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Abstract—One critical function of cyber-physical systems
(CPS) is object search in the physical world through the cyber
sphere that enables interaction between the cyber and physical
spheres. Some of the previously proposed physical object search
engines use RFID tracking, and others collect the information
of object locations into a hierarchical centralized server. The
difficulty of widely deploying RFID devices, the centralized
search, and the need for periodical location information collection
prevent CPS from achieving higher scalability and efficiency. To
deal with this problem, we propose a Social-aware distributed
Cyber-Physical human-centric Search engine (SCPS) that lever-
ages the social network formed by wireless device users for
object search. Without requiring periodical location information
collection, SCPS locates objects held by users based on the
routine user movement pattern. Moreover, using a social-aware
Bayesian network, it can accurately predict the users’ locations
when exceptional events (e.g., inclement weather) occur, which
breaks user movement pattern. Thus, SCPS is more advantageous
than all previous social network based works which assume
that user behaviors always follow a certain pattern. Further,
SCPS conducts the search in a fully distributed manner by
relying on a DHT structure. As a result, SCPS achieves high
scalability, efficiency and location accuracy. Extensive real-trace
driven simulation results show the superior performance of SCPS
compared to other representative search methods.

I. INTRODUCTION

Advances in ubiquitous sensing, computing and wireless-
communication technologies are leading to the development of
cyber-physical systems (CPS), which promise to revolutionize
the way we interact with the physical world. CPS are computer
systems that monitor and interact with a constantly changing
physical environment. While many technologies are important
to achieving high performance CPS, perhaps one of the most
essential challenges is object search in the physical world
through the cyber sphere that enables interaction between the
cyber and physical spheres. The problem dealt in this paper
is human-centric object search. That is, how to efficiently
search objects carried by people (such as documents, keys
and electronic files) in the physical world through a computer
system? CPS applications, such as healthcare monitoring, are
becoming increasingly prevalent, and involve ubiquitous users
and objects scattered over a wide area. This requires that
a search engine can provide scalable, efficient, low-latency
search service with high location accuracy.

The number of mobile devices with ad hoc wireless com-
munication capacities (e.g., WiFi and Bluetooth) has been

increasing rapidly. The mobile device users constitute a social
network, in which human mobility exhibits certain patterns,
and is predictable to a large extent [1]. Also, individuals
are tied by one or more specific types of relationship, such
as friendship, kinship or trade. In addition, wireless sensors
are widely deployed for monitoring the environment, like
weather and traffic. The increasing number of mobile users,
wireless sensor nodes, and base stations (BSs) now creates
opportunities for innovations in human-centric object search.

By leveraging these opportunities, in this paper, we
propose a Social-aware distributed Cyber-Physical human-
centric Search engine (SCPS), which does not specifically
depend on additional RFIDs or sensor devices. Without
periodical location information collection, SCPS locates
objects held by users based on the user movement patterns in
the social network. Moreover, using a Bayesian network (BN)
combined with a social network (i.e., social-aware BN), it can
find the users’ locations when exceptional (i.e., non-routine)
events (e.g., bad weather, traffic jam and meeting a friend)
occur, which breaks routine user movement patterns. For
example, a person does not play football as planned when it is
raining but goes to the gym instead. If two friends1 bump into
each other, they may stay together for a time period. Further,
SCPS conducts the search in a fully distributed manner
by relying on a Distributed Hash Table (DHT) structure
constituted by BSs, which search objects for their nearby
mobile users. SCPS is distinguished by its high scalability,
efficiency, and accuracy and low latency in object searching.

II. RELATED WORK

Physical object search. In recent years, a number of
methods for physical object search or localization have been
proposed. MAX [2] is perhaps the first search engine for
physical objects. It has a centralized hierarchy formed by
station and substation for object searching. Substations can
sense the RFIDs attached to the objects nearby, and they are
responsible for building an inverted index2 of their nearby
objects for local search. The central station stores the inverted
index of substations. Nodes send queries to the substations,

1Two persons with a direct relationship (e.g., co-workers, family members,
classmates and business partners) in a social network are called friends.

2Inverted index is a data structure, which shows the mapping of objects to
their owners.
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which send back the IDs of nodes containing the searched
keywords. Queries that cannot be met locally are directed to
the central station, which returns the best matched substations.
Snoogle [3] extends MAX by adding schemes for supporting
multiple-keyword search and top-k query. Microsearch [4]
further details the design and implementation of the top-k
search and also presents a memory efficient algorithm and
a theoretical model of the search. However, the centralized
structure in MAX, Snoogle and Microsearch make them vul-
nerable to congestion when many global queries occur, leading
to low scalability. MASCAL [5] is an operational hospital
asset management system. It utilizes active Wi-Fi RFID tags
to enable the real-time tracking of patients and assets inside a
hospital. Other research[6], [7], [8] focuses on the localization
of sensors based on coordination schemes, while others [9],
[10] rely on radio frequency or ultrasound to support sensor
location.

Social network based routing. Social networks recently
have been utilized for routing in Delay Tolerant Networks
(DTNs) [11], [12], [13] and Mobile Ad hoc Networks
(MANETs) [14], [15], [16]. The schemes exploit the history
of contacts with the assumption that the meeting probability
between nodes remains approximately the same, and cluster
nodes with high meeting frequency choose the node which
has a high probability of meeting the destination at the next
hop. However, these methods only consider node movement
patterns or routines, i.e., the places people regularly visit or
friends they usually meet, but neglect exceptions in people
movement. SCPS addresses this deficiency by capturing the
exceptions in routine human mobility in location prediction.

III. THE DESIGN OF THE SCPS SYSTEM

SCPS builds the nodes into a hierarchical structure, as
shown in Figure 1, to efficiently manage object data for the
search service. In the upper layer of the structure, the base
stations (BSs) form a Chord DHT. In the lower layer, mobile
nodes (MNs) and sensors communicate with their closest BSs.
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Fig. 1. SCPS structure and query.

A. Data Collection in the Distributed Hierarchical Structure

1) Object data collection and storage: SCPS uses a DHT-
based overlay for data collection and storage. In a DHT, each
object (or file) has a key, which is the consistent hash function
of the object name. A DHT has a function Insert(key, value)
to store the value to a node. We call the node the value’s

owner. Each node has an ID which is the consistent hash
value of its IP address (note this implies that nodes must use
public IP addresses or must all use the same private IP address
space). An object is stored in a node whose ID is the closest
(or first succeeding) the object’s key. Any participating node
can efficiently retrieve the value associated with a given key
through function Lookup(key).

The holder indexer of an object is the owner of the object’s
key, and the locator of a MN is the owner of the node’s ID.
The object data is either input by users manually using MNs
or reported by the sensors when they detect the object. A
node sends an index report that contains the user name and
its objects to its nearest BS. For example, user A sends its
index report “User A has object 1, 2 and 3” to BS1. After
receiving an index report, a BS executes Insert(key, objHolder)
for each object, where key is the hash value of the object’s
name. Finally, this message arrives at the holder indexer of
the object, which stores the holder information of the object
such as ”obj1: A, B and C”.

B. Social-aware Bayesian Network Prediction Model

A MN locator builds a social-aware BN prediction model for
locating the MN. To enable each locator to collect the required
data for building the BN, each MN reports its movement
routine to its locator at the initial stage, SCPS stores the social
relationship information of each MN to its locator initially, and
the social events data of a MN is promptly sent to its locator.
In the DHT-based overlay, Insert(K,D) is used to send data to
a MN’s locator, where K is the ID of the MN and D is the
data. Environmental event data is sent to the locators of MNs
that are influenced by the events.

A BN is a probabilistic graphical model that represents a
set of random variables and their conditional dependencies,
which can be used to model complex event driven casual
relationships. We use BN to model and infer the probability
of an event according to other observed events. Figure 2
shows an example of a BN for one person. It has variables
including time, weather, health, nearby friends, and location.
The location has variables such as football field, gym, home,
and basketball court. The events determine location values.
Football field is the value of the routine event when none
of the exceptional events happen. Exceptional events such as
rain, illness and meeting a friend break the person’s routine.
For example, at time 5:00pm, if it is raining, the probability
that the person is in the gym is 1, and the probability that the
person is at the football field is 0. If the person is ill, then it
is more likely that he will be at home.

To provide a fine-grained view of node movement for more
accurate location prediction of people, we consider the routine
of a person as a chain through time. Specifically, we find
the place each person usually stays during a certain time
period. For example, Tom stays in his research lab during
8:00am-12:00pm and stays in the cafeteria during 12:00pm-
1:00pm. We further rely on the event-driven BN to capture the
influence of exceptional events. For example, the BN correctly
predict that Tom is in the gym instead of the basketball court
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Fig. 2. A Bayesian network for one person.

by considering the rain event by adjusting the probability of
variables in the BN. We further consider the event of meeting
a friend and social network information in the process of
BN prediction. The social network information includes the
social relationship or common interests between friends. The
intuition behind this scheme is the fact that people with certain
social relationships tend to meet at certain places determined
by their relationship and common interests in our everyday
life. If friends in a basketball club are meeting each other,
they are likely to play basketball or watch a basketball game
at the basketball court. After training, the BN can predict the
location of people when they meet each other according to
their social relation information. In Section IV-A, details for
building a BN using a real trace of node mobility are presented.

C. Cyber-Physical Searching

Figure 1 shows the process of object querying in SCPS.
When one requester wants to search for an object named obj1,
it sends an object location query (OLQ) containing the name of
the object to its nearest BS, say BS1. If the requester is not in
range of any BS, it uses geographic routing to send the query
to BS1. After receiving the query, BS1 forwards the OLQ
to the holder indexer of obj1 using Lookup(key(obj1),OLQ).
Using the DHT routing algorithm, the request arrives at the
BS, say BS2, which has the inverted index of obj1. Assume
that the holders of obj1 are mobile users A, C and D. Then,
BS2 hashes the holder names and sends out the holder location
queries (HLQ) using the functions of Lookup(KA,(HLQ,B1)),
Lookup(KC ,(HLQ,B1)) and Lookup(KD,(HLQ,B1)). The three
requests arrive at the locators of nodes A, C and D, which
predict the locations of A, C and D, respectively. Assume
BS3 is the locator of user A. Using the prediction model,
BS3 predicts the location of A and responds to BS1 with
object location reply. BS1 then replies to the requester with
the locations. After receiving the locations, the requester sends
object query to each object holder using geographic routing,
and each holder responds to the requester with object reply.

IV. PERFORMANCE EVALUATION

We conducted real-trace driven simulations to evaluate the
prediction accuracy and system effectiveness of the proposed
SCPS system based on the Reality [17] dataset.

A. Bayesian Network Construction Using the Real Trace

Reality [17] is a dataset collected at the MIT Reality Group,
which contains (1) survey data of 94 users in 10 months, (2)
cell phone trace, and (3) Bluetooth trace. We derived the friend
social relationship from the survey data. To make the Reality
dataset suitable to our design and test scenarios, we processed
the dataset information.

We need location records with a certain granularity, say for
every minute, in order to simulate node movement. However,
many missing records for days with “no signal” occur in the
dataset. We went through all records and identified 19 such
users with a relatively long period of records of 11 days.
We used the records of the first 10 days for training of the
prediction model, and those of the last day for prediction
simulation. To generate events for meeting friends, we found
the location of the longest accumulated meeting time of two
nodes during the 11 days, and changed all meeting locations
for them to that location.

We now describe how the BN of each person, (in Figure
2), is generated. We identify 3 variables: time, event and
location. The time variable has 7 different values (14 hours
from 8am to 10pm are divided into 7 intervals with a 2-hour
granularity). The events have two values: true and false. The
location has several values. The parents of location are time
and event because the human mobility is influenced by both
factors. Accordingly, we construct the BN using all retrieved
events, locations and time variables from the records in the real
trace. In the BN, there are links from: 1) time to the location
(routine), and 2) events to the locations (exceptional events).

We calculate the historical frequency of a user visiting
different locations at different time intervals in the dataset.
For example, if there are 100 records at 5:00pm, in which
60 records are for Loc1, 20 records for Loc2, 10 records for
Loc3, and 10 for Loc3, respectively. We infer that at 5:00pm,
the probability of the person staying in Loc1 is 60%, in Loc2
is 20%, in Loc3 is 10% and in Loc4 is 10%. Since the real
trace does not provide data for non-routine events, we assume
that a person visits an infrequently visited place due to an
exceptional event. When an exceptional event happens, the
probability of the person staying at the corresponding location
is 100%. When no exceptional events happens, the probability
that the person staying at the routine location is 100%.

B. Experiment Settings

We conducted experiments on NS-2 [18]. We used Plan-
etSim [19] to test the overhead and delay in the DHT-based
overlay formed by BSs, and used the Bayesian Network Tools
[20] for BN inference to test the BN prediction delay. GPSR
[21] is used when a requester sends a query to a nearby BS
not within its transmission range and when a requester sends
an object query to the object holder. If the location that the
requester received is incorrect and the packet arriving at the
location cannot find the object holder, GPSR uses perimeter
mode routing.

We compared our SCPS system with SCPS without social-
aware prediction (SCPSw/oS), SCPS without BN prediction
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(SCPSw/oP), Snoogle [3], statistics-based method (Statistic)
[14], and MOPS [12]. SCPSw/oS is SCPS without considering
social events in BN prediction. SCPSw/oP is SCPS without
using the location prediction mechanism. Instead, it uses the
periodic reporting from nodes to BSs to keep track of the
locations of every user. Snoogle [3] is a centralized search
engine with a two-layer hierarchical structure over the sensor
nodes. The higher layer is a central server called KeyIP and the
sensors in the lower layer are called IPs. Queries for arbitrary
objects are firstly directed to the KeyIP, which returns the best
matched IPs, which send back the IDs of nodes containing
the searched objects by checking their inverted indexes. In the
simulation, we used BSs to function as the IPs, and used the
BS in the center of the simulation area as the keyIP. To be
comparable to SCPS, Snoogle also adopts geographic routing,
and relies on periodic location reporting to IPs for destination
locations. In Snoogle and SCPSw/oP, mobile nodes report their
locations to BSs every 5 seconds.

The Statistic method is similar to SCPS, but only
uses a person’s routine for location prediction. MOPS
is a publish/subscribe system based on social network
information. It clusters nodes with frequent communications
into a community. It uses nodes having frequent contact
with other communities as brokers for inter-community
communication and direct contact between nodes in the same
community for intra-community communication. In MOPS, a
node carries the message until meeting the destination.

Table I summarizes the default parameters used in the
simulation unless otherwise specified. Of the 69 total nodes,
19 nodes move according to the real trace and 50 nodes move
randomly with a speed randomly chosen from [0,2]m/s. All
results over 2000 queries are averaged for the final results.

We randomly assigned 95 items (5 copies of 19 items) to
19 people. Each node starts to query after a 20s initialization
time period at a certain query rate for 580s. The simulation
then ran for another 20s before stopping. A query rate of 1/x
means a query is sent out every x seconds. The item queried
is randomly chosen from the 19 items. A requester randomly
selects 1 from the 5 object holders in the object location reply
for an object query. The length of a query packet is 28 bytes.
We consider the following metrics:

TABLE I
SIMULATION PARAMETERS

Environment Parameters Default Value
Simulation area 600m× 600m

Node Parameters Default Value
Total number of mobile nodes 69
Total number of base stations 7
Physical layer IEEE 802.11
Communication range 200m
Movement speed 0m/s− 2m/s
The length of a query 28 bytes
Query Parameters Default Value
Query rate 1/10 (one query every 10 seconds)
Initialization period 20s
Query time 580s

1) Object hit rate: the average ratio between the number of
object replies and the number of queries sent from requesters

to object holders using geographic routing. This metric can
reflect the accuracy of location prediction since a wrong
location in geographical routing leads to routing failure.

2) Overhead: the total number of hops passed by all
messages in object searching. The messages do not include
hello messages.

3) Query delay: the average delay time of all successfully
resolved object queries. The query delay time is the time
elapsed from the time a requester sends an object location
query to the time the requester receives the object reply.

C. Performance with Different Query Rates

In this test, we examined the performance of SCPS and
other methods at different query rates. We varied the query
rate of nodes over 7 different rates from 1/20 to 1.

1) Object hit rate: Figure 3(a) shows the average object
hit rate of the six methods with different query rates. First, we
find that the object hit rate of SCPS is higher than the other
two prediction based methods (SCPSw/oS and Statistic). This
is because it can produce more accurate locations than the
other two methods due to its higher prediction accuracy, so
that a query can be sent to the correct destination with higher
probability. The higher object hit rate of SCPS compared
with SCPSw/oS verifies the effectiveness of considering social
events in prediction. Similarly, the object hit rate of SCPSw/oS
is higher than Statistic, which verifies the importance of
considering exceptional environmental events in prediction.

Relying on periodic location reporting, SCPSw/oP and
Snoogle can always provide accurate object locations, thus
producing the highest object hit rate. It is interesting to see
that the object hit rate of SCPS is comparable to SCPSw/oP
and Snoogle, which can always provide correct locations due
to periodic reporting. This is caused by two reasons. First,
SCPS provides relatively highly accurate object locations.
Second, SCPSw/oP and Snoogle send many location reporting
messages in periodic reporting, which greatly increases the
channel contention, thereby lowering their hit rates.

In addition, we see that MOPS exhibits a sharp decrease
in the object hit rate as the query rate increases. When the
brokers of different communities meet, they only can exchange
a limited number of messages due to limited meeting time.
Thus, a higher query rate produce more undelivered messages,
which are dropped when the test completes, leading to a lower
object hit rate. These experimental results confirm that SCPS
has a very high object hit rate even at high query rates, which
is comparable to reporting based methods.

2) Overhead: Figure 3(b) plots the total overhead of the
six methods. We find that the overhead of SCPSw/oP is higher
than SCPS. This is because nodes in SCPSw/oP need to
periodically report their locations to nearby BSs, while SCPS
does not have this requirement due to its location prediction
capacity. It is interesting to see that, though also using location
reporting, Snoogle has lower overhead than SCPSw/oP and
SCPS. This is due to two reasons. 1) Snoogle has a high
location query drop rate, which reduces the number of hops
traversed by messages in multi-hop transmission. 2) Compared
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Fig. 3. Performance of object search with different query rates.

with Snoogle, SCPSw/oP and SCPS need extra overhead in the
DHT layer for looking up the locations of object owners.

We observe that the overhead of MOPS is much lower
than the other methods. This is because the packets in
MOPS are mainly transmitted by brokers carrying the mes-
sages instead of using hop-by-hop transmission. We also
see that the overhead follows: Statistic>SCPSw/oS>SCPS.
This is because the location accuracy of the methods follows
Statistic<SCPSw/oS<SCPS. Packets with wrong locations
result in many “hanging packets”, and thereby increasing
overhead. These observations verify that SCPS has a relatively
lower overhead compared with methods with similar location
query drop rate and object hit rate.

3) Query delay: Figure 3(c) illustrates the average query
delay of the six methods with different query rates. We find
that the average delay of MOPS is much higher than the other
methods (about 50s). Thus, we do not include MOPS in the
figure. The reason for the high delay is because the inter-
community communication is conducted only when brokers
meet each other, which results in a long delay.

We observe that Snoogle, SCPSw/oP and Statistic generate
lower query delay than SCPS and SCPSw/oS because the
first three methods do not use BN location prediction, which
takes about 0.0675s per prediction. We also see that Statistic
produces a slightly higher query delay than Snoogle and
SCPSw/oP. Some packets in Statistic have much larger delay
due to the incorrect location used in routing. Though most
of the wrong location packets are dropped, a few can arrive
at the destination after a long network detour, leading to
larger average query delay. Without considering social events,
SCPSw/oS has lower location prediction accuracy than SCPS,
thus it generates higher average query delay than SCPS.

As the query rate increases, the query delay of Snoogle
increases faster than SCPSw/oP, because centralized KeyIP has
a long queue when the query rate is high. We observe the query
delays of all methods grow as the query rate increases due to
network congestion generated by more queries.

V. CONCLUSION

In this paper, we proposed a Social-aware distributed Cyber-
Physical human-centric Search engine (SCPS) that provides
a scalable, efficient and accurate search service for physical
objects carried by moving people. SCPS consists of three
components: distributed hierarchical structure, social-aware
Bayesian network prediction model and cyber-physical search-
ing algorithm. The three components cooperate to predict the

locations of queried objects without the need of periodical
location reporting. Trace-driven simulation results show the
high efficiency and location prediction accuracy of SCPS in
comparison with existing methods.
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