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Abstract—Current P2P file sharing methods in mobile ad hoc
networks (MANETs) can be classified into three groups: flooding-
based, advertisement-based and social contact-based. The first
two groups of methods can easily generate high overhead and
low scalability, and the third group fails to consider the social
interests (content) of mobile nodes, which otherwise can improve
file searching efficiency. In this paper, we propose a P2P content-
based file sharing system for MANETs. The system uses an
interest extraction algorithm to derive a node’s interests from
its files for complex queries. For efficient file searching, it groups
common-interest nodes that frequently meet with each other
as communities. Further, it takes advantage of node mobility
by designating stable nodes, which has frequent contact with
community members, as community coordinators for intra-
community searching, and highly-mobile nodes as community
ambassadors for inter-community searching. An interest-oriented
file searching scheme further enhances the file searching success
rate. We first deployed our system on the real-world GENI Orbit
testbed with a real trace and then conducted experiment on the
ns2 simulator with both real trace and simulated disconnected
and connected MANET scenario. The test results show that our
system significantly lowers transmission cost and improves file
searching success rate compared to current methods.

Index Terms—MANETs, P2P, File sharing, Social Network.

I. INTRODUCTION

In the past few years, more and more people have begun
to use personal mobile devices such as laptops, PDAs and
smart phones (e.g., iPhone, BlackBerry and Android phones).
Indeed, the number of smart-phone users is expected to reach
around 300 million by 2013 [1]. The incredibly rapid growth
of mobile users is leading to a promising future in which
they can freely share files between each other whenever and
wherever. Currently, mobile users interact with each other
and share files via an infrastructure formed by geographically
distributed base stations. The number of mobile searching
users in infrastructure-based wireless data sharing is estimated
to reach 901.1 million in 2013 from 266.0 million in 2006 [2].
However, the infrastructure based server-client model has
difficulty in dealing with the challenges posed by the daily
increase of user number. Many users accessing one base station
leads to traffic congestion and delayed response. Also, users
may find themselves in an area without wireless service (e.g.,
mountain areas) or under emergency situations like disaster
and wars. The infrastructure-based model becomes a major

impediment to the vision of large-scale and pervasive mobile
file sharing.

The P2P file sharing model makes large-scale networks a
blessing instead of a curse, in which nodes share files directly
with each other without relying on a centralized server. Wired
P2P file sharing systems (e.g., BitTorrent [3] and Kazaa [4])
have already become a popular and successful paradigm for
file sharing among millions of users. Recent survey shows that
more than 50% of the files downloaded and 80% files uploaded
on the Internet are through P2P networks [5]. The successful
deployment of P2P file sharing systems and the impediments
to file sharing in large-scale MANETs make the P2P file
sharing over MANETs (P2P MANETs in short) an inevitable
developing trend for the promising vision of pervasive file
sharing for mobile users.

Traditional methods supporting P2P MANETs are either
flooding-based [6]–[9] or advertisement-based [10]–[12]. The
former relies on flooding for file searching. However, it
generates high overhead due to a tremendously high volume of
transmitted messages, and local broadcasting cannot guarantee
file discovery. In the latter methods, nodes advertise their avail-
able files, build content tables from received advertisements,
and forward file requests to the nodes with high probability
of possessing the files. However, they cannot guarantee file
discovery because of possible expired routes in the content
tables caused by transient network connections.

Recently, social network has been exploited to facilitate
routing or content publishing in MANETs and Delay Tolerant
Networks (DTNs) [13]–[19]. The social network possesses a
property (P1) that nodes (i.e., people) usually exhibit certain
movement patterns (e.g., local gathering, diverse centralities
and skewed visiting preferences). These methods take advan-
tage of this property to improve the efficiency of message
forwarding. However, these methods only consider end-to-end
forwarding but fail to take into account other properties of
social networks to facilitate content sharing. Recent studies
on social networks revealed that:
• (P2) Users usually have a few file interests that they visit

frequently [20] and a user’s file visit pattern follows a
power-law distribution [21].

• (P3) Users with common interests tend to meet with each
other more often than with other users [22].



By leveraging these properties of social networks, we pro-
pose Social network based P2P cOntent file sharing in mObile
ad-hoc Networks (SPOON) with four components as shown
in Figure 1.

(1) Based on P2, we propose an interest extraction algorithm
to derive a node’s interests from its files. The node interest
facilitates queries in content-based file sharing. It is also
required by other components of SPOON.

(2) We refer to a collective of nodes that share common
interests and frequently meet each other as a community.
According to P3, a node has high probability to find its
interested files in its community. If it fails, according to
P1, the node can rely on nodes frequently travel to other
communities for file searching. Thus, we propose the
community construction algorithm. It builds communities
to enable users to efficiently retrieve files using intra- and
inter-community communication.

(3) According to P1, we propose node role assignment
algorithm, which takes advantage of node mobility for
efficient file searching. The algorithm designates a stable
node that tightly connects others in its community as the
community coordinator, which guides intra-community
searching. For each foreign community, a node that
frequently travels to it is designated as the community
ambassador for inter-community searching.

(4) We propose an interest-oriented file searching and re-
trieval scheme which includes an interest-oriented routing
algorithm (IRA) and utilizes above components. Based
on P3, IRA makes forwarding decision by considering
the probability of meeting interest keywords rather than
nodes. The searching scheme has two phases: intra- and
inter-community. In the intra-community search, a node
first queries nearby nodes, then relies on coordinator to
search the entire home community. If it fails, the inter-
community searching is executed, in which the ambas-
sador matched to the query sends the query to a foreign
community. When a file is found, it is sent back through
either the search path or IRA.

SPOON is novel in that it leverages social network prop-
erties of both node interest and movement pattern. First, it
classifies common-interest and frequently-encountered nodes
into social communities. Second, it considers the frequency a
node meets different interests rather than different nodes in
routing for enhanced searching success rate. Third, it chooses
the highly mobile nodes that travel frequently to foreign
communities as ambassadors, so that a query can be directly
forwarded to the community of the queried file. Consequently,
SPOON achieves high efficiency in file searching.

The rest of the paper is arranged as follows. Section 2 pro-
vides an overview of the related works. Section 3 presents the
design of the components of the SPOON system. In Section 4,
the performance of SPOON is evaluated in comparison with
other systems through simulations. The last section presents
concluding remarks and future work.

Interest 
Extraction

Exploiting Node 
Stability/Mobility

Community    
Construction

Interest 
Oriented Routing 

Social network based P2P cOntent-based file sharing in mobile ad hOc Networks (SPOON)

Fig. 1. Components of SPOON.

II. RELATED WORK

A. Flooding-based Searching Methods

In the flooding-based methods, 7DS [6] is one of the first
approaches to port P2P technology to mobile environments.
It exploits the mobility of nodes within a geographic area to
disseminate web content among neighbors. Passive Distributed
Indexing (PDI) [8] is a general-purpose distributed search
service. It uses local broadcasting for content searching and
sets up content indexes on nodes along the reply path to guide
subsequent searching. Klemm et al. [7] proposed a special-
purpose on-demand searching and file transferring algorithm
based on an application layer overlay network, which trans-
parently aggregate query results from other peers to eliminate
redundant routing paths. Anna Hayes et al. [9] extended the
Gnutella system to mobile environments and proposed the use
of a set of keywords to represent user interests. However,
these flooding-based methods produce high overhead due to a
high volume of traffic. Also, local broadcasting used in some
methods cannot guarantee file searching success.

B. Advertisement-based Searching Methods

Tchakarov and Vaidya [10] proposed the Geography-based
Content Location Protocol (GCLP) for efficient content dis-
covery in location-aware ad hoc networks. It disseminates
contents and requests in crossed directions to ensure their
encountering. P2PSI [11] is a hybrid file sharing system that
comprises both advertisement (push) and discovery (pull) pro-
cesses. Each file holder regularly broadcasts an advertisement
message to inform surrounding nodes about its shared files.
The discovery process locates the desired file, and leaves
pheromone to help subsequent search requests. Repantis and
Kalogeraki [12] proposed a file sharing mechanism in which
nodes use the Bloom filter to build content synopses of their
data and adaptively disseminate them to other nodes to guide
queries. Though the advertisement-based methods reduce the
overhead of flooding-based methods, they still generate high
overhead for advertising. Also, the methods cannot guarantee
the success of file searches, especially when the routes expire
due to node mobility.

C. Social Network-based Routing and Sub/Pub Services

Recently, social networks have been utilized in routing or
content publishing algorithms in MANETs or DTNs. Since
the node movement in a social network usually follows a
certain pattern, social network based routing algorithms [13]–
[17] consider node contact frequency, predict future contact
possibility, and choose the node with the highest possibility
of successfully delivering a packet as the next forwarder in
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routing. However, these algorithms cannot be directly used
for content-based file searching since the destinations are
unknown in this service.

Considering the long-term neighboring relationship between
nodes in a social network, MOPS [18] provides content-based
sub/pub service. It groups nodes with frequent contacts and
selects nodes that connect nodes from different groups as
brokers, which is responsible for inter-community commu-
nication. SocialCast [23] publish contents to subscribers by
calculating the utility of a node for each interest based on
its mobility and co-location records. However, the interest
in SocialCast is only an indication of a destination. Con-
tentPlace [19] defines social relationship based communities
and a set of content caching policies. Specifically, each node
calculates a utility value for each encountered object regarding
its connected communities and caches these objects in a
highest utility value first manner. However, the three methods
only leverage the contact property of social networks, but fail
to consider the interest property in social network for further
performance improvement. Purely considering contact for con-
tent searching/publishing may lead to low efficiency due to
frequent inter-community communications. SPOON is novel
in that it leverages both properties as described previously.

III. THE DESIGN OF SPOON

A. Interest Extraction

It was found that users usually have a few file interests that
they visit frequently in a file sharing system. Specifically, for
the majority of users, 80% of their shared files fall into only
20% of total file categories [20]. Thus, SPOON derives the
interests of a node from its files.

To derive its interests, a node infers keywords from each
of its files using the document clustering technique [24].
If a group of keywords appear frequently in a number of
files, these files belong to a category, which can be used
to indicate the node’s interest. Specifically, a node derives
a file vector from the metadata of each of its files, denoted
by vF = (t0, wt0 ; t1, wt1 ; t2, wt2 ; ...; tm, wtm). In previous
equation, ti and wi (0 ≤ i ≤ m) denote a keyword and
its weight that represents the importance of the keyword in
describing the file. We adopt the method in the text retrieval
literature [25] to calculate the weight of a keyword in file F
using the following formula.

wt = 1 + log(nt), (1)

where nt refers to the number of occurrences of keyword t.
In order to make the keyword weights comparable, we further
normalize the weights by:

wt = wt/
∑

m
i=0wti . (2)

To calculate the similarity of two arbitrary
vectors, say v1 = (t0, w1t0

; t1, w1t1
; t3, w1t3

) and
v2 = (t0, w2t0

; t2, w2t2
; t4, w2t4

), we first generate the
common vector for each vector. It consists of their common
keywords and corresponding weights in their own vectors.
For example, the common vector of v1 and v2 is (t0, w1t0

)

for v1 and (t0, w2t0
) for v2. We then use the following

formula to calculate the similarity between v1 and v2:

sim(v1, v2) =
∑m′

i=1 w1i
× w2i

m′
, (3)

where m′ is the total number of common keywords and w1i

and w2i
represent the weights of the ith common keyword in

two common vectors, respectively.
After retrieving the file vector vF for each of its files, a

node classifies its files to derive its interest groups. It creates
a file similarity matrix A = sim(vi, vj) (1≤i & j≤m̃), where
m̃ is the number of files the node has. The matrix stores the
similarity value of each pair of files. We pre-define a threshold
of the similarity denoted by Ts. If sim(vi, vj) > Ts, file i
and file j are classified into the same interest group. A node
scans the matrix to classify all files into groups. We allow
partial similarity transitivity in the interest group extraction
process that once a file satisfies the similarity threshold with
at least half of files in a group, it is granted the membership
of the group. Each group has a number of files denoted by
(v1, v2, . . . , vg). The node calculates the average weight for
each keyword in the vectors w̄ti =

∑g
j=1 w

vj

ti /g, where wvj

ti
denotes the wti in vj . We also pre-define a threshold for
the average weight, denoted by Tw̄. We use the keywords
whose w̄ti > Tw̄ and their w̄ti to represent the interest group,
represented by group vector:

vG = (t0, w̄t0 ; t1, w̄t1 ; t2, w̄t2 ; ...; tn′ , w̄tn′ ). (4)

Thus, each node has a number of group vectors to represent
its interests. The weight of each interest group W (G) equals
the portion of files that belong to it. We then generate a node
vector (vN ) to describe a node’s interest. The keywords of vN
is the keyword union of its group vectors and the weight of
each keyword t is the sum of products of its weight w̄t in each
vG it belongs to and the weight of the interest group W (G).
That is, the keyword list in vN is t(G1)∪t(G2)∪· · ·∪t(Gn′),
where t(G) means the keyword list in interest group G. The
weight for term t in the node vector is wt =

∑n′

i=1 w̄t(Gi) ∗
WGi

, where WGi
is the weight of Gi and w̄t(Gi) is the weight

of keyword t in Gi. If keyword t does not belong to interest
group vGi , w̄t(Gi) = 0.

B. Community Construction

Social network theory reveals that people with the same
interest tend to gather and communicate with each other more
frequently [22]. For example, people working in the ECE
department of our university have more chances to encounter
each other since they have similar interest in the area of ECE.
By exploiting this social network property, SPOON classifies
nodes with common interests and high contact frequencies
into a community. Distant visitors with similar interests but
few contacts are excluded from the community. Nodes having
multiple interests belong to multiple communities. Common-
interest nodes in a community share high similarity in indi-
vidual’s one or more interest groups.
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Fig. 2. File searching in SPOON.

When two nodes, N1 and N2, meet with each other, if
they are not the members of any community, they calcu-
late the similarity between each pair of their group vectors
sim(vGi

(N1), vGj
(N2)) using Formula (3). A pair of group

vectors, say vGi(N1) and vGj (N2), is called matched interest
group when WGi ∗ WGj ∗ sim(vGi(N1), vGj (N2)) > TG,
where TG is a predefined threshold. The purpose of taking
into account the weight of each interest group is to eliminate
the noise of small interest groups and achieve better interest
clustering. If N1 and N2 have at least one pair of matched
interest groups, and their contact frequency, F (N1, N2), ex-
ceeds a predefined threshold Te, the two nodes form a new
community. The keywords in their matched interest groups
and corresponding weights constitute the community vector
(vC) of the community. vC represents the common interests
of the community members.

If one of the two encountering nodes, say N2, is already
a member of community C, N1 calculates sim(vGi

(N1), vC)
to decide if it should join in the community C. If at least
one similarity value is larger than TG, the contact frequency
of the node with the community nodes is calculated by:∑
jεC F (Ni, Nj). If it exceeds threshold Te, N1 is granted the

membership to the community. This means that the frequency
of node Ni contacting other members in community C is
larger than a threshold. N1 then copies the community vector
and the community coordinator’s information from N2. In a
community, when a member meets its community coordinator,
it reports its new files generated after last report to the
coordinator, which then records the files in its file index.
Figure 2 shows an example of two communities.

Note that at the initial stage, each node only needs to keep
track of contacts with nodes sharing similar interests, rather
than all nodes. This relieves the burden on system during the
community construction process. The values of the thresholds
used in the interest extraction and the community construction
process (e.g., Ts, TG and Te) should be determined by many
factors such as number of nodes, number of interests and
applications. We use empirical values in our experiments and
leave the determination of these values to future work.

C. Node Role Assignment

A previous study has shown that in a social network consist-
ing of mobile users, a small portion of nodes may have a large
degree while most nodes have a small degree [23]. We can

often find an important or popular figure who coordinates the
communication between unfamiliar people or closely connects
to members in a community in our daily life. For example, the
college dean connects different departments in the college,
and the department head connects different members in the
department. Thus, we take advantage of different types of node
mobility/ability in file sharing.

We define community coordinator and ambassador nodes
in the view of a social network. A community coordinator
is a relatively stable node with frequent connections to other
members in its community. It keeps an index of all files in its
community and maintains a stack of file queries that should
be forwarded to other communities. It also maintains the vC
of foreign communities and corresponding ambassadors in
order to map queries to ambassadors. A community has one
ambassador for each foreign community. An ambassador for
a foreign community is a highly mobile node that serves as
the bridge between its community coordinator and members in
the foreign community. It handles inter-community communi-
cation by receiving requests from its community coordinator
and forwarding them to the foreign community.

In order to realize good system scalability and reliability,
the number of ambassadors and coordinators can be adaptively
adjusted based on the network size. In this paper, we use a
single ambassador for each foreign community and a single
coordinator in each community as an example.

1) Community Coordinator Node Selection: We define a
stable node as the community coordinator which has high
contact frequency with community members. It meets com-
munity members frequently and holds the most important
role in the community. Thus, the criterion we use to select
the communicator coordinator is the tightness of a node’s
relationship with other members.

We adopt the improved degree centrality [14], which adds
weight on each link, for coordinator selection since it reflects
the tightness of a node with other community members. When
calculating the degree centrality in a MANET, a weight value
is assigned for each edge linking two nodes based on the
contact frequency. In the initial phase of coordinator discovery,
each node, say node i, in a community collects contact
information from its community neighbors and then calculates
its degree centrality by:

D(pi) =
N∑
j=1

wij , (5)

where wij is the weight between node i and node j. In
order to reflect the property that the coordinator has the most
connections with all community members, wij equals 1 if
the contact frequency between node i and node j is larger
than a threshold and 0 otherwise. Then, nodes exchange the
calculated degree centrality scores and select the community
coordinator that has the highest value.

2) Community Ambassador Node Selection: We use ego-
centric centrality [26] for the ambassador selection since it
reflects a node’s ability to bridge nodes from two communities:
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C(pi) =
N∑
j=1

M∑
k=1

wji ∗ wik ∗ gjk(pi)
gjk

, (6)

where gjk is the count of all geodesic paths linking nodes
pj and pk, and gjk(pi) is the number of those geodesic paths
that involve node pi. Node j is from the same community with
node i, and node k is from another community. The weights
wji and wik are the encountering frequencies between nodes
j and i, and between nodes i and k, respectively.

A mobile node’s egocentric network for the ambassador
selection consists of nodes from both its home community and
foreign communities. When nodes meet with each other, they
exchange information needed for the centrality calculation.
Each mobile node calculates its centrality score using For-
mula (6) and reports it to the coordinator in its home commu-
nity, along with the community vectors of foreign communities
that it frequently travels to. Then, the community coordinator
chooses one ambassador for each foreign community (i.e.,
interest). If the ambassadors for some foreign communities do
not exist, we select the node with the most inter-community
connections by default.

An ambassador of a foreign community is responsible for
the inter-community communication between the home com-
munity and the foreign community. They can carry requests
targeting foreign communities out of current community and
seek for potential forwarders outside. This arrangement facili-
tates interest-oriented file searching by enabling a coordinator
to send a file request to the mapped foreign community
quickly. We can also take into account other factors in am-
bassador selection, such as storage capacity and power.

D. Interest-oriented File Searching and Retrieval

In social networks, people usually have a few file inter-
ests [20] and their file visit pattern generally follows a certain
distribution [21]. Also, people with the same interest tend to
contact each other frequently [22]. Thus, interests can be a
good guidance when routing requests to file holders.

Accordingly, the interest-oriented file searching scheme has
two steps: intra-community and inter-community searching. A
request first searches its home community. If that fails, inter-
community searching is initiated to search files in foreign
communities. During the search, a node sends a message
to another node using the interest-oriented routing algorithm
(IRA), in which a message is always forwarded to the node
which is likely to hold or to meet the queried keywords.
The retrieved file is routed along the search path or through
IRA if the route expires. This is because though the search
path may expire, it provides a good guidance on the path
back to the file requester. If a coordinator finds that its
community cannot satisfy the received request, it launches the
inter-community searching and looks up its ambassadors for
forwarding opportunity. A request is deleted when its TTL
(Time To Live) expires.

1) Interest-oriented Routing Algorithm: In SPOON, every
node maintains a history vector that records its frequency of
encountering interest keywords. The history vector is in the
form of vH = (t0, wh0; t1, wh1; t2, wh2; ...; tn, whn), where
whi is the aggregated times of encountering keyword ti. whi
decays periodically as time passes by whi = γwhi(γ < 1).
When two nodes meet, they exchange their node vectors and
update history vectors. The history vector is used to evaluate
the probability that the node meets the queried content.

The destination is represented by a vector (vdest) repre-
sented by: vdest = (t0, w0; t1, w1; t2, w2; ...; tn, wn). In the
interest-oriented routing algorithm (IRA), a node uses the
fitness score F to evaluate its neighbors’ probabilities to be
or to meet the file holder. The fitness F of neighbor i is
measured as F = αsim(vdest, vNi)+(1−α)sim(vdest, vHi),
where vNi and vHi are the node vector and history vector
of node i, respectively. The factor of sim(vdest, vNi) aims
to find the node sharing the most similar interests with the
destination, and the factor of sim(vdest, vHi) aims to find a
node that is very likely to meet the destination in its movement.
α is used to control the weight of these two factors. In IRA,
when a node receives a message, if its neighbor with the
highest F has higher F than itself, it forwards the message to
the neighbor. This process repeats until the message arrives
at the destination. Note that coordinators do not use IRA
but send messages to its community members when meeting
them because a coordinator has tight connections with all
community members.

2) Intra-Community File Searching and Retrieval: The
query message is represented by a query vector (vQ) repre-
sented as: vQ = (t0, w0; t1, w1; t2, w2; ...; tn, wn). Since the
query is initiated by users, the weights of terms in vQ are
constant values. In the intra-community searching, the desti-
nation that a query is sent to is represented by a combination
of the vQ and the node vector of the requester’s community
coordinator (vNC

), represented by:

vdest = λvQ + (1− λ)vNC
, (7)

λ equals 1 when the remaining hop counter (count) is larger
than 0 and 0 otherwise. This means that a requester first
searches nearby nodes within count hops, and then resorts
to its community coordinator. The hop counter of a query is
decreased by one after each forwarding. If the file is not found
when count = 0, it is forwarded to the community coordinator
(vdest = vNC

).
When node Nj receives a request, if vdest = vQ and

sim(vdest, vNj
) reaches the similarity threshold specified by

the requester, it tries to send the satisfied files, if exist, back
to the requester along the original path. If a forwarder is not
available due to node mobility, IRA is used to forward the
file. If vdest = vQ but sim(vdest, vNj

) does not reach the
specified similarity, Nj uses IRA to further forward the query.
If vdest = vNc

and Nj is not the coordinator Nc, Nj uses IRA
to forward the request to Nc. After Nc receives the query, it
checks its file index for the queried file in the community. If
the index has files satisfying the request, the coordinator sends

5



the request to the file holder when meeting it, which sends the
file back to the requester using IRA. Otherwise, Nc initiates
the inter-community file searching.

3) Inter-Community File Searching and Retrieval: In the
inter-community searching algorithm, a coordinator maps a
request to foreign communities whose vc has the highest
sim(vQ, vC). It then asks the ambassador to forward the
request to the corresponding foreign community. The ambas-
sador uses IRA to send the request to the coordinator in the
foreign community.

Upon receiving the request, the coordinator in the foreign
community checks its file index to see if its community has
the file. If the file isn’t held by any node, the coordinator
repeats the inter-community file searching by looking up its
ambassadors to check for further forwarding opportunities.
If the file is found, the community coordinator asks for the
file from the file holder when meeting it and sends the file
back to the requester’s community through the corresponding
ambassador. The coordinator of the requester’s community will
further forward the file to the requester.

Figure 2 depicts the process of file searching, in which a
requester (node R) in community C1 generates a file request.
Since its neighbors within count hops don’t have the file, the
request is then forwarded to the community coordinator NC1.
NC1 checks the community file index but still can’t find the
file. It then asks the community ambassador NA1 to forward
the request to the foreign community matching the queried
file. Community coordinator NC2 finds the file and sends it
back to the requester’s community via ambassador NA2. The
file is first sent to NC1, and then forwarded to the requester.

IV. PERFORMANCE EVALUATION

We first deployed the systems on the real-world GENI
Orbit testbed [27], [28]. We used the real trace from the
MIT Reality project [29], in which 94 smart phones were
deployed among students and staff at MIT, to drive node
encountering in the test. In GENI, nodes are equipped with
wireless cards and communicate with each other through
the wireless interface. A node can only communicate with
others within its communication range through the wireless
connection. We then conducted experiments on NS-2 [30]
using the converted one-day trace data since the whole trace
is too long for simulation. We also used a community based
mobility model [31] to further evaluate the system in both
connected and disconnected MANET environment in order to
see the applicability of SPOON in different networks.

We evaluated the performance of SPOON in comparison
with MOPS [18], PDI+DIS [8], [12] and Epidemic [32].
MOPS is a social network based content service system. It
forms nodes with frequent contacts into a community, and
selects the nodes with frequent contacts with other commu-
nities as brokers for inter-community communication. PDI
provides distributed search service through local broadcasting
(3 hop), and builds content tables in nodes along the response
path. We complemented PDI with the advertisement-based
DISsemination method [12], in which each node disseminates

its contents to its neighbors, and call the combined method
PDI+DIS. In Epidemic, when two nodes meet each other,
they exchange messages that they haven’t seen. We use the
following metrics in the experiments:
(1) Hit rate: the percent of requests that are successfully

delivered to the file holders. This metric reflects the
capability of a method to discover the requested files.

(2) Average delay: the average delay time of the successfully
delivered requests. This metric reflects the efficiency of
a method to discover the requested files.

(3) Maintenance cost: the total number of all messages
except the requests, which are for routing information
establishment and update (i.e., node content exchange
in all the four methods, request exchange in Epidemic
and routing table establishment in PDI+DIS). This metric
represents the cost for supporting file searching.

(4) Total cost: the total number of messages that have been
generated during a test. This metric reflects the overall
cost of a method in the discovery of requested files.

A. Performance in the GENI Experiment

1) GENI Experiment Parameters: We set the first 0.3
million seconds as the initialization period, in which each
node builds and updates its neighbor table. In the following
1 million seconds, 1 node is randomly picked to generate a
query every 100 seconds. Since the total length of the trace
is about 2.56 million seconds, the TTL (Time to live) of each
query was set to 1.2 million seconds. Also, considering that
people usually generate queries according to their interests,
we set 70% of total queries as intra-queries, which search for
files located in the same community with the query originator.
As the work of MOPS, we used 40% of the data set to detect
communities and identified 7 communities in total. For node
contents, we collected articles from 7 news categories (e.g.,
sports, entertainment and technology) from CNN.com and
mapped them to 7 communities. Each node has 20 articles. We
assume one node has one interest. For each node, we generated
its group vector with around 40 keywords. A query aims for
an article randomly selected from the collected article pool.
To be practical, each node can store at most 2000 queries.

TABLE I
EFFICIENCY AND COST IN THE EXPERIMENTS ON GENI

Method Hit Rate Average Delay (s) Maintenance Cost Total Cost
SPOON 0.665 155356.9 251954 271981
MOPS 0.625 161070.0 311302 328266
PDI+DIS 0.508 7562.5 301918 361506
Epidemic 0.8745 15230.1 676685 867939

TABLE II
MEMORY USAGE IN THE EXPERIMENTS ON GENI

Metric SPOON MOPS PDI+DIS Epidemic
Ave. num. of queries in buffer 37.5 43.5 12.3 1998.6
Ave. size of a neighbor table 9.9 17.5 15.7 0

2) GENI Experiment Results: Table I shows the results of
the GENI experiments of the four methods. From the table,
we find that Epidemic generates the highest hit rate with the
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highest total cost and a low average delay. This is resulted
from the dissemination nature of Epidemic.

SPOON produces the second highest hit rate at the lowest
total cost and relatively high average delay. This is because
SPOON utilizes both contact and content properties of social
network to guide the request in file searching and only keeps
one copy of each request. Therefore, it can successfully
locate queried files without the need of much information
exchange and many request messages, though at a relatively
slow speed. SPOON is superior over MOPS in terms of hit
rate, delay and cost. This is because SPOON utilizes IRA
for intra-communication and dedicated ambassadors for inter-
communication while MOPS relies heavily on brokers. Also,
MOPS only considers node contact in routing, while SPOON
considers both content and contact. We will elaborate the
explanation in describing the simulation results later on.

PDI+DIS generates the lowest hit rate at relatively high total
cost and low average delay. The low hit rate is caused by the
poor mobility resilient of the route table. As a result, only
partial queries are resolved quickly in the local broadcasting
while others passively wait for the file holders or updated
routes and usually cannot be resolved in time. This means that
most successful queries are resolved by the local broadcasting.
Then, since we only count the average delay of successful
queries, PDI+DIS has the lowest average delay.

We also evaluated the performance of the four methods in
memory utilization in terms of the average number of queries
in the buffer and the average size of the content table. The re-
sults are shown in Table II. For the average number of buffered
queries, we find that PDI+DIS<SPOON<MOPS<Epidemic.
Nodes in Epidemic buffer the most queries since Epidemic
tries to replicate each request to all nodes in the system. Both
SPOON and MOPS keep one copy of each request during
the searching process. However, since SPOON completes file
query more quickly than MOPS, as shown in Table I, it buffers
fewer quires in memory than MOPS. For PDI+DIS, it stores
the fewest number of queries in memory because of the local
broadcasting, which just forward the query without buffering.

Considering each entry in the content table has roughly
the same size as it records the content of one node, we used
the number of entries in a table to represent its size. Except
Epidemic, all other three methods need to build content tables
for file searching. SPOON needs content synopses for both
intra- and inter- community searching. MOPS needs that to
guide query forwarding between brokers. PDI+DIS uses that
to construct routing table and guide file searching. The results
are illustrated in the second row of Table II, in which we find
that Epidemic<SPOON<MOPS<PDI+DIS. SPOON stores
the fewest content synopses because most nodes only store the
information of the same community members. Though ambas-
sadors store community vectors of corresponding communities
and coordinators store node vectors of community members,
the size of these vectors usually is limited and would not
increase the memory usage significantly. In MOPS, brokers
exchange content synopses of all nodes in their communities
upon meeting with each other and usually consume a large

amount of memory. Therefore, MOPS produces the largest
average number of stored content synopses, though some
nodes just store the content synopses of the same commu-
nity members. PDI+DIS stores the most amount of content
synopses because each node collects content synopses from all
nodes it has met and all received reply messages. In summary,
the results in Table I and Table II show that SPOON is superior
over other three methods in terms of hit rate, average delay,
total cost and memory-efficiency.

TABLE III
SIMULATION PARAMETER IN TESTS WITH REAL TRACE AND SYNTHESIZED

NODE MOBILITY.
Node mobility Real trace Synthesized
Environment Parameters
Simulation area 2.5km× 2.5km 4km× 4km
Simulation length 54000s 15000s
Community number 7 10
Node Parameters
Node number 45 100
Communication range 250m 250m
Node speed − 1m/s− 6m/s
Number of terms 40 40
Query Parameters
Query rate 8/s 15/s
Intra-query percentage 50% 70%
Query period 2000s 900s

B. Performance in the Trace-driven Simulation

1) Experiment Settings and Parameters: We also conducted
trace-driven simulation using one day records of connections
with cellular towers in the MIT Reality Mining project [29]
trace data in ns-2. Since the physical location of each tower
was not provided due to privacy reasons, it poses a challenge to
infer node mobility as required by the ns-2. We used a 2.5km×
2.5km square which approximately covers the entire test area.
We split the area into many small squares and placed towers
in the center of the small squares in increasing order of their
IDs. This setting of node movement is reasonable because it
enables nodes, that connect to the same or nearby towers at
approximately the same time, to have a high probability to be
within the communication range of each other.

We adopted the same community structure and node content
distribution as the experiment in GENI. We used 2000s for
initialization and the next 2000s for querying activity. We
purposely enlarge the TTL of each query to 50000s in order
better observe the performance of different methods. We
measured the experiment metric once every 100s for 5×104s.
Table III shows a summary of default parameters in this test.

2) Hit Rate: Figure 3(a) shows the hit rates over time in
different methods. We find that Epidemic can resolve almost
all requests while PDI+DIS can only complete about 70% of
requests. The hit rates of SPOON and MOPS finally reach
about 95% and 90%, respectively. Epidemic has the highest hit
rate because a node copies its stored requests to all met nodes,
which will be eventually resolved. SPOON achieves higher hit
rate than MOPS. In SPOON, coordinators who always reside
in their home communities are responsible for contacting with
ambassadors from its own or other communities. Also, the
ambassador chosen for forwarding a query is the one with
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Fig. 3. Performance in the real trace driven experiments.

frequent communication with the destination community. In
addition, a query is always actively forwarded to the node
which has a high probability of meeting the destination by
the interest-oriented routing. Thus, the request forwarder has
high probability of meeting the coordinator in the destination
community in file searching. MOPS only relies on the encoun-
tering of mobile brokers for file searching. This probability is
lower than that of SPOON, resulting in lower hit rate.

In PDI+DIS, many routes in a content table expire quickly
because of node mobility. As a result, most successful requests
are those that request files located within 3 hops or reachable
through routes. Without updated routes, requests for remote
content (i.e., more than 3 hops away) have to passively stay
in the buffer until meeting the file holders or next-hop nodes
in the routes. Therefore, many requests cannot be resolved in
the test, leading to a low hit rate.

We also notice that Epidemic, SPOON and MOPS exhibit
a sharp rise in hit rate initially and then remain stable, while
PDI+DIS remain nearly constant. In the former three methods,
requests that can be resolved by nearby nodes contribute to
the sudden increase of the hit rates. Requests that cannot be
resolved immediately gradually arrive at file holders, causing
slow increase of hit rates even after the querying activity stops.
In PDI+DIS, after 3-hop broadcasting, buffered requests pas-
sively wait for file holders or routes to file holders, generating
much fewer successful searches.

3) Average Delay: Figure 3(b) illustrates the average delay
over time of the four methods. From the figure, we find
that the delay follows PDI+DIS<Epidemic<SPOON<MOPS.
Also, the average delay of SPOON and MOPS exhibit a
sharp increase at the time around 32200s. Recall that we
only measure the delay of successful requests. In PDI+DIS,
most successful requests are resolved in the initial 3-hop
broadcasting stage. Therefore, it generates the least average
delay. In Epidemic, requests are rapidly distributed to more
and more nodes at the cost of multiple copies. As a result, a
request can reach its destination after a short waiting time.

MOPS exhibits large delay because requests in it usually
have to wait for a long time for brokers or intra-community
file holders. In contract, SPOON always tries to find an
optimal neighbor to send a request to the file holder with the
interest-oriented routing algorithm. In addition, the design of
coordinator also increases the possibility of relaying requests
to the destination community. From Figure 3(a), we see that

starting at the time of 32200s, MOPS’s hit rate gradually
increases from 0.8 to 0.9 until 42200s, and SPOON’s hit rate
increases from 0.9 to 0.94 quickly. This phenomenon implies
that after the staying in the buffer for 32200s in MOPS and
SPOON, initially generated requests are gradually forwarded
to the file holders, leading to an increase in successfully
delivered requests and average delay.

4) Cost: Figure 3(c) plots the maintenance cost of dif-
ferent methods. The cost follows: Epidemic>PDI+DIS>
MOPS>SPOON. Also, PDI+DIS’s cost has a rapid increase
at first, and then grows linearly at similar rate as SPOON.

In all the four methods, each node exchanges its content
with newly met node, which contributes to the maintenance
cost. Other than this, the four methods need to exchange
additional information. In SPOON, ambassadors report to
coordinators the contents of other communities they collect.
PDI+DIS needs to build content table, resulting a relatively
high maintenance cost. In MOPS, brokers exchange the re-
quests and contents of all nodes from their home communities
when meeting each other. Therefore, MOPS produces slightly
higher cost than SPOON. In Epidemic, two nodes also need
to exchange their requests information. That’s why the main-
tenance cost of Epidemic is much higher than that of SPOON.

We are very curious about the initial increase of PDI+DIS.
From the stable hit rate of PDI+DIS in Figure 3(a), we know
that most requests are resolved at the initial stage. Recall
that PDI+DIS needs to build content tables for successfully
resolved requests. Therefore, the maintenance cost increase
fast at the beginning. Afterwards, few buffered requests are
gradually resolved as shown in Figure 3(b), leading to a steady
increase in maintenance cost due to content exchange.

Figure 3(d) shows the total cost of each method. We observe
that by including the request cost, the relationship between
Epidemic, MOPS and SPOON (Epidemic>MOPS>SPOON)
remains the same as Figure 3(c), which means that the main-
tenance cost is the majority part of their total cost. Combined
with the previous results, we conclude that SPOON is the most
effective in terms of hit rate, searching delay and cost.

C. Performance in Disconnected and Connected MANETs

In this section, we tested SPOON and the three comparison
methods in both connected and disconnected MANETs, which
are synthesized by a community based mobility model [31].
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Fig. 4. Performance in a connected MANET.
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Fig. 5. Performance in a disconnected MANET.

1) Experiment Settings and Parameters: As the work
in [23], we use the community based mobility model to create
communities. This mobility model has been validated to be
able to show similar properties with real traces [31]. We set all
the parameters of the mobility model to the same as the work
in [23]. The simulation area size was set to 1000m× 1000m
and 4000m × 4000m for the connected and disconnected
MANET, respectively. The entire simulation area is divided
into 100 squares and each square holds one community. We
set the number of nodes to 100, and created 10 communities
with each representing one interest group (community). The
movement speed of a normal node was randomly chosen from
[1,6] m/s, a normal speed range for walking and bicycling.
We selected 10% of all nodes as the travelers, which are
evenly distributed among communities. The movement speed
of travelers was set to the twice of the normal node’s average
speed, i.e., 7m/s. In the experiment, each person belongs
mainly to one community, and contains the same files as in
the trace-driven experiments. We set the TTL to 14000s. The
query activity starts at 100s and lasts for 900s. The query
rate was set to 15/s. Table III shows a summary of all default
parameters in this test.

2) Hit Rate: Figure 4(a) and 5(a) show the hit rates over
time of the four methods in the connected and disconnected
MANETs, respectively. We observe that the results in both
environments are similar as that of Figure 3(a) due to the same
reasons. We also find that compared to in the disconnected
MANET, PDI+DIS has much higher hit rate and others have
slightly higher hit rates in the connected MANET. This is
because in connected MANETs, nodes are close with each
other. Then, each request in PDI+DIS can reach more nodes
through broadcast, leading to a higher hit rate. However, since
Epidemic, SPOON and MOPS temporarily buffered requests

on nodes until they move close to a proper next hop, which
alleviates the negative influence of node disconnection, their
hit rates only increase marginally in the connected MANET.

3) Average Delay: Figure 4(b) and Figure 5(b) illustrate
the average delay over time of the four methods in connected
and disconnected MANETs, respectively. In both scenarios,
SPOON generates 20% less delay than MOPS. We also
observe that the results in Figure 5(b) for the disconnected
MANET are nearly consistent with those in the trace-driven
experiment in Figure 3(b) due to the same reasons.

It is very interesting to see that the results in Figure 4(b)
show differences from those in Figure 3(b). Comparing Fig-
ure 4(b) and Figure 5(b), we find that PDI+DIS generates
relatively higher delay in connected MANETs than in dis-
connected MANETs. Epidemic generates lower delay than
PDI+DIS in connected MANETs, but higher delay in discon-
nected MANETs. This is because nodes are more likely to
meet each other in the connected MANETs than in the discon-
nected MANETs, leading to more forwarding possibilities. As
a result, PDI+DIS’s hit rate significantly increases as shown
in Figure 4(a) and average delay of all successful requests.
In a connected MANET, Epidemic can quickly copy requests
to all nodes in the system, resulting in a much lower delay.
For SPOON and MOPS, each request has only one copy in
the network and has to wait for a proper message forwarder.
Therefore, the decreases in their delays are not large.

4) Cost: Figure 4(c) and Figure 5(c) plot the mainte-
nance cost of different methods in connected and discon-
nected MANETs, respectively. The results in the two figures
approximately match the results in the trace-driven experi-
ment in Figure 3(c) due to the same reasons. We observe
that Epidemic still has the highest maintenance cost and
PDI+DIS>MOPS>SPOON. Comparing the absolute values in
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Figure 4(c) and Figure 5(c), we find that the cost generated
in the connected MANET is much higher than that in the
disconnected MANET. This is because nodes have higher
probability to meet each other in the connected MANET,
thereby increasing the number of exchanged messages.

Figure 4(d) and Figure 5(d) show the total cost of the four
methods in connected and disconnected MANETs, respec-
tively. Both results match that of the trace-driven experiment
in Figure 3(d) due to the same reasons. In Epidemic and
PDI+DIS, nodes disseminate requests to all met nodes in the
network. MOPS and SPOON only forward one request, gen-
erating much lower request cost than Epidemic and PDI+DIS.

These results, along with what we obtained in the GENI
experiment and trace-driven simulation, confirm the high ef-
ficiency of SPOON in file searching in both connected and
disconnected MANETs by leveraging social networks. By
considering both node interest and contact frequency social
network properties, SPOON reduces delay and overhead and
increases hit rate of MOPS, which only considers the contact
frequency. Though Epidemic and PDI+DIS show small aver-
age delays, Epidemic generates a high cost while PDI+DIS is
not mobility resilient.

V. CONCLUSION

In this paper, we propose a Social network based P2P
cOntent file sharing system in mObile ad-hoc Networks
(SPOON). SPOON considers both node interest and contact
frequency for highly efficient file sharing. We introduce four
SPOON components: interest extraction, community construc-
tion, node role assignment, and interest-oriented file searching
and retrieval. Interest extraction identifies nodes’ interests.
Community construction builds common-interest nodes with
frequent contacts into communities. Although node discon-
nection occurs frequently due to node mobility, the node role
assignment component exploits the node mobility for efficient
file searching. A node with frequent contact with community
members is elected as the community coordinator, which helps
intra-community file search. Highly mobile nodes that connect
external communities are chosen as the community ambas-
sadors, which help inter-community file search. The interest-
oriented file searching scheme first searches a requester’s
home community, and then search a foreign community of the
queried file through ambassadors. Both the system deployment
on real world Orbit platform and the trace-driven experiment
in simulated disconnected and connected MANETs show that
SPOON can dramatically reduce the traffic cost of flooding-
based and advertisement-based methods, and can reduce the
delay in another social contact-based method. Also, SPOON
achieves a much higher success rate in file sharing than other
methods. In our future work, we will explore how to determine
appropriate thresholds in SPOON and how the thresholds
affect the file sharing efficiency.
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