (R1 +R2 + · · ·+RF−1)
} (10)

Next, we try to find the value of Rj (1 ≤ j ≤ F − 1) that
satisfies Formula (10). Specifically, we differentiate T on each
Rj (1 ≤ j ≤ F − 1) respectively, and find the value of Rj

that makes the differentiated formula equal 0. The resultant
formulas after differentiation are

B1

R2
1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (11)

· · · · · · · · ·
BF−1

R2
F−1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (12)

Combine all of the above F − 1 equations, we get
B1

R2
1

=
B2

R2
2

=
B3

R2
3

= · · · = BF−1

R2
F−1

=
BF

R2
F

(13)

According to Equation (9) and Equation (13), we can see that
the optimal allocation is

Rj =

√
Bj

F∑
k=1

√
Bk

R (j = 1, 2, 3, · · · , F ) (14)

This means that the optimal resource allocation is achieved
through the square root policy, i.e., the portion of resource for
file j is in direct proportion of the square root of Bj :

Rj ∝
√

Bj ⇒ bj

nj∑
k=1

Vjk ∝
√

bjqj (15)

That is nj∑
k=1

Vjk ∝
√

qj
bj
⇒

nj∑
k=1

Vjk ∝ Pj (16)

We call
√
qj/bj the Priority Value (P ) of file j as it represents

the relative priority in acquiring resource in order to realize the
global optimization on querying delay.

By converting Formula (15) to Formula (16), we convert
the double-factor consideration (i.e., both storage and meeting



ability) in the resource allocation to the single-factor consid-
eration (i.e., meeting ability). This is reasonable since once a
replica is created, it naturally takes the storage resource and
meeting ability resource at the same time.

Based on Formula (16), we derive the Optimal File Repli-
cation Rule (OFRR) that gives the direction for the optimal
resource allocation for each file that leads to the minimum
average file querying delay.

OFRR. In order to achieve minimum overall file querying
delay, the sum of the meeting ability of replica nodes of file j
should be proportional to Pj =

√
qj/bj .

It is interesting to find that OFRR matches the “square
root assignment rule” derived by Kleinrock [17] for the link
capacity assignment in wireless communication to maximize
the network efficiency. It also matches the findings in [18]
that when file servers may become unavailable due to node
dynamism, the wired P2P content distribution systems can
achieve the maximum file hit rate when available storage is
allocated in proportional to a constant value plus ln(qj/bj) for
each file.

C. Extension to Other Node Movement Models

Although above results are obtained based on the modified
RWP model in which nodes move randomly and independently,
the analysis process can be generalized and adapted to other
node movement models. In any kind of node movement model,
we first need to figure out the probability that the newly met
node is node i (i.e., mi in Formula (1)), which reflects the
meeting ability resource of node i. Then, following similar
procedures from Formula (2) to Formula (6), the average
number of time intervals needed to meet a specific file, say
file j, can be represented as:

T ′j =
1

p′j
=

1
N∑
i=1

m′iXij

(17)

where p′j and m′i represent pj and mi under the new movement
model. Then, similar to Formula (7), the average number of
intervals needed to satisfy a request is

T ′ =

F∑
j=1

qjT ′j =

F∑
j=1

qj
N∑
i=1

m′iXij

, (18)

where T ′ represents T under the new movement model.
With Formula (18), we can formulate the global optimization
problem as minimizing T ′ under limited resource and deduce
the optimal resource allocation rule.

However, the calculation of m′i may be complex and makes
the minimization problem non-trivial in complex mobility
models. For example, in the recently proposed community
based mobility model [19], nodes gather together according
to their social relationships. Therefore, nodes in the same
community meet with each other more often than with others.
Then, a node’s probability of meeting node i in the next
encountering (m′i) differs from node to node since we need
to consider whether the node and node i belong to the same

social community. Further exploration of the optimal resource
allocation rule under other models is beyond the scope of this
paper, and we leave it as our future work.

IV. DISTRIBUTED FILE REPLICATION PROTOCOL

A. Challenges to Achieve the Optimal File Replication Rule

Challenge 1: resource allocation without a central server.
OFRR and Formula (15) show that in order to realize the
globally optimal querying delay, each node needs to know the
popularity (qj) and size (bj) of all files and the total available
resource to decide the portion of resource for each of its files
for replica creation. Specifically, suppose there are F files
in the system with b1q1 · · · bF qF and total resource R, the
resource allocated to file j (Rj) is

Rj = R×
√

bjqj/

F∑
k=1

√
bkqk (19)

So, an intuitive way to attain this goal is to setup a central
server to collect and distribute required information. However,
the nature of the distributed network, node mobility and trans-
mission range constraint become obstacles of building such a
central service. Since nodes are constantly moving and have
limited communication ranges, it is impossible for each node
to update its information to or receive information from the
server in a timely fashion. Thus, a severe challenge is how to
enable a node to distributively figure out the proper portion of
resource for each of its files without a central server.

Even though each node knows
√

bjqj/
∑F

k=1

√
bkqk of each

of its files, because of the time-varying available total resource
in the system (R) due to node joins and departures and the
total number of files (F ) due to file deletions and creations, it
is difficult for a node to calculate the portion of resource of
each of its file (Rj). For example, suppose there are only two
files in the system, say f1 and f2, and the ratio of their allocated
resources is 4:1. If the total amount of resource R = 40, the
amount of resource allocated to f1 is 32. IfR = 60, the amount
for f1 should be adjusted to 48. If f2 is deleted, the amount for
f1 then should be 60. Further, the time-varying file popularity
and subsequent change of bjqj make the problem even more
formidable. Therefore, OFRR cannot be simply realized by
letting each node distribute replicas of a file until an absolute
amount of resource is used for the replicas.

Solution to Challenge 1: resource competition. For-
mula (16) shows that the sum of the meeting ability of replica
nodes of each file,

∑nF

k=1 VFk, is proportional to the file’s
priority value P . This also means that the ratio of each file’s P
to its

∑nF

k=1 VFk has the same value. Therefore, OFRR finally
achieves

P1/

n1∑
k=1

V1k = P2/

n2∑
k=1

V2k · · · = PF /

nF∑
k=1

VFk (20)

where nj (j ∈ [1, 2, · · · , F ]) represents the number of replica
nodes of file j. Then we can let each file, say file j, periodically
compete for the resource with its current Pj/

∑nj

k=1
Vjk. In

one competition, the file with the highest Pj/
∑nj

k=1 Vjk wins
and receives resource for one replica. After a file creates
a replica, its Pj/

∑nj

k=1
Vjk decreases. The competition stops



when all available resource is allocated and no one can win
a competition. Thus, files with larger Pj/

∑nj

k=1
Vjk win more

competitions and receive more resource and files with smaller
Pj/

∑nj

k=1
Vjk only win few competitions and receive less

resource. Hence, the competition gradually lets each file receive
its deserved portion of resource based on OFRR. Therefore, by
enabling file owners to distributively compete for resource for
their files, we can realize OFRR without a central server.

Challenge 2: competition for distributed resource. In
MANETs, all available resource is scattered among differ-
ent nodes moving around in the network. This poses three
problems. First, file owners have limited probability to gather
to conduct the resource competition. Second, after a file is
replicated to a number of nodes, it is difficult for its owner
to collect the popularity of the replicas to update the P of
the file. Third, since the number of nodes met by a file owner
and a node’s capability are both limited, a single file owner
cannot distribute replicas efficiently and quickly. We propose
an optimized way to solve these problems by regarding a file
and its newly created replica as two different files, which
participate in further competition independently. However, this
brings another challenge: how can the replicas ensure that the∑

Vjk is proportional to its P in the resource competition?
Solution to Challenge 2: distributive competition on

selective resources. As mentioned, enabling replica nodes to
replicate files makes it difficult to keep P proportional to∑

Vjk. We indirectly resolve this problem by keeping the
average V of the replica nodes of a file close to V via
selectively choosing replica nodes. Formula (16) can then be
re-expressed as

nj ∗ V ∝
√

qj
bj
⇒ nj ∝

√
qj
bj
⇒ nj ∝ Pj (21)

In such a case, when the number of replicas of each file
is proportional to its P =

√
qj/bj , OFRR is also satisfied.

Accordingly, we deliberately select nodes to create replicas
so that the average meeting ability of replica nodes equals to
V . Thus, each node competes for resource for its file j only
with its P . To allow nodes to replicate files in a distributed
manner, upon winning a competition for a file, a node splits
the file’s P evenly between the file and the replica file. Each
file keeps replicating until it fails a competition. Thus, for a file
with k replicas, each of its replica’s P generally equals Pj/k.
The sum of these replicas’ P s equals Pj (Pj is the P of the
original file j). In other words, the number of splits each file
j has experienced (i.e., the number of replicas of each file) is
proportional to its Pj , causing the number of replicas of each
file is proportional to the sum of meeting ability of its replica
nodes. As a result, Formula (16) is satisfied.

B. Design of the File Replication Protocol
According to the analysis above, we propose the Priority

Competition and Split file replication protocol (PCS). We first
introduce how a node retrieves the parameters needed in PCS
followed by a detailed description of PCS.

Each node needs to know the average meeting ability of all
nodes (V ). As nodes move randomly and independently in the
network, we can assume that the set of nodes encountered by

File Priority 
competition

Replica 
creation & 

priority split

Success

Try at most K times

Select one neighbor 
by the OFRR RULE

Failure

Fig. 1: Replica distribution process.

each node is randomly chosen from the set of all nodes in the
network. Then, the average meeting ability of all encountered
nodes of a node can generally represent the average meeting
ability of all nodes in the network. As a node meets more and
more nodes in the system, its calculated V converges to the real
value. In PCS, each node i periodically calculates its meeting
ability (Vi) measured by the frequency it meets other nodes,
and exchanges its Vi with its neighbors by piggybacking the
information into beacon messages. Each node also periodically
calculates the popularity of each of its files (qj) measured by
the number of its received requests for the file in a unit of time
period, and calculates the file’s Pj =

√
qj/bj .

With above information, a node can order all of its files in
descending order of their P s and creates replicas for the files
in the top-down manner. In the Solution to Challenge 2, nodes
replicate files in a distributed manner, and each replicating
node tries to ensure that the average meeting ability of replica
nodes of a file equals to V . That is, Vn′

j
≈V , where n′j denotes

the total number of replicas of file j created by a node and
Vn′

j
denotes the average meeting ability of the replica nodes.

Therefore, each node needs to keep track of n′j and Vn′
j

of
each of its file. After creating a replica, the replicating node
increases n′j by 1 and also updates Vn′

j
using the V of the

new replica node. Since the computation only involves simple
operations and only one value needs piggybacking, PCS is
suitable to the energy-constrained MANETs.

Figure 1 demonstrates the process of the replication of a
file in PCS. For example, suppose node i needs to replicate
file j. It keeps trying to replicate file j on nodes it encounters
until one replica is successfully created or K attempts have
been made. To choose a neighbor to replicate file j, node i
first checks the meeting abilities of its neighbors. Recall that
a replicating node should keep the average meeting ability of
the replica nodes for each of its files at V . Node i finds the
neighbor that does not contain file j and has Vk that makes
(n′jVn′

j
+ Vk)/(n

′
j + 1) the closest to V .

If the neighbor’s available storage space is larger than the
size of file j (Sj), it creates a replica for file j. Otherwise,
a competition is launched among file j’s replica and other
replicas already residing in the neighbor based on their P s.
The priority value of the new replica is set to half of the
original file’s P . The competition is conducted as a drawing to
select one or more replicas to be deleted. According to OFRR,
each replica has a probability of being selected to remove,
which is inversely proportional to its P . Assume there are d
replicas in competition. Each replica is responsible for a range
in [0,

∑d
k=1 1/Pk] and the length of the range equals its 1/P .

The neighbor randomly chooses a number in [0,
∑d

k=1 1/Pk],
and the replica whose range owns the number is chosen. If the
size of the chosen replica is less than Sj , the neighbor repeats



the same process until available storage is no less than Sj .
If file j is among the selected files, which means file j fails

the competition, only file j’s replica is deleted. Otherwise, all
selected files are removed. Also, if file j fails, node i will
launch another attempt for file j until the maximum number
of attempts (K) is reached. Each attempt starts with identifying
the neighbor to replicate file. The setting of K attempts is to
ensure that each file can compete with a subset of sufficient
replicas in the system. If node i fails to create a replica for
file j after K attempts, then replicas in node i with smaller
P s than file j are unlikely to win a competition. Thus, at
this moment, node i stops replicating files until the next time
period. Finally, all available resource in the system is allocated
to replicas according to their P s and OFRR is realized.

According to the Solution to Challenge 2, we regard a file
j’s replica as a “different” file from file j in PCS. Therefore,
if node i successfully creates a replica for file j, it splits the
file’s P evenly between file j and the new replica. Thus, each
file’s priority is P/2. After the splitting, the two copies of file j
involve in further resource competition independently. Without
the splitting strategy, files with large P s will receive more and
more resource and starve files with small P s. As the popularity
of files, their P s and available system resource change as time
goes on, each node periodically executes PCS.

C. Analysis of the Effectiveness of PCS

In this section, we prove the effectiveness of PCS through
analysis. We refer to the process a node tries to copy a file to
its neighbors as one round of replication distribution.

When a replica is created for a file with P , the two copies
will replicate files with priority P/2 in the next round. After
the second round, suppose there is no update of the priority
value, the four copies of the file will further replicate files with
priority P/4, and so on. So, the sum of the Ps of the replicas of
each original file is P plus the increase of its priority value, we
can regard the replicas of a file as a whole and they compete
available resource in the system with accumulated priority P
in each round. Therefore, in each round of replica distribution,
based on our design of PCS, the overall probability of creating
a replica for an original file j, denoted by Psj , is proportional
to its overall Pj . That is:

Psj ∝ Pj (22)

Then, suppose total M rounds of competition are conducted,
the expected number of replicas, denoted by nj , for file j is

nj = MPsj ⇒ nj ∝ Pj (23)

Therefore, we can conclude that the PCS can realize Equation
(21), in which the number of replicas of each file is propor-
tional to its P , thereby realizing OFRR.

V. PERFORMANCE EVALUATION

We conducted experiments on the GENI Orbit testbed [20],
[21], which is a MANET testbed consisting of 400 nodes
equipped with wireless cards, and the NS-2 [22] simulator. We
used a real-world MANET trace [23] to drive nodes mobility
in both experiments. The real trace [23] was obtained through
an outdoor project in Dartmouth University and it provides

position records of 35 laptop nodes moving randomly and
independently across different sections of an open field. In
order to evaluate our protocol under different network sizes
and node mobilities, we also conducted simulation on the NS-
2 with different network sizes and node mobilities synthesized
by the modified RWP model as previously indicated. In order to
validate the adaptivity of PCS, we used two routing protocols
in the experiments. We first used the Static Wait routing
protocol [24], in which each query stays on the source node
until meeting the destination, in the GENI experiment. We then
used the PROPHET probabilistic routing protocol [5], in which
a node routes requests to the neighbor with the highest meeting
ability, in the simulation. We set a larger TTL for Static Wait
since it needs more time to find a file holder than PROPHET.

We evaluated the performance of PCS in comparison with
SAF [9], DCG [9], PDRS [11] and CACHE [8]. The details of
these protocols can be found in Section II. We also included
the performance of the centralized protocol that replicates files
according to OFRR, which is denoted as OPTM. OPTM shows
the best possible performance of OFRR.

Table II shows the parameters used in experiments, unless
otherwise specified. The parameters are determined by refer-
ring to the settings in [8], [25] and the real trace. According to
the works in [8], [26], we determined the file size and storage
space. As the work in [18], the popularity of files followed a
Zipf distribution and the Zipf parameter was set to 0.7. Initially,
files were evenly distributed to each node and no replica existed
in the system. In the synthesized mobility, the speed of a node
was randomly chosen from the range of [s/2, 3s/2], where s is
the configured average node movement speed. Since the real
trace does not indicate the communication range of each node,
we set the communication range to 100m in the simulation
and set it to 60m in the GENI experiment in order to see the
influence of different transmission ranges on the performance.
We evaluated the performance of PCS with K = 3. Each test
was run by 5 times and the average value for each metric is
presented. We used the following metrics in the experiments:

• Hit Rate. This refers to the percent of requests that are
successfully resolved by either original files or replicas.
This metric shows the effectiveness of replication proto-
cols in enhancing file availability.

• Average delay. This is the average delay time of all
requests. To make the comparison fair, we included all
requests in the calculation. For unresolved requests, we set
their delays as the TTL. This metric shows the efficiency
of replication protocols in terms of file querying delay.

• Replication cost. This is the total number of messages
generated in creating replicates. This metric shows the
overhead of replication protocols.

• Cumulative Distribution Function (CDF) of the propor-
tion of replicas. This is the CDF of the proportion of
replicas of each file. This metric reflects the amount of
resource allocated to each file for replication and shows
whether a replication protocol can achieve OFRR in
resource allocation.



TABLE II: Simulation parameters.

Real trace Synthesized mobility
Environment Parameters GENI / NS-2 NS-2
Simulation area 600m× 300m 1000m× 1000m
Node Parameters
Number of nodes 35 60
Communication range 60m / 100m 250m
Average movement speed - 6m/s
The size of a file 1− 10 1− 10
Number of files in each node 10 10
Storage space for replicas 50 50
Query Parameters
Initialization period 500s / 800s 200s
Querying period 1500s / 1200s 600s
TTL of each request 1000s / 200s 200s
Total time for each test 3000s / 3000s 1000s

A. Performance in the Trace-Driven GENI experiments

1) Hit Rate and Average Delay: Table III shows the results
of each protocol in the trace-driven experiments on GENI. We
see that the hit rates in different replication protocols follow
CACHE<SAF<PDRS<DCG<PCS<OPTM. This is because
in protocols with longer querying delay, more requests are
dropped due to TTL, leading to lower hit rates. The result is
supported by the fact that the results on average delay present a
reverse order, as shown in the second column of the table. We
see that OPTM and PCS lead to lower delays compared with
others. This is attributed to the guidance of OFRR, which aims
to minimize the average querying delay. Although nodes with
high meeting ability may move at a long time scale, they can
meet more nodes in a unit time and thereby deliver queries to
their destinations more quickly on an average base. Therefore,
by considering both storage and meeting ability as resource to
enhance file availability, OPTM and PCS optimally allocate all
available resource to different files for replication to enhance
global file availability and overall file searching efficiency.

On the contrary, other protocols only replicate files locally,
consuming resource with redundant replicas and failing to
achieve high file availability under node mobility. PCS gen-
erates around 20% higher average delay than OPTM. This is
because OPTM has the knowledge of all information of each
node needed in OFRR beforehand, while PCS has to distribute
replicas in a fully distributed manner. The closer performance
of PCS to OPTM than others demonstrates the effectiveness of
PCS in realizing OFRR in a distributed manner.

TABLE III: Experimental results of the trace-driven experiments on GENI.
Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
CACHE 0.842454 260.469 / 0.01 / 994.2487 0
SAF 0.857341 259.1768 / 0.01 / 997.1095 0
PDRS 0.863074 256.1983 / 0.01 / 991.2384 175140
DCG 0.878559 251.3287 / 0.01 / 993.3947 67549
PCS 0.898823 240.7031 / 0.01 / 990.4522 28983
OPTM 0.910370 195.1776 / 0.01 / 990.1296 0

We see that the average delays of other four protocols
follow CACHE>SAF>PDRS>DCG. CACHE only utilizes the
storage on intersection nodes, which indicates that it fails to
fully utilize storage space in all nodes. Therefore, it cannot
create as many replicas as other protocols and exhibits the
highest delay. Other protocols can fully utilize storage space.
In SAF, each node replicates its frequently queried files until
its memory is filled up. Since file popularity follows the Zipf

distribution, almost all resource is allocated to popular files,
leading to large delay for requests querying for unpopular
files. Therefore, SAF cannot achieve global optimization of
all file queries. In PDRS, a node replicates files interested by
its neighbors that have less storage resource than itself, making
replicas be shared among neighbors. However, as the sharing
of replicas is not in the whole group, PDRS only renders a
slightly lower delay than SAF. DCG further improves SAF
and PDRS by conducting the file replication on a group level.
It eliminates duplicate replicas among group members and
uses released memory for other replicas, thereby generating
smaller average delay. We find that the 1st percentiles of the
delays of all protocols are 0.01. This is because some requests
are immediately satisfied by direct neighbors, leading to very
short delay. The 99th percentiles of the delays of the protocols
approximately follow the relationship on average delay. Above
results justify that PCS enhances the file searching efficiency
by its global optimization of file availability.

2) Replication Cost: From the table, we find that the
replication costs of different protocols follow PDRS>DCG
>PCS>SAF=OPTM=CACHE=0. PDRS shows the highest
replication cost because it needs to broadcast each new file
to all nodes in the system. DCG incurs moderate replication
cost because group members need to exchange information to
reduce duplicate replicas. PCS has very low replication cost
because each node only tries at most K times to create a new
replica for each file it holds. SAF, CACHE and OPTM have no
replication cost since they do not need to exchange information
between nodes for file replication. However, SAF may generate
redundant replicas, and CACHE fails to utilize all storage.

3) Replica Distribution: Figure 2 shows the CDF of
the proportion of resource allocated to each file for replica
creation in different protocols. From the figure, we find
that PCS exhibits the closest similarity to OPTM while
other protocols follow: DCG�CACHE≈PDRS�SAF, where
� means closer similarity to OPTM. Combining the results
on average delay, we find an interesting phenomenon: ex-
cept CACHE, a protocol with closer similarity to OPTM
has less average delay. This proves the correctness of our
theoretical analysis and the resultant OFRR rule expressed
in Formula (16). CACHE has large average delay because
it does not utilize all storage space for replica creation,
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Fig. 2: CDF of the resource allocated
to replicas in trace-driven GENI ex-
periment.

though it exhibits similarity
with PDRS. We also observe
that the CDFs of the pro-
portion of resource allocated
to replicas of DCG, CACHE,
PDRS and SAF increases to
over 0.9 quickly. This is be-
cause they allocate most re-
source to popular files, result-
ing in more replicas for these
files. Though these protocols
can reduce the delay of queries for popular files but cannot
reduce the delay of queries for unpopular files. PCS is superior
over these protocols because it averagely can reduce the delay
of queries for both popular and unpopular files.



B. Performance in the Trace-Driven Simulation

1) Hit Rate and Average Delay: Table IV shows the results
of each protocol in the trace-driven experiments on NS-2.
We see the hit rates of the six protocols follow the same
relationship as in Table III due to the same reasons. We find
that the average delays of the six protocols are much less than
those in the GENI experiment. This is caused by two reasons.
First, the trace-driven simulation adopts the PROPHET for
file searching, which can locate files more quickly than the
Static Wait searching protocol used in the GENI experiment.
Second, the communication range of two nodes (100m) in the
simulation is larger than that in the GENI experiment (60m),
leading to shorter searching delay since a node can reach more
neighbors. Also, the six protocols present lower hit rates than
those in the GENI experiment. This is because the trace-driven
simulation used much smaller TTL. The relative performance
between different protocols in the simulation matches that in
the GENI experiment, which further proves the correctness of
our analysis and the effectiveness of the proposed PCS.

TABLE IV: Simulation results of the trace-driven experiments.
Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
CACHE 0.830038 64.6417 / 0.00172859 / 191.703 0
SAF 0.837664 62.1525 / 0.00172887 / 190.896 0
PDRS 0.842982 61.0969 / 0.00172652 / 191.279 246454
DCG 0.848559 59.0611 / 0.00172883 / 189.270 14510
PCS 0.868749 50.2859 / 0.00172885 / 188.550 9846
OPTM 0.878677 41.2282 / 0.00172874 / 188.428 0

2) Replication Cost: From Table IV, we find that the
replication costs of different protocols follow PDRS>DCG
>PCS>SAF=OPTM=CACHE=0. This matches the results in
Table III and the reasons are the same.

3) Replica Distribution: Figure 3 shows the CDF of
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to replicas in trace-driven simulation.

the proportion of resource al-
located to replicas of each
file in the six protocols. From
the figure, we find similar
trend as that in Figure 2. That
is, except CACHE, a proto-
col with closer similarity to
OPTM has less average de-
lay. This further proves the
correctness of our theoretical
analysis through trace-driven simulation.

C. Performance With Different Network Sizes

In this test, we examined the performance of PCS and other
protocols when the total number of nodes varied from 20 to
110 with a 10 increase in each step.

1) Hit Rate: Figure 4(a) plots the hit rates of the six
replication protocols. We see the same relationship between
different protocols as found in Table III and Table IV with the
same reasons. Similarly, the reasons are also supported by the
fact that the average delays of the six protocols present reverse
order of the hit rate, as shown in Figure 4(b).

2) Average Delay: Figure 4(b) shows the average query
delays of the six protocols. We observe the same results as
that found in Table III and Table IV. Specifically, at all network
sizes, PCS has 10%-15% less average delay than DCG, PDRS,

SAF and CACHE, and it shows around 15% - 20% higher
average delay than OPTM. CACHE has the largest average
delay. Such results are consistent with aforementioned conclu-
sions because of the same reasons. The results in Figure 4(a)
and Figure 4(b) confirm the validity of our analysis and the
effectiveness of PCS in different network sizes.

More nodes in the network enable a node to have more
neighbors and hence more options to forward queries to the
file holder. It is interesting to see that in the figures, the
hit rate and average delay of each protocol generally remain
stable as the number of nodes increases. This is because nodes
move randomly and independently in the network. So, the
probabilities that a query forwarder meets a file holder are
approximately the same in networks with different sizes.

Figure 4(c) plots the 1st and 99th percentiles of the delays
of the six protocols. We find that the 1st percentiles of delays
of all protocols are all 0.01s. The relationship between the
99th percentiles of the delays of the six protocols is in line
with that of the average delays in Figure 4(b), and that of the
99th percentiles in Table III and Table IV because of the same
reasons explained previously. The result confirms that PCS is
effective in reducing the average querying delay in networks
with different sizes.

3) Replication Cost: Figure 4(d) illustrates the replication
cost of each protocol. The replication costs of SAF, OPTM
and CACHE are not shown since they equal 0. We find that
PDRS generates high replication cost, DCG shows moderate
replication cost, and PCS produces low replication cost. The
result is consistent with those in Table III and Table IV because
of the same reasons. We also observe that the replication
costs of PDRS, DCG and PCS grow as the number of nodes
in the system increases. This is because as the number of
nodes increases, PDRS generates more messages during the
broadcasting process for newly generated files, DCG produces
more exchange messages between group members, and PCS
replicates more files to neighbors.

4) Replica Distribution: Figures 5(a) and 5(b) show the
CDF of the proportion of resource allocated to replicas in each
protocol when the number of nodes is 20 and 110, respectively.
From the figures, we find that all protocols exhibit similar
relationship as Figures 2 and 3. That is, except CACHE, PCS
shows the closest close similarity to OPTM and others follow:
DCG�PDRS�SAF. The results again confirm the correctness
of our theoretical analysis with results from different network
sizes. We find that Figures 5(a) and 5(b) show similar results,
which demonstrates the effectiveness of PCS in different net-
work sizes. Combining above results, we conclude that OFRR
can help shorten the average querying delay and PCS can
realize it effectively in networks with different sizes.

D. Performance With Different Node Mobilities
In this test, we examined the performance of the six proto-

cols when the average movement speed of nodes varied from
1.5 m/s to 9 m/s with 1.5 m/s increase in each step.

1) Hit Rate: Figure 6(a) illustrates the hit rates of the six
replication protocols. We observe the same relationship be-
tween different protocols as those found in Table III, Table IV
and Figure 4(a) with the same reasons. We also find that, for
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Fig. 5: CDF of the resource allocated to replicas with different network sizes.

all protocols, the hit rate is low at slow movement speed and
is satisfactory (i.e., >90%) when the average movement speed
is higher than 7.5 m/s. This is because a node usually needs
long time to encounter requested files when it moves slowly,
leading to more dropped requests due to TTL expiration.

2) Average Delay: Figure 6(b) shows the average querying
delays of the six protocols. We observe that PCS shows the
closest result to OPTM, and it reduces the average delay of
SAF, DCG, PDRS and CACHE by about 10%-15%. Again,
the result is consistent with those in Table III, Table IV and
Figure 4(b) due to the same reasons. The result also shows that
the change of node movement speed does not affect the relative
performance among different protocols. This is because, as
shown in Equation (21), the effectiveness of replication proto-
col with the same network size and node mobility distribution
is only determined by the resource allocation for file replicas.
These results confirm the correctness of the OFRR and the
effectiveness of the PCS with different node mobilities.

We also observe that the average delays of all protocols
decrease as node movement speed increases. When nodes move
faster, the average time needed for two nodes to meet with
each other is shortened, leading to less average delay. The
result implies that the movement speed of a node affects the
number of nodes it can encounter in a unit period and hence
the availability of its files, which justifies the necessity of
considering node meeting ability as resource in file replication.

Figure 6(c) depicts the 1st and 99th percentiles of the

delays of the six replication protocols. Similar to the results
in previous experiments, the 1st percentiles of delays of all
protocols are nearly 0 and the 99th percentiles of the delays
of these protocols present the same relationship as in Table III
and Table IV for the same reasons. When the average speed is
slow (i.e., 1.5 m/s and 3 m/s), the 99th percentiles of the delays
of all protocols equal the TTL (200s) since we use the TTL as
the delay of dropped requests. When nodes move slowly, they
averagely need longer time to encounter requested files.

3) Replication Cost: From Figure 6(d), we find that PRDS
presents the highest replication cost, DCG has moderate repli-
cation cost, and PCS generates low replication cost. We did not
plot the replication costs of other protocols in the figure since
the results are almost 0. The relationship of the six protocols on
replication cost remains the same as those in Table III, Table IV
and Figure 4(d) because of the same reasons. We also find that
the replication costs of PRDS, PCS and DCG remain stable as
the node movement speed increases. The replication costs of
DCG and PRDS are only decided by the number of nodes in the
system, since the former exchanges information between group
members for replication and the latter broadcasts messages
through the network for newly created files. For PCS, the
number of replica distribution attempts is unrelated to node
mobility. So their replication costs remain stable when the node
movement speed increases.

4) Replica Distribution: Figures 7(a) and 7(b) show the
CDF of the proportion of resource allocated to replicas of
each file in each protocol when the average movement speed
of nodes is 1.5 m/s and 9 m/s, respectively. We find that
all protocols generate similar results as those in Figures 5(a)
and 5(b) because of the same reasons. The results again verify
the correctness of our theoretical analysis and the effectiveness
of PCS in following OFRR in various node mobilities.

E. Performance With Different Storage Sizes

We also tested the performance of different replication
protocols when the storage space for replicas in each node



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 70 140 210 280 350 420 490 560

CD
F o

f t
he

 p
ro

po
rti

on
 o

f r
ep

lic
as

 

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS

PCS

DCG

OPTM

PDRS

SAF

CACHE

(a) Average speed = 1.5 m/s.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 70 140 210 280 350 420 490 560

CD
F o

f t
he

 p
ro

po
rti

on
 o

f r
ep

lic
as

 

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS

PCS

DCG

OPTM

PDRS
SAF

CACHE

(b) Average speed = 9 m/s.
Fig. 7: CDF of the resource allocated to replicas with different node mobilities.
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Fig. 8: Performance with different storage sizes with real trace mobility.

ranges from 20 to 110 with 10 increase in each step on the NS-
2 simulator. Figure 8 and Figure 9 show the hit rate and average
delay of the six protocols in the real trace and synthesized
node mobility, respectively. We see that they show the same
relationship on their performances with the real trace mobility
and with the synthesized mobility. Specifically, as the storage
size increases, the hit rates of all protocols increase and their
average delays decrease. This is because the number of replicas
of each file increases when there is more storage space in the
system, leading to higher hit rate and lower average delay.
We also find that the performance relationship between the
six protocols on the two metrics matches those in Table III
and Table IV due to the same reasons. Such results confirm
the correctness of OFRR and the effectiveness of PCS with
different degrees of storage resource constraint.

VI. CONCLUSION

In this paper, we investigated the problem of how to allocate
limited resource in file replication for global file searching
efficiency optimization in MANETs. We first theoretically
analyzed the influence of replica distribution on the average
querying delay under constrained available resource, and
derived an optimal replication rule to allocate the limited
resource to file replicas in order to minimize the average
querying delay. Unlike previous protocols that only consider
storage space as resource, we also consider file holder’s
ability to meet nodes as available resource since it also affects
the average querying delay. This new concept enhances the
correctness of the deduced rule and the effectiveness of the
accordingly developed protocol. Finally, we designed the
Priority Competition and Split replication protocol (PCS)
that realizes the proposed optimal replication rule in a fully
distributed manner. Experiments on both real-world GENI
testbed and NS-2 with real trace and synthesized mobility
confirm both the correctness of our theoretical analysis and
the effectiveness of PCS. In our future work, we will study the
effect of PCS in a MANET with other node movement models.
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Fig. 9: Performance with different storage sizes with synthesized mobility.
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